An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds
Abstract
:1. Introduction
2. Results and Discussion
Entry | Solvent | Time (min.) | Yield (%) |
---|---|---|---|
1 | Methanol | 3 | 41 |
2 | Ethanol | 3 | 65 |
3 | Tetrahydrofuran | 5 | 48 |
4 | Dichloromethane | 3 | 27 |
5 | THF/Water (1:1) | 5 | 36 |
6 | Water | 5 | 38 |
7 | Acetonitrile | 3 | 72 |
8 | Ethanol/Water (1:1) | 30 sec. | 99 |
Entry | Amine | Dicarbonyl Compounds | MWI (Power/temp/time) | Product | Yield (%)a |
---|---|---|---|---|---|
1 | 300 watts 50°C 30 sec | 99 | |||
2 | 300 watts 50 °C 30 sec | 90 | |||
3 | 300 watts 50 °C 30 sec | 92 | |||
4 | 300 watts 50 °C 45 sec | 95 | |||
5 | 300 watts 50 °C 1 min | 98 | |||
6 | 300 watts 50 °C 1 min | 86 | |||
7 | 300 watts 50 °C 1.5 min | 90 | |||
8 | 300 watts 50 °C 30 sec | 85 | |||
9 | 300 watts 50 °C 2.5 min | 95 | |||
10 | 300 watts 50 °C 2 min | 87 | |||
11 | 300 watts 50 °C 2 min 15 sec | 92 | |||
12 | 300 watts 50 °C 45 sec | 93 | |||
13 | 300 watts 50 °C 5 min without catalyst | No reaction | — |
3. Experimental Section
3.1. General
3.2. General procedure for the synthesis of quinoxalines
4. Conclusions
Acknowledgements
References
- Hazeldine, S.T.; Polin, L.; Kushner, J.; Paluch, J.; White, K.; Edelstein, M.; Palomino, E.; Corbett, T.H.; Horwitz, J.P. Design, Synthesis, and Biological Evaluation of Analogues of the Antitumor Agent, 2-{4-[(7-Chloro-2-quinoxalinyl)oxy]phenoxy}propionic Acid (XK469). J. Med. Chem. 2001, 44, 1758–1776. [Google Scholar] [CrossRef]
- Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and Antimycobacterial Activity of Pyrazine and Quinoxaline Derivatives. J. Med. Chem. 2002, 45, 5604–5606. [Google Scholar] [CrossRef]
- Badran, M.M.; Botros, S.; El-Gendy, A.A.; Abdou, N.A.; El-Assi, H.; Salem, A. Part I: novel quinoxaline derivatives of biological interest. Bull. Pharm. Sci. 2001, 24, 135–144. [Google Scholar] [CrossRef]
- Bailly, C.; Echepare, S.; Gago, F.; Waring, M.J. Recognition elements that determine affinity and sequence-specific binding to DNA of 2QN, a biosynthetic bis-quinoline analogue of echinomycin. Anti Canc. Drug Des. 1999, 14, 291–303. [Google Scholar]
- Sato, K.; Shiratori, O.; Katagiri, K. Mode of action of quinoxaline antibiotics. Interaction of quinomycin A with deoxyribonucleic acid. J. Antibiot. 1967, 20, 270–276. [Google Scholar]
- Becker, F.F.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: synthesis and biological evaluation of some chrysene derivatives. Bioorg. Med. Chem. Lett. 1998, 8, 2877–2880. [Google Scholar] [CrossRef]
- Becker, F.F.; Mukhopadhyay, C.; Hackfeld, L.; Banik, I.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: synthesis and biological evaluation of dibenzofluorene derivatives. Bioorg. Med. Chem. 2000, 8, 2693–2699. [Google Scholar] [CrossRef]
- Banik, B.K.; Becker, F.F. Polycyclic aromatic compounds as anticancer agents. 4. Structure-activity relationships of chrysene and pyrene derivatives. Bioorg. Med. Chem. 2001, 9, 593–605. [Google Scholar] [CrossRef]
- Banik, B.K.; Becker, F.F. Synthesis, electrophilic substitution and structure-activity relationship studies of polycyclic aromatic compounds towards the development of anticancer agents. Curr. Med. Chem. 2001, 8, 1513–1533. [Google Scholar] [CrossRef]
- Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg. Med. Chem. 2004, 12, 2523–2528. [Google Scholar]
- Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective Synthesis of β-Lactams with Polyaromatic Imines: Entry to New and Novel Anticancer Agents. J. Med. Chem. 2003, 46, 12–15. [Google Scholar] [CrossRef]
- Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Rao, M.V. Recent advances in the solid-phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures. Mini Rev. Med. Chem. 2006, 6, 71–89. [Google Scholar] [CrossRef]
- Srinivas, C.; Kumar, C.N.S.S.P.; Rao, V.J.; Palaniappan, S. Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives. J. Mol. Catal. A: Chem. 2007, 265, 227–230. [Google Scholar] [CrossRef]
- Zhou, J.F.; Gong, G.X.; Zhi, S.J.; Duan, X.L. Microwave- assisted catalyst-free and solvent-free method for the synthesis of quinoazlines. Synth. Commun. 2009, 39, 3743–3754. [Google Scholar] [CrossRef]
- More, S.V.; Sastry, M.N.V.; Yao, C.-F. Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem. 2006, 8, 91–95. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds (mg quantity) are available from the authors.
© 2010 by the authors;
Share and Cite
Bandyopadhyay, D.; Mukherjee, S.; Rodriguez, R.R.; Banik, B.K. An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds. Molecules 2010, 15, 4207-4212. https://doi.org/10.3390/molecules15064207
Bandyopadhyay D, Mukherjee S, Rodriguez RR, Banik BK. An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds. Molecules. 2010; 15(6):4207-4212. https://doi.org/10.3390/molecules15064207
Chicago/Turabian StyleBandyopadhyay, Debasish, Sanghamitra Mukherjee, Robert R. Rodriguez, and Bimal K. Banik. 2010. "An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds" Molecules 15, no. 6: 4207-4212. https://doi.org/10.3390/molecules15064207