Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polymer Characterization
2.2. Charge Reversal Effect Confirmation
2.3. Longitudinal Relaxivity (R1) Measurement
2.4. In Vitro MTT Assay
2.5. Tumor Cells Targeting Ability Measurement
3. Materials and Methods
3.1. Materials and Measurements
3.2. Preparation and Processing
3.2.1. Synthesis of PLL
Preparation of NCA:
Polymerizations:
PLL-CBZ deprotection:
3.2.2. Synthesis of Boric Acid Conjugated PLL (PLL-B)
3.2.3. Synthesis of PLL-B-DTPA
3.2.4. Synthesis of PLL-B-DTPA-Gd
3.2.5. Tumor-Targeted Magnetic Resonance Contrast Agent Fluorescent Labelling
3.2.6. Synthesis of PLL-B(1%)-DTPA-Gd-Rodamine-DCA
3.3. Polymer Characterization
3.4. Longitudinal Relaxivity (R1) Measurement
3.5. In Vitro MTT Assay
3.6. Tumor Cells Targeting Ability Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Balch, C.M.; Buzaid, A.C.; Soong, S.J.; Atkins, M.B.; Cascinelli, N.; Coit, D.G.; Fleming, I.D.; Gershenwald, J.E.; Houghton, A.J.; Kirkwood, J.M.; et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J. Clin. Oncol. 2001, 19, 3635–3648. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Bruix, J.; Llovet, J.M. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology 2002, 35, 519–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, S.J. Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn. Reson. Med. 2001, 46, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, K.; Kobayashi, M.; Nakaguchi, K.; Kyakuno, M.; Hashimoto, N.; Onishi, H.; Maeda, N.; Nakata, S.; Kuwabara, M.; Murakami, T.; et al. Whole-body MRI for detecting metastatic bone tumor: Diagnostic value of diffusion-weighted images. Magn. Reson. Med. Sci. 2007, 6, 147–155. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Bellin, M.F. MR contrast agents, the old and the new. Eur. J. Radiol. 2006, 60, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Villaraza, A.J.; Bumb, A.; Brechbiel, M.W. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics. Chem. Rev. 2010, 110, 2921–2959. [Google Scholar] [CrossRef]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284. [Google Scholar] [CrossRef]
- Lu, Z.R.; Parker, D.L.; Goodrich, K.C.; Wang, X.; Dalle, J.G.; Buswell, H.R. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn. Reson. Med. 2004, 51, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Doiron, A.L.; Chu, K.; Ali, A.; Brannon-Peppas, L. Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI. Proc. Natl. Acad. Sci. USA 2008, 105, 17232–17237. [Google Scholar] [CrossRef] [Green Version]
- Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004, 95, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Schauer, R. Sialic acids: Fascinating sugars in higher animals and man. Zoology 2004, 107, 49–64. [Google Scholar] [CrossRef]
- Martinez-Duncker, I.; Salinas-Marin, R.; Martinez-Duncker, C. Towards in vivo imaging of cancer sialylation. Int. J. Mol. Imaging 2011, 2011, 283497. [Google Scholar] [CrossRef]
- Cazet, A.; Julien, S.; Bobowski, M.; Krzewinski-Recchi, M.; Harduin-Lepers, A.; Groux-Degroote, S.; Delannoy, P. Consequences of the expression of sialylated antigens in breast cancer. Carbohyd. Res. 2010, 345, 1377–1383. [Google Scholar] [CrossRef]
- Fernandez-Briera, A.; Garcia-Parceiro, I.; Cuevas, E.; Gil-Martin, E. Effect of Human Colorectal Carcinogenesis on the Neural Cell Adhesion Molecule Expression and Polysialylation. Oncology-Basel 2010, 78, 196–204. [Google Scholar] [CrossRef]
- Djanashvili, K.; Frullano, L.; Peters, J.A. Molecular recognition of sialic acid end groups by phenylboronates. Chem. Eur. J. 2005, 11, 4010–4018. [Google Scholar] [CrossRef]
- Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. A Phenylboronate-Functionalized Polyion Complex Micelle for ATP-Triggered Release of siRNA. Angew. Chem. Int. Edit. 2012, 51, 10751–10755. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Zhang, Y.; Wang, X.; Qian, H.; Liu, B.; Jiang, X. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 2014, 35, 866–878. [Google Scholar] [CrossRef]
- Lee, J.; Chung, S.; Cho, H.; Kim, D. Phenylboronic Acid-Decorated Chondroitin Sulfate A-Based Theranostic Nanoparticles for Enhanced Tumor Targeting and Penetration. Adv. Funct. Mater. 2015, 25, 3705–3717. [Google Scholar] [CrossRef]
- Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182. [Google Scholar] [CrossRef]
- Jain, R.K. Delivery of molecular medicine to solid tumors: Lessons from in vivo imaging of gene expression and function. J. Control. Release 2001, 74, 7–25. [Google Scholar] [CrossRef]
- Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; Ishii, T.; Kataoka, K. A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J. Am. Chem. Soc. 2007, 129, 5362. [Google Scholar] [CrossRef]
- Ye, M.; Qian, Y.; Tang, J.; Hu, H.; Sui, M.; Shen, Y. Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging (vol 169, pg 239, 2013). J. Control. Release 2013, 172, 258. [Google Scholar] [CrossRef]
- Toth, E.; van Uffelen, I.; Helm, L.; Merbach, A.E.; Ladd, D.; Briley-Saebo, K.; Kellar, K.E. Gadolinium-based linear polymer with temperature-independent proton relaxivities: A unique interplay between the water exchange and rotational contributions. Magn. Reson. Chem. 1998, 36, S125–S134. [Google Scholar] [CrossRef]
- Doble, D.M.J.; Botta, M.; Wang, J.; Aime, S.; Barge, A.; Raymond, K.N. Raymond, Optimization of the relaxivity of MRI contrast agents: Effect of poly(ethylene glycol) chains on the water-exchange rates of Gd-III complexes. J. Am. Chem. Soc. 2001, 123, 10758–10759. [Google Scholar] [CrossRef]
- Peters, J.A.; Huskens, J.; Raber, D.J. Lanthanide induced shifts and relaxation rate enhancements. Prog. Nucl. Mag. Res. Spec. 1996, 28, 283–350. [Google Scholar] [CrossRef]
- Hunter, A.C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv. Drug Deliver. Rev. 2006, 58, 1523–1531. [Google Scholar] [CrossRef]
- Crich, S.G.; Alberti, D.; Szabo, I.; Aime, S.; Djanashvili, K. MRI Visualization of Melanoma Cells by Targeting Overexpressed Sialic Acid with a GdIII-dota-en-pba Imaging Reporter. Angew. Chem. Int. Edit. 2013, 52, 1161–1164. [Google Scholar] [CrossRef]
- Shoichi, N.; Yuki, M.; Toshiya, S. Understanding the molecular structure of the sialic acid-phenylboronic acid complex by using a combined NMR spectroscopy and DFT study: Toward sialic acid detection at cell membranes. Chem. Open 2018, 7, 513–519. [Google Scholar]
- Daly, W.; Poche, D. The preparation of N-Cardoxyanhydrides of Alpha-Amino-Acids using bis(trichloromethyl)carbonate. Tetrahedron Lett. 1988, 29, 5859–5862. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds PLL-B-DTPA-Gd-Rodamine-DCA are available from the authors. |
PLL-B(1%)-DTPA-Gd-Rodamine in pH 7.4 | PLL-B(1%)-DTPA-Gd-Rodamine-DCA in pH 7.4 | PLL-B(1%)-DTPA-Gd-Rodamine-DCA in pH 5.0 | |
ζ-potential | 30.1 mV | −16.5 mV | 22.1 mV |
PLL-B(5%)-DTPA-Gd-Rodamine in pH 7.4 | PLL-B(5%)-DTPA-Gd-Rodamine-DCA in pH 7.4 | PLL-B(5%)-DTPA-Gd-Rodamine-DCA in pH 5.0 | |
ζ-potential | 31.7 mV | −28.8 mV | 20.2 mV |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Cai, Y.; Xu, Z.; Zhu, D. Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules 2019, 24, 1477. https://doi.org/10.3390/molecules24081477
Sun X, Cai Y, Xu Z, Zhu D. Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules. 2019; 24(8):1477. https://doi.org/10.3390/molecules24081477
Chicago/Turabian StyleSun, Xuanrong, Yue Cai, Zhuomin Xu, and Dabu Zhu. 2019. "Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives" Molecules 24, no. 8: 1477. https://doi.org/10.3390/molecules24081477
APA StyleSun, X., Cai, Y., Xu, Z., & Zhu, D. (2019). Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules, 24(8), 1477. https://doi.org/10.3390/molecules24081477