Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines
Abstract
:1. Introduction
2. Cancer Vaccines
3. HIV Vaccines
4. Encephalitis Vaccines
5. Hepatitis Vaccines
6. Other Vaccines
7. Future Prospects
Acknowledgments
Conflicts of Interest
References
- Grisel, R.; Weststrate, K.J.; Gluhoi, A.; Nieuwenhuys, B.E. Catalysis by gold nanoparticles. Gold Bull. 2002, 35, 39–45. [Google Scholar] [CrossRef]
- Haruta, A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.S.K.; Hutchings, G.J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. [Google Scholar] [CrossRef]
- Bond, G.C.; Louis, C.; Thompson, D.T. Catalysis by Gold; Imperial College Press: London, UK, 2006; Volume 6. [Google Scholar]
- Carabineiro, S.A.C.; Thompson, D.T. Catalytic Applications for Gold Nanotechnology. In Nanocatalysis; Heiz, E.U., Landman, U., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; pp. 377–489. [Google Scholar]
- Carabineiro, S.A.C.; Thompson, D.T. Gold Catalysis. In Gold: Science and Applications; Corti, C., Holliday, R., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2010; pp. 89–122. [Google Scholar]
- Priecel, P.; Salami, H.A.; Padilla, R.H.; Zhong, Z.Y.; Lopez-Sanchez, J.A. Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin. J. Catal. 2016, 37, 1619–1650. [Google Scholar] [CrossRef]
- Dykman, L.A.; Khlebtsov, N.G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Nat. 2011, 3, 34–55. [Google Scholar]
- Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Shah, M.; Badwaik, V.D.; Dakshinamurthy, R. Biological Applications of Gold Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Maughan, C.N.; Preston, S.G.; Williams, G.R. Particulate inorganic adjuvants: Recent developments and future outlook. J. Pharm. Pharmacol. 2015, 67, 426–449. [Google Scholar] [CrossRef] [PubMed]
- Versiani, A.F.; Andrade, L.M.; Martins, E.M.N.; Scalzo, S.; Geraldo, J.M.; Chaves, C.R.; Ferreira, D.C.; Ladeira, M.; Guatimosim, S.; Ladeira, L.O.; et al. Gold nanoparticles and their applications in biomedicine. Future Virol. 2016, 11, 293–309. [Google Scholar] [CrossRef]
- Robles-Garcia, M.A.; Rodriguez-Felix, F.; Marquez-Rios, E.; Aguilar, J.A.; Barrera-Rodriguez, A.; Aguilar, J.; Ruiz-Cruz, S.; Del-Toro-Sanchez, C.L. Applications of Nanotechnology in the Agriculture, Food, and Pharmaceuticals. J. Nanosci. Nanotechnol. 2016, 16, 8188–8207. [Google Scholar] [CrossRef]
- Klinman, D.M.; Sato, T.; Shimosato, T. Use of nanoparticles to deliver immunomodulatory oligonucleotides. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Taguchi, H. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chem. Cent. J. 2011, 5. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.E.; Titball, R.; Williamson, D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.T.; Wang, R.F.; Nie, G.J. Applications of nanomaterials as vaccine adjuvants. Hum. Vaccines Immunother. 2014, 10, 2761–2774. [Google Scholar] [CrossRef] [PubMed]
- Marasini, N.; Skwarczynski, M.; Toth, I. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines 2014, 13, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Rev. 2015, 115, 11109–11146. [Google Scholar] [CrossRef] [PubMed]
- Alberto, J.; Salazar, G.; Gonzalez-Ortega, O.; Rosales-Mendoza, S. Gold nanoparticles and vaccine development. Expert Rev. Vaccines 2015, 14, 1197–1211. [Google Scholar]
- Tao, Y.; Zhang, Y.; Ju, E.G.; Ren, H.; Ren, J.S. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. Nanoscale 2015, 7, 12419–12426. [Google Scholar] [CrossRef]
- Comber, J.D.; Bamezai, A. Gold nanoparticles (AuNPs): A new frontier in vaccine delivery. J. Nanomed. Biotherap. Discov. 2015, 5, e139. [Google Scholar] [CrossRef]
- Yang, L.; Li, W.; Kirberger, M.; Liao, W.Z.; Ren, J.Y. Design of nanomaterial based systems for novel vaccine development. Biomat. Sci. 2016, 4, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Qin, C.J.; Hu, J.; Guo, X.Q.; Yin, J. Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virol. Sin. 2016, 31, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sangiao, E.; Holban, A.M.; Gestal, M.C. Advanced Nanobiomaterials: Vaccines, Diagnosis and Treatment of Infectious Diseases. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Vartak, A.; Sucheck, S.J. Recent Advances in Subunit Vaccine Carriers. Vaccines 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xia, T. Nanomaterial-based vaccine adjuvants. J. Mater. Chem. B 2016, 4, 5496–5509. [Google Scholar] [CrossRef]
- Ilinskaya, A.N.; Dobrovolskaia, M.A. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future. Toxicol. Appl. Pharmacol. 2016, 299, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A.; Khlebtsov, N.G. Immunological properties of gold nanoparticles. Chem. Sci. 2017, 8, 1719–1735. [Google Scholar] [CrossRef] [PubMed]
- Marques Neto, L.M.; Kipnis, A.; Junqueira-Kipnis, A.P. Role of metallic nanoparticles in vaccinology: Implications for infectious disease vaccine development. Front. Immunol. 2017, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Karch, C.P.; Burkhard, P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem. Pharmacol. 2016, 120, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.A.A. Review: Cancer therapy and vaccination. J. Immunol. Methods 2012, 382, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.L. DNA vaccines. Clin. Microbiol. Newsl. 2000, 22, 17–22. [Google Scholar] [CrossRef]
- Lico, C.; Schoubben, A.; Baschieri, S.; Blasi, P.; Santi, L. Nanoparticles in Biomedicine: New Insights from Plant Viruses. Curr. Med. Chem. 2013, 20, 3471–3487. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Good, M.F.; Toth, I. Nanovaccines and their mode of action. Methods 2013, 60, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Shiao, T.C.; Rittenhouse-Olson, K. Glycodendrimers: versatile tools for nanotechnology. Braz. J. Pharm. Sci. 2013, 49, 85–108. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.Y.; Tian, Y.; Chen, C.Y.; Wang, C.; Jiang, X.Y. Functional Nanomaterials Can Optimize the Efficacy of Vaccines. Small 2014, 10, 4505–4520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Radovic-Moreno, A.F.; Wu, J.; Langer, R.; Shi, J.J. Nanomedicine in the management of microbial infection—Overview and perspectives. Nano Today 2014, 9, 478–498. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech 2014, 15, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Prashant, C.K.; Kumar, M.; Dinda, A.K. Nanoparticle Based Tailoring of Adjuvant Function: The Role in Vaccine Development. J. Biomed. Nanotechnol. 2014, 10, 2317–2331. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, V.; Westendorf, A.M.; Buer, J.; Uberla, K.; Epple, M. The potential of nanoparticles for the immunization against viral infections. J. Mat. Chem. B 2015, 3, 4767–4779. [Google Scholar] [CrossRef]
- Hartwell, B.L.; Antunez, L.; Sullivan, B.P.; Thati, S.; Sestak, J.O.; Berkland, C. Multivalent Nanomaterials: Learning from Vaccines and Progressing to Antigen-Specific Immunotherapies. J. Pharm. Sci. 2015, 104, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.K.; Li, B.Y.; Lin, C.C. Advances in multifunctional glycosylated nanomaterials: Preparation and applications in glycoscience. Carbohydr. Res. 2015, 405, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.N.H.; Zhang, L.F. Nanoparticle-Based Modulation of the Immune System. In Annual Review of Chemical and Biomolecular Engineering; Prausnitz, J.M., Ed.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 7, pp. 305–326. [Google Scholar]
- Cunha-Matos, C.A.; Millington, O.R.; Wark, A.W.; Zagnoni, M. Real-time assessment of nanoparticle-mediated antigen delivery and cell response. Lab Chip 2016, 16, 3374–3381. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Saha, S.K.; Roy, P.; Mondal, M.K.; Roy, D.; Gayen, P.; Chowdhury, P.; Babu, S.P.S. Development of chitosan based gold nanomaterial as an efficient antifilarial agent: A mechanistic approach. Carbohydr. Polym. 2017, 157, 1666–1676. [Google Scholar] [CrossRef]
- Dykman, L.A.; Bogatyrev, V.A.; Staroverov, S.A.; Semenov, S.V. Gold Colloidal Solution is Used as an Adjuvant, Provides Reducing Toxicity of Vaccines, to Enhance Their Immunogenic Activity and to Provide Stability of Vaccine in Storage. Patent RU2218937-C2, 10 September 2003. [Google Scholar]
- Yum, J.S.; Ahn, B.C.; Moon, H.M. New Adjuvant Composition Comprising Colloidal Gold, Used for Therapeutic Vaccine or for Inducing Immune Response. Patent WO2007148924-A1, 27 December 2007. [Google Scholar]
- Safari, D.; Marradi, M.; Chiodo, F.; Dekker, H.A.T.; Shan, Y.L.; Adamo, R.; Oscarson, S.; Rijkers, G.T.; Lahmann, M.; Kamerling, J.P.; et al. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine 2012, 7, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; et al. Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano 2013, 7, 3926–3938. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.M.; Sundaram, P.; Byrne, M.E. Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. Eur. J. Pharm. Biopharm. 2013, 84, 1–20. [Google Scholar] [CrossRef]
- Lin, A.Y.; Lunsford, J.; Bear, A.S.; Young, J.K.; Eckels, P.; Luo, L.; Foster, A.E.; Drezek, R.A. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res. Lett. 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Cao-Milan, R.; Liz-Marzan, L.M. Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opin. Drug Deliv. 2014, 11, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M.R.; Sadat, S.M. Polymeric nanoparticles Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccines Immunotherap. 2014, 10, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.J.; Tacken, P.J.; Zeelenberg, I.S.; Srinivas, M.; Bonetto, F.; Weigelin, B.; Eich, C.; de Vries, I.J.; Figdor, C.G. Tracking Targeted Bimodal Nanovaccines: Immune Responses and Routing in Cells, Tissue, and Whole Organism. Mol. Pharm. 2014, 11, 4299–4313. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Gregory, A.E.; Hatcher, C.L.; Vinet-Oliphant, H.; Morici, L.A.; Titball, R.W.; Roy, C.J. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2015, 33, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Tavernaro, I.; Hartmann, S.; Sommer, L.; Hausmann, H.; Rohner, C.; Ruehl, M.; Hoffmann-Roeder, A.; Schlecht, S. Synthesis of tumor-associated MUC1-glycopeptides and their multivalent presentation by functionalized gold colloids. Org. Biomol. Chem. 2015, 13, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.C.; Grumezescu, A.M. Metal Based Frameworks for Drug Delivery Systems. Curr. Top. Med. Chem. 2015, 15, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem. Biophys. 2015, 72, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, M.; Andreozzi, P.; Paulose, J.; D'Alicarnasso, M.; Cagno, V.; Donalisio, M.; Civra, A.; Broeckel, R.M.; Haese, N.; Silva, P.J.; et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 2016, 7, 13520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Hung, Y.-C.; Lin, W.-H.; Huang, G.S. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010, 21, 195101. [Google Scholar] [CrossRef] [PubMed]
- Barhate, G.A.; Gaikwad, S.M.; Jadhav, S.S.; Pokharkar, V.B. Structure function attributes of gold nanoparticle vaccine association: Effect of particle size and association temperature. Int. J.Pharm. 2014, 471, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, T.D.; Pearson, J.R.; Leal, M.P.; Torres, M.J.; Blanca, M.; Mayorga, C.; Le Guevel, X. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 2015, 43, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Q.; Zhang, Y.L.; Du, J.; Li, Y.; Zhou, Y.; Fu, Q.X.; Zhang, J.G.; Wang, X.H.; Zhan, L.S. Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+T Cell Responses. ACS Nano 2016, 10, 2678–2692. [Google Scholar] [CrossRef] [PubMed]
- Freivalds, J.; Kotelovica, S.; Voronkova, T.; Ose, V.; Tars, K.; Kazaks, A. Yeast-Expressed Bacteriophage-Like Particles for the Packaging of Nanomaterials. Mol. Biotechnol. 2014, 56, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Chiu, Y.C.; Tostanoski, L.H.; Jewell, C.M. Polyelectrolyte Multilayers Assembled Entirely from Immune Signals on Gold Nanoparticle Templates Promote Antigen-Specific T Cell Response. ACS Nano 2015, 9, 6465–6477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Andorko, J.I.; Jewell, C.M. Impact of dose, route, and composition on the immunogenicity of immune polyelectrolyte multilayers delivered on gold templates. Biotechnol. Bioeng. 2017, 114, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Wang, Y.; Kang, N.; Liu, Y.L.; Shan, W.J.; Bi, S.L.; Ren, L.; Zhuang, G.H. Construction and Immunological Evaluation of CpG-Au@HBc Virus-Like Nanoparticles as a Potential Vaccine. Nanoscale Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.H.; Ma, Y.F.; Zhang, M.X.; Wang, H.M.; Tu, X.L.; Shen, H.; Dai, J.W.; Guo, H.C.; Zhang, Z.J. Ultrasmall Graphene Oxide Supported Gold Nanoparticles as Adjuvants Improve Humoral and Cellular Immunity in Mice. Adv. Funct. Mater. 2014, 24, 6963–6971. [Google Scholar] [CrossRef]
- Tao, Y.; Ju, E.G.; Li, Z.H.; Ren, J.S.; Qu, X.G. Engineered CpG-Antigen Conjugates Protected Gold Nanoclusters as Smart Self- Vaccines for Enhanced Immune Response and Cell Imaging. Adv. Funct. Mater. 2014, 24, 1004–1010. [Google Scholar] [CrossRef]
- Luo, Y.H.; Wu, Z.W.; Tsai, H.T.; Lin, S.Y.; Lin, P.P. Endotoxin Nanovesicles: Hydrophilic Gold Nanodots Control Supramolecular Lipopolysaccharide Assembly for Modulating Immunological Responses. Nano Lett. 2015, 15, 6446–6453. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.X.; Weis, K.F.; Chu, Q.L.; Erickson, C.; Endres, R.; Lively, C.R.; Osorio, J.; Payne, L.G. Epidermal powder immunization induces both cytotoxic T-lymphocyte and antibody responses to protein antigens of influenza and hepatitis B viruses. J. Virol. 2001, 75, 11630–11640. [Google Scholar] [CrossRef] [PubMed]
- Dean, H.J.; Fuller, D.; Osorio, J.E. Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp. Immunol. Microbiol. Infect. Dis. 2003, 26, 373–388. [Google Scholar] [CrossRef]
- Madalinski, K. Recent advances in Hepatitis B vaccination. Hepat. B Annu. 2008, 5, 51–65. [Google Scholar] [CrossRef]
- Kaurav, M.; Minz, S.; Sahu, K.; Kumar, M.; Madan, J.; Pandey, R.S. Nanoparticulate mediated transcutaneous immunization: Myth or reality. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1063–1081. [Google Scholar] [CrossRef] [PubMed]
- Pissuwan, D.; Nose, K.; Kurihara, R.; Kaneko, K.; Tahara, Y.; Kamiya, N.; Goto, M.; Katayama, Y.; Niidome, T. A Solid-in-Oil Dispersion of Gold Nanorods Can Enhance Transdermal Protein Delivery and Skin Vaccination. Small 2011, 7, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Pirmoradi, F.N.; Pattekar, A.V.; Linn, F.; Recht, M.I.; Volkel, A.R.; Wang, Q.; Anderson, G.B.; Veiseh, M.; Kjono, S.; Peeters, E.; et al. A microarray MEMS device for biolistic delivery of vaccine and drug powders. Hum. Vaccines Immunotherap. 2015, 11, 1936–1944. [Google Scholar] [CrossRef] [PubMed]
- Crosta, P. Cancer: Facts, Causes, Symptoms and Research. Available online: http://www.medicalnewstoday.com/info/cancer-oncology (accessed on 21 May 2017).
- Asadi, N.; Davaran, S.; Panahi, Y.; Hasanzadeh, A.; Malakootikhah, J.; Moafi, H.F.; Akbarzadeh, A. Application of nanostructured drug delivery systems in immunotherapy of cancer: A review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Coley, W.B. End results in Hodgkin‘s disease and lymphosarcoma treated by the mixed toxins of erysipelas and bacillus prodigiosus, alone or combined with radiation. Ann. Surg. 1928, 88, 641–667. [Google Scholar] [CrossRef] [PubMed]
- Mocan, T.; Matea, C.; Tabaran, F.; Iancu, C.; Orasan, R.; Mocan, L. In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism. J. Cancer 2015, 6, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Parry, A.L.; Spain, S.G.; Ellis, J.; Davis, B.D.; Cameron, N.R. Glycopolymer-functionalized gold nanoparticles: A new strategy toward synthetic anticancer vaccines. Abstr. Pap. Am. Chem. Soc. 2009, 238. [Google Scholar]
- Brinas, R.P.; Sundgren, A.; Maetani, M.; Abbudayyeh, O.; Young, H.A.; Sanford, M.; Barchi, J.J. Development of a novel cancer vaccine based on multivalent presentation of tumor-associated carbohydrate antigens on gold nanoparticle scaffolds. Abstr. Pap. Am. Chem. Soc. 2010, 240. [Google Scholar]
- Brinas, R.P.; Sundgren, A.; Sahoo, P.; Morey, S.; Rittenhouse-Olson, K.; Wilding, G.E.; Deng, W.; Barchi, J.J., Jr. Design and Synthesis of Multifunctional Gold Nanoparticles Bearing Tumor-Associated Glycopeptide Antigens as Potential Cancer Vaccines. Bioconj. Chem. 2012, 23, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-H.; Kwon, H.-K.; An, S.; Kim, D.; Kim, S.; Yu, M.K.; Lee, J.-H.; Lee, T.-S.; Im, S.-H.; Jon, S. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. 2012, 51, 8800–8805. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.P.M.; Figueroa, E.R.; Drezek, R.A. Gold nanoparticle mediated cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Lee, I.H.; Kang, S.; Kim, D.; Choi, M.; Saw, P.E.; Shin, E.C.; Jon, S. Gold Nanoparticles Displaying Tumor-Associated Self-Antigens as a Potential Vaccine for Cancer Immunotherapy. Adv. Healthc. Mater. 2014, 3, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, R.H.; Qin, S.; Yu, R.L.; Fu, Y. Current Status and Future Directions of Nanoparticulate Strategy for Cancer Immunotherapy. Curr. Drug Metab. 2016, 17, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A.; Staroverov, S.A.; Bogatyrev, V.A.; Shchyogolev, S.Y. Gold Nanoparticles as An antigen and as an Adjuvant; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2010; pp. 59–88. [Google Scholar]
- Parry, A.L.; Clemson, N.A.; Ellis, J.; Bernhard, S.S.R.; Davis, B.G.; Cameron, N.R. ‘Multicopy Multivalent‘ Glycopolymer-Stabilized Gold Nanoparticles as Potential Synthetic Cancer Vaccines. J. Am. Chem. Soc. 2013, 135, 9362–9365. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Degliangeli, F.; Palitzsch, B.; Gerlitzki, B.; Kunz, H.; Schmitt, E.; Fiammengo, R.; Westerlind, U. Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein. Bioorg. Med. Chem. 2016, 24, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.P.M.; Lin, A.Y.; Figueroa, E.R.; Foster, A.E.; Drezek, R.A. In vivo Gold Nanoparticle Delivery of Peptide Vaccine Induces Anti-Tumor Immune Response in Prophylactic and Therapeutic Tumor Models. Small 2015, 11, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, C.Y. Role of nanotechnology in HIV/AIDS vaccine development. Adv. Drug Deliv. Rev. 2016, 103, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Marradi, M.; Di Gianvincenzo, P.; Enriquez-Navas, P.M.; Martinez-Avila, O.M.; Chiodo, F.; Yuste, E.; Angulo, J.; Penades, S. Gold Nanoparticles Coated with Oligomannosides of HIV-1 Glycoprotein gp120 Mimic the Carbohydrate Epitope of Antibody 2G12. J. Mol. Biol. 2011, 410, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Di Gianvincenzo, P.; Chiodo, F.; Marradi, M.; Penades, S. Gold manno-glyconanoparticles for intervening in HIV gp120 carbohydrate-mediated processes. Methods Enzymol. 2012, 509, 21–40. [Google Scholar] [PubMed]
- Glass, J.J.; Kent, S.J.; De Rose, R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev. Vaccines 2016, 15, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Morner, A.; Jansson, M.; Bunnik, E.M.; Scholler, J.; Vaughan, R.; Wang, Y.; Montefiori, D.C.; Otting, N.; Bontrop, R.; Bergmeier, L.A.; et al. Immunization with Recombinant HLA Classes I and II, HIV-1 gp140, and SIV p27 Elicits Protection against Heterologous SHIV Infection in Rhesus Macaques. J. Virol. 2011, 85, 6442–6452. [Google Scholar] [CrossRef] [PubMed]
- Abia, I.; Peng, T.Y.; Mains, S.; Pohl, N. Design and synthesis of thiol-terminated oligosaccharides for attachment on gold nanoparticles: Toward the development of an HIV vaccine. Abstr. Pap. Am. Chem. Soc. 2013, 246. [Google Scholar]
- Chiodo, F.; Enriquez-Navas, P.M.; Angulo, J.; Marradi, M.; Penades, S. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydr. Res. 2015, 405, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Di Gianvincenzo, P.; Calvo, J.; Perez, S.; Alvarez, A.; Bedoya, L.M.; Alcami, J.; Penades, S. Negatively Charged Glyconanoparticles Modulate and Stabilize the Secondary Structures of a gp120 V3 Loop Peptide: Toward Fully Synthetic HIV Vaccine Candidates. Bioconj. Chem. 2015, 26, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, Y.; Chen, Z.; Li, W.; Liu, Y.; Wang, L.; Liu, Y.; Wu, X.; Ji, Y.; Zhao, Y.; et al. Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Lett. 2012, 12, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Demenev, V.A.; Shchinova, M.A.; Ivanov, L.I.; Vorobeva, R.N.; Zdanovskaia, N.I.; Nebaikina, N.V. Perfection of methodical approaches to designing vaccines against tick-borne encephalitis. Vopr. Virusol. 1996, 41, 107–110. [Google Scholar] [PubMed]
- Zhao, Z.J.; Wakita, T.; Yasui, K. Inoculation of plasmids encoding Japanese encephalitis virus PrM-E proteins with colloidal gold elicits a protective immune response in BALB/c mice. J. Virol. 2003, 77, 4248–4260. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Zhang, L.Y.; Li, Q.F.; Chai, Y.Q.; Cao, S.R. A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Anal. Chim. Acta 2005, 531, 1–5. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Yuan, R.; Chai, Y.Q.; Chen, S.H.; Wang, N.; Zhu, Q. Layer-by-layer self-assembly of films of nano-Au and Co(bpy)(3)(3+) for the determination of Japanese B encephalitis vaccine. Biochem. Eng. J. 2006, 28, 231–236. [Google Scholar] [CrossRef]
- Zhang, L.; Widera, G.; Bleecher, S.; Zaharoff, D.A.; Mossop, B.; Rabussay, D. Accelerated immune response to DNA vaccines. DNA Cell Biol. 2003, 22, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Widera, G.; Rabussay, D. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant. Bioelectrochemistry 2004, 63, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Pilling, A.M.; Harman, R.M.; Jones, S.A.; McCormack, N.A.M.; Lavender, D.; Haworth, R. The assessment of local tolerance, acute toxicity, and DNA biodistribution following particle-mediated delivery of a DNA vaccine to minipigs. Toxicol. Pathol. 2002, 30, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Draz, M.S.; Wang, Y.J.; Chen, F.F.; Xu, Y.H.; Shafiee, H. Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.P.; Su, S.S.; Meng, D.J.; Mujeeb, A.; Wu, Y.; Nie, G.J. Assembly of hepatitis E vaccine by ‘in situ‘ growth of gold clusters as nano-adjuvants: An efficient way to enhance the immune responses of vaccination. Nanoscale Horiz. 2016, 1, 394–398. [Google Scholar] [CrossRef]
- Dykman, L.A.; Staroverov, S.A.; Mezhenny, P.V.; Fomin, A.S.; Kozlov, S.V.; Volkov, A.A.; Laskavy, V.N.; Shchyogolev, S.Y. Use of a synthetic foot-and-mouth disease virus peptide conjugated to gold nanoparticles for enhancing immunological response. Gold Bull. 2015, 48, 93–101. [Google Scholar] [CrossRef]
- Pokharkar, V.; Bhumkar, D.; Suresh, K.; Shinde, Y.; Gairola, S.; Jadhav, S.S. Gold Nanoparticles as a Potential Carrier for Transmucosal Vaccine Delivery. J. Biomed. Nanotechnol. 2011, 7, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Barhate, G.; Gautam, M.; Gairola, S.; Jadhav, S.; Pokharkar, V. Enhanced Mucosal Immune Responses Against Tetanus Toxoid Using Novel Delivery System Comprised of Chitosan-Functionalized Gold Nanoparticles and Botanical Adjuvant: Characterization, Immunogenicity, and Stability Assessment. J. Pharm. Sci. 2014, 103, 3448–3456. [Google Scholar] [CrossRef] [PubMed]
- Barhate, G.; Gautam, M.; Gairola, S.; Jadhav, S.; Pokharkar, V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: Stability and immunoefficiency studies. Int. J. Pharm. 2013, 441, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Thornburg, N.J.; Blum, D.L.; Kuhn, S.J.; Wright, D.W.; Crowe, J.E. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology 2013, 24, 295102. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.Q.; Ziemer, K.S.; Gill, H.S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine 2014, 9, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.Q.; Gill, H.S. M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine 2015, 33, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Staroverov, S.A.; Vidyasheva, I.V.; Gabalov, K.P.; Vasilenko, O.A.; Laskavyi, V.N.; Dykman, L.A. Immunostimulatory Effect of Gold Nanoparticles Conjugated with Transmissible Gastroenteritis Virus. Bull. Exp. Biol. Med. 2011, 151, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Gonzalez, R.; Marradi, M.; Garcia, I.; Petrovsky, N.; Alvarez-Dominguez, C. Novel nanoparticle vaccines for Listeriosis. Hum. Vaccines Immunotherapeut. 2015, 11, 2501–2503. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Del Rio, E.; Marradi, M.; Calderon-Gonzalez, R.; Frande-Cabanes, E.; Penadés, S.; Petrovsky, N.; Alvarez-Dominguez, C. A gold glyco-nanoparticle carrying a listeriolysin O peptide and formulated with Advax™ delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine 2015, 33, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Gonzalez, R.; Teran-Navarro, H.; Frande-Cabanes, E.; Ferrandez-Fernandez, E.; Freire, J.; Penades, S.; Marradi, M.; Garcia, I.; Gomez-Roman, J.; Yanez-Diaz, S.; et al. Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities. Nanomaterials 2016, 6, 151. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.S.; Atukorale, P.U.; Moynihan, K.D.; Bekdemir, A.; Rakhra, K.; Tang, L.; Stellacci, F.; Irvine, D.J. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 2017, 8, 14069. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.E.; Williamson, E.D.; Prior, J.L.; Butcher, W.A.; Thompson, I.J.; Shaw, A.M.; Titball, R.W. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 2012, 30, 6777–6782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ray, P.C.; Datta, D.; Bansal, G.P.; Angov, E.; Kumar, N. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine 2015, 33, 5064–5071. [Google Scholar] [CrossRef] [PubMed]
- Dakterzada, F.; Mobarez, A.M.; Roudkenar, M.H.; Mohsenifar, A. Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine 2016, 34, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Huang, C.Y.; Lin, S.Y.; Fang, Z.S.; Hsu, C.H.; Lin, J.C.; Chen, Y.I.; Yao, B.Y.; Hu, C.M.J. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials 2016, 106, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.E.; Judy, B.M.; Qazi, O.; Blumentritt, C.A.; Brown, K.A.; Shaw, A.M.; Torres, A.G.; Titball, R.W. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, N.; Ma, J.; Fan, Y.D.; Zhang, L.L.; Xu, J.; Zeng, L.B. Protective immunity in gibel carp, Carassius gibelio of the truncated proteins of cyprinid herpesvirus 2 expressed in Pichia pastoris. Fish Shellfish Immunol. 2015, 47, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, M.; Rodriguez, D.C.; Rodriguez, J.; Bermudez, M.; Munoz, C.M.; Patarroyo, M.A.; Patarroyo, M.E. Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorg. Med. Chem. 2013, 21, 6650–6656. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.M.; Shi, Y.L.; Acharya, D.; Douglas, J.R.; Cooley, A.; Anderson, J.F.; Huang, F.Q.; Bai, F.W. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J. Gen. Virol. 2014, 95, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.W.; Fang, R.H.; Thamphiwatana, S.; Luk, B.T.; Li, J.M.; Angsantikul, P.; Zhang, Q.Z.; Hu, C.M.J.; Zhang, L.F. Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles. Nano Lett. 2015, 15, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- DeRussy, B.M.; Aylward, M.A.; Fan, Z.; Ray, P.C.; Tandon, R. Inhibition of cytomegalovirus infection and photothermolysis of infected cells using bioconjugated gold nanoparticles. Sci. Rep. 2014, 4, 5550. [Google Scholar] [CrossRef] [PubMed]
- Zaffran, M.; Vandelaer, J.; Kristensen, D.; Melgaard, B.; Yadav, P.; Antwi-Agyei, K.O.; Lasher, H. The imperative for stronger vaccine supply and logistics systems. Vaccine 2013, 31 (Suppl. 2), B73–B80. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabineiro, S.A.C. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines . Molecules 2017, 22, 857. https://doi.org/10.3390/molecules22050857
Carabineiro SAC. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines . Molecules. 2017; 22(5):857. https://doi.org/10.3390/molecules22050857
Chicago/Turabian StyleCarabineiro, Sónia Alexandra Correia. 2017. "Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines " Molecules 22, no. 5: 857. https://doi.org/10.3390/molecules22050857