Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenolic Content in Blanch Water
Phenol | BW (µg/g extract) |
---|---|
Phenolic acids | 778.71 ± 65.35 |
Protocatechuic acid | 73.19 ± 6.35 |
p-Hydroxybenzoic acid | 542.37 ± 45.81 |
Chlorogenic acid | 84.32 ± 7.64 |
Vanillic acid | 63.54 ± 4.51 |
trans p-Coumaric acid | 15.29 ± 1.04 |
Flavan-3-ols | 1069.50 ± 79.67 |
Aglycones | 1069.50 ± 79.67 |
Catechin | 693.41 ± 51.49 |
Epicatechin | 376.09 ± 28.18 |
Flavanones | 842.65 ± 82.94 |
Aglycones | 69.99 ± 5.64 |
Eriodictyol | 16.27 ± 1.24 |
Naringenin | 53.72 ± 4.40 |
Glycosides | 820.23 ± 77.30 |
Eriodictyol-7-O-glucoside | 4.85 ± 2.71 |
Naringenin-7-O-glucoside | 815.38 ± 74.59 |
Flavonols | 1089.54 ± 89.81 |
Glycosides | 1089.54 ± 89.81 |
Quercetin-3-O-rutinoside | 79.43 ± 6.21 |
Quercetin-3-O-glucoside | 7.13 ± 0.62 |
Kaempferol-3-O-rutinoside | 803.54 ± 65.03 |
Kaempferol-3-O-glucoside | 33.73 ± 2.76 |
Isoramnetin-3-O-rutinoside | 42.12 ± 3.57 |
Isoramnetin-3-O-glucoside | 123.59 ± 11.62 |
Component | BW |
---|---|
Proanthocyanidins mg CyE/g extract a | 71.84 ± 5.21 |
Vanillin index mg CatE/g extract b | 29.45 ± 2.69 |
Polymerization Index | 0.41 |
2.2. Antioxidant Activity of Blanch Water
Assay | Unit | BW |
---|---|---|
Folin-Ciocalteau test | mg GAE/g | 90.28 ± 5.47 |
DPPH test | a SE50 (µg) | 132.82 ± 12.02 |
Reducing Power test | b mmoles AAE/g | 2.02 ± 0.11 |
β-Carotene blanching test | c IC50 (µg/mL) | 232.86 ± 21.45 |
UV-IP test | d IC50 (µg/mL) | 531.11 ± 44.91 |
2.3. In Vivo Photoprotective Effect of Blanch Water
Subject | Control | Blank | TOC | BW |
---|---|---|---|---|
A | 1383.27 ± 120.59 | 1365.41 ± 115.67 | 1126.38 ± 66.12 | 654.68 ± 50.67 |
B | 1522.18 ± 102.40 | 1356.08 ± 100.09 | 954.23 ± 73.64 | 700.36 ± 55.24 |
C | 1125.35 ± 97.97 | 1296.34 ± 95.67 | 1115.45 ± 69.58 | 765.68 ± 49.29 |
D | 1248.05 ± 120.26 | 1456.44 ± 134.25 | 1048.11 ± 75.15 | 643.28 ± 50.71 |
E | 1392.61 ± 124.65 | 1108.87 ± 87.43 | 1084.65 ± 79.26 | 696.03 ± 45.38 |
F | 1275.87 ± 100.65 | 1284.60 ± 102.58 | 1035.44 ± 65.37 | 624.95 ± 47.08 |
G | 1396.14 ± 115.38 | 1326.94 ± 118.05 | 973.12 ± 70.25 | 644.76 ± 56.16 |
H | 1471.85 ± 121.37 | 1285.67 ± 112.82 | 1219.12 ± 76.41 | 545.84 ± 39.88 |
I | 1329.53 ± 104.41 | 1574.24 ± 136.57 | 1065.21 ± 81.36 | 712.59 ± 42.79 |
L | 1507.39 ± 99.37 | 1429.41 ± 126.48 | 941.72 ± 62.74 | 907.33 ± 57.29 |
M | 1436.27 ± 124.84 | 1230.50 ± 95.66 | 1119.35 ± 80.54 | 650.82 ± 45.44 |
N | 1284.08 ± 104.73 | 1236.77 ± 122.5 | 1023.68 ± 68.25 | 560.61 ± 48.36 |
mean | 1364.38 | 1329.27 | 1058.87 | 675.57 |
± S.D. | 116.93 | 120.64 | 80.75 | 95.29 |
PIE (%) | - - - | - - - | 22.39 a | 50.48 a,b |
3. Experimental
3.1. Preparation of the Blanch Water (BW) Extract
3.2. HPLC Analysis of Phenolics and Flavonoids
3.3. Levels of Proanthocyanidins
3.4. Vanillin Index Determination
3.5. Evaluation of Antioxidant Activity
3.5.1. Folin-Ciocalteau Method
3.5.2. Radical Scavenging Activity
3.5.4. Reducing Power Test
3.5.5. UV-induced Peroxidation in Liposomal Membranes (UV-IP Test)
3.6. In Vivo Study on Photoprotective Activity
3.6.1. Preparation of Topic Formulations
Formulation | Oil phase | Acqueous phase | Surfactants and structurizing agents |
---|---|---|---|
Blank | PPG-15 stearyl ether (8 g); isohexadecane\PPG-15 stearyl ether (4 g) | Distilled water (76.7 g) | Steareth 2 (3.5 g) |
Steareth 21 (2.5 g) | |||
Stearic acid (2.5 g) | |||
Cetylstearylic acid (2.1 g) | |||
Xantan gum (0.3 g) | |||
Undebenzophenone (0.4 g) | |||
TOC | PPG-15 stearyl ether (7 g); isohexadecane\PPG-15 stearyl ether (3 g); tocopheryl acetate (2 g) | Distilled water (76.7 g) | Steareth 2 (3.5 g) |
Steareth 21 (2.5 g) | |||
Stearic acid (2.5 g) | |||
Cetylstearylic acid (2.1 g) | |||
Xantan gum (0.3 g) | |||
Undebenzophenone (0.4 g) | |||
BW | PPG-15 stearyl ether (8 g); isohexadecane\PPG-15 stearyl ether (4 g) | Distilled water (74.7 g) Blanch water extract (2 g) | Steareth 2 (3.5 g) |
Steareth 21 (2.5 g) | |||
Stearic acid (2.5 g) | |||
Cetylstearylic acid (2.1 g) | |||
Xantan gum (0.3 g) | |||
Undebenzophenone (0.4 g) |
3.6.2. Instruments
3.6.3. Subjects
3.6.4. Protocol
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cohen, A.E.; Johnston, C.S. Almond ingestion at mealtime reduces postprandial glycemia and chronic ingestion reduces haemoglobin A1c in individuals with well-controlled type 2 diabetes mellitus. Metabolism 2011, 60, 1312–1317. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, Y.H.; Liu, J.F.; Chang, W.H.; Chen, C.M.; Chen, C.Y. Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 474–479. [Google Scholar] [CrossRef]
- Haider, S.; Batool, Z.; Haleem, D.J. Nootropic and hyphofagic effects following long term intake of almonds (Prunus amygdalus) in rats. Nutr. Hosp. 2012, 27, 2109–2115. [Google Scholar]
- Food Labeling: Health Claims: Nuts and Heart Disease; Federal Register Docket number 02P-0505; U.S. Food and Drug Administration: Washington, DC, USA, 2003.
- Mandalari, G.; Tomaino, A.; Arcoraci, T.; Martorana, M.; Lo Turco, V.; Cacciola, F.; Rich, G.T.; Bisignano, C.; Saija, A.; Dugo, P.; et al. Characterization of polyphenols, lipids and dietary fibre from skins of almonds (Amygdalus communis L.). J. Food Comp. Anal. 2010, 23, 166–174. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.-H.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Mandalari, G.; Tomaino, A.; Rich, G.T.; Lo Curto, R.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Saija, A.; Parker, M.L.; Waldron, K.W.; et al. Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chem. 2010, 122, 1083–1088. [Google Scholar] [CrossRef]
- Grasser, L.A.; Fadel, J.O.; Garnett, I.; DePeters, E.J. Quantity and economic importance of nine selected by-products. J. Dairy Sci. 1995, 78, 962–971. [Google Scholar] [CrossRef]
- Gonzáles, J.F.; Gañán, J.; Ramiro, A.; Gonzáles-García, C.M.; Encinar, J.M.; Sabio, E.; Román, S. Almond residues gasification plant for generation of electric power. Preliminary study. Fuel Proc. Technol. 2006, 87, 149–155. [Google Scholar] [CrossRef]
- Adhami, V.M.; Syed, D.N.; Khan, N.; Afaq, F. Phytochemicals for prevention of solar ultraviolet radiation-induced damage. Photochem. Photobiol. 2008, 84, 489–500. [Google Scholar] [CrossRef]
- Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.; Saija, A.; Trombetta, D.; Tomaino, A. In vitro antioxidant and in vivo photoprotective effect of pistachio (Pistacia vera L., variety Bronte) seed and skin extracts. Fitoterapia 2013, 85, 41–48. [Google Scholar] [CrossRef]
- Saija, A.; Tomaino, A.; Trombetta, D.; de Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. In vitro and in vivo evaluation of caffeic and ferulic acid sas topical photoprotective agents. Int. J. Pharm. 2000, 199, 39–47. [Google Scholar] [CrossRef]
- Bonina, P.; Saija, A.; Tomaino, A.; Lo Cascio, R.; Rapisarda, P.; Dederen, J.C. In vitro antioxidant activity and in vivo photoprotective effect of a red orange extract. Int. J. Cosmet. Sci. 1998, 20, 331–342. [Google Scholar]
- Montenegro, L.; Bonina, F.; Dederen, J.C. In vivo protective effect of β-bis-(carboxyethyl)germanium sesquioxide. J. Soc. Cosmet. Chem. 1997, 47, 307–313. [Google Scholar]
- Bonina, F.; Puglia, C.; Tomaino, A.; Saija, A.; Mulinacci, N.; Romani, A.; Vincieri, F.F. In vitro antioxidant and in vivo photoprotective effect of three lyophilized extracts of Sedum telephium L. leaves. J. Pharm. Pharmacol. 2000, 52, 1279–1285. [Google Scholar]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef]
- Tatsuno, T.; Jinno, M.; Arima, Y.; Kawabata, T.; Hasegawa, T.; Yahagi, N.; Takano, F.; Ohta, T. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull. 2012, 35, 909–916. [Google Scholar]
- Dell’Agli, M.; Busciala, A.; Bosisio, E. Vascular effects of wine polyphenols. Cardiovasc. Res. 2004, 63, 593–602. [Google Scholar] [CrossRef]
- Bagchi, D.; Bagchi, M.; Stohs, S.J. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Lluís Torres, J. Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Res. Int. 2012, 49, 798–806. [Google Scholar] [CrossRef]
- Richelle, M.; Tavazzi, I.; Offord, E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa and tea) prepared per cup serving. J. Agric. Food Chem. 2001, 49, 3438–3442. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Huang, B.; Zhu, L.; Liu, S.; Li, D.; Chen, Y.X.; Ma, B.X.; Wang, Y.W. In vitro and in vivo evaluation of inhibition activity of lotus (Nelumbo nucifera Gaertn.) leaves against ultraviolet B-induced phototoxicity. J. Photochem. Photobiol. B 2013, 121, 1–5. [Google Scholar]
- Kim, S.H.; Jung, E.Y.; Kang, D.H., Chang; Hong, Y.H.; Suh, H.J. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. J. Photochem. Photobiol. B 2012, 117, 104–110. [Google Scholar] [CrossRef]
- Meinke, M.C.; Schanzer, S.; Haag, S.F.; Casetti, F.; Muller, M.L.; Wolfle, U.; Kleemann, A.; Lademann, J.; Schempp, C.M. In vivo photoprotective and anti-inflammatory effect of hyperforin is associated with high antioxidant activity in vitro and ex vivo. Eur. J. Pharm. Biopharm. 2012, 81, 346–350. [Google Scholar] [CrossRef]
- Cimino, F.; Sulfaro, V.; Trombetta, D.; Saija, A.; Tomaino, A. Radical-scavenging capacity of several Italian red wines. Food Chem. 2007, 103, 75–81. [Google Scholar] [CrossRef]
- Bonina, F.; Puglia, C.; Ventura, D.; Aquino, R.; Tortora, S.; Sacchi, A.; Saija, A.; Tomaino, A.; Pellegrino, M.L.; de Capraris, P. In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L buds. J. Cosmet. Sci. 2002, 53, 321–335. [Google Scholar]
- Aquino, R.; Morelli, S.; Tomaino, A.; Pellegrino, M.L.; Saija, A.; Grumetto, L.; Puglia, C.; Ventura, D.; Bonina, F. Antioxidant and photoprotective activity of a crude extract of Culcitium reflexum H.B.K. leaves and their major flavonoids. J. Ethnopharmacol. 2002, 79, 183–191. [Google Scholar] [CrossRef]
- Spagna, G.; Tomaino, A.; Cimino, F.; Barbagallo, R.N.; Ventura, D.; Bonina, F.; Saija, A. Chemical analysis and photoprotective effect of an extract of wine from Jacquez grapes. J. Sci. Food Agric. 2002, 82, 1867–1874. [Google Scholar] [CrossRef]
- Di Stefano, Cravero, M.R.; Gentilini, M. Methods for the study of wine polyphenols. L’Enotecnico 1989, 5, 83–89. [Google Scholar]
- Margheri, G.; Falcieri, E. Importanza dell’evoluzione delle sostanze polifenoliche nei vini rossi di qualità durante l’invecchiamento. Vini d’Italia 1972, 14, 81–84. [Google Scholar]
- Tomaino, A.; Cristani, M.; Cimino, F.; Speciale, A.; Trombetta, D.; Bonina, F.; Saija, A. In vitro protective effect of a Jacquez grapes wine extract on UV-B induced skin damage. Toxicol. In Vitro 2006, 20, 1395–1402. [Google Scholar] [CrossRef]
- Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on product of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Saija, A.; Tomaino, A.; Trombetta, D.; Pellegrino, M.L.; Tita, B.; Caruso, S.; Castelli, F. Interaction of melatonin with model membranes and possible implications in its photoprotective activity. Eur. J. Pharm. Biopharm. 2002, 53, 209–215. [Google Scholar] [CrossRef]
- Sample Availability: Samples of blanch water are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mandalari, G.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Rizza, L.; Bonina, F.P.; Trombetta, D.; Tomaino, A. Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules 2013, 18, 12426-12440. https://doi.org/10.3390/molecules181012426
Mandalari G, Arcoraci T, Martorana M, Bisignano C, Rizza L, Bonina FP, Trombetta D, Tomaino A. Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules. 2013; 18(10):12426-12440. https://doi.org/10.3390/molecules181012426
Chicago/Turabian StyleMandalari, Giuseppina, Teresita Arcoraci, Maria Martorana, Carlo Bisignano, Luisa Rizza, Francesco Paolo Bonina, Domenico Trombetta, and Antonio Tomaino. 2013. "Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry" Molecules 18, no. 10: 12426-12440. https://doi.org/10.3390/molecules181012426
APA StyleMandalari, G., Arcoraci, T., Martorana, M., Bisignano, C., Rizza, L., Bonina, F. P., Trombetta, D., & Tomaino, A. (2013). Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules, 18(10), 12426-12440. https://doi.org/10.3390/molecules181012426