Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles
Abstract
:1. Introduction
2. Alkenylation
2.1. C–H/C–X Cross-Coupling
2.2. C–H/C–H Cross-Coupling
2.3. C–H Addition of Azoles to Alkynes
2.4. Decarbonylative C–H Alkenylation
3. Alkylation of Azoles
3.1. Primary C–H alkylation of Azoles
3.2. Secondary C–H Alkylation of Azoles
3.3. Tertiary C–H Alkylation of Azoles
4. Alkynylation
5. Conclusions and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Grimmett, M.R. Comprehensive Heterocyclic Chemistry II; Katritzky, A.R., Scriven, E.F.V., Eds.; Pergamon: Oxford, UK, 1996; Volume 3, pp. 77–220. [Google Scholar]
- Peng, X.M.; Cai, G.X.; Zhou, C.H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem. 2013, 16, 1963–2010. [Google Scholar] [CrossRef] [PubMed]
- Dismukes, W.E. Introduction to antifungal drugs. Clin. Infect. Dis. 2000, 30, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolley, B.Y.D.W. From the laboratories. J. Biol. Chem. 1944, 152, 225–233. [Google Scholar]
- Khartabil, H.K.; Gros, P.C.; Fort, Y.; Ruiz-López, M.F. Metalation of pyridines with nBuLi-Li-aminoalkoxide mixed aggregates: The origin of chemoselectivity. J. Am. Chem. Soc. 2010, 132, 2410–2416. [Google Scholar] [CrossRef]
- Roberts, R.M.; Khalaf, A.A. Friedel–Crafts Alkylation Chemistry: A Century of Discovery; Marcel Dekker: NewYork, NY, USA, 1984. [Google Scholar]
- Mishra, N.K.; Sharma, S.; Park, J.; Han, S.; Kim, I.S. Recent advances in catalytic C(sp2)–H allylation reactions. ACS Catal. 2017, 7, 2821–2847. [Google Scholar] [CrossRef]
- Patonay, T.; Kónya, K. Synthesis and Modification of Heterocycles by Metal-Catalyzed Cross-Coupling Reactions (Topics in Heterocyclic Chemistry); Springer International Publishing: Cham, Swizerland, 2016. [Google Scholar]
- Yang, L.; Huang, H. Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. Chem. Rev. 2015, 115, 3468–3517. [Google Scholar] [CrossRef]
- Hirano, K.; Miura, M. Copper-mediated oxidative direct C–C (hetero)aromatic cross-coupling. Chem. Commun. 2012, 48, 10704–10714. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed two fold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 2011, 40, 5068–5083. [Google Scholar] [CrossRef] [Green Version]
- Evano, G.; Theunissen, C. Beyond friedel and crafts: Directed alkylation of C−H bonds in arenes. Angew. Chem. Int. Ed. 2019, 131, 7638–7680. [Google Scholar] [CrossRef]
- Gandeepan, P.; Muller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition metals for C–H activation. Chem. Rev. 2019, 119, 2192–2452. [Google Scholar] [CrossRef]
- Newton, C.G.; Wang, S.G.; Oliveira, C.C.; Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 2017, 117, 8908–8976. [Google Scholar] [CrossRef]
- Zheng, C.; You, S.L. Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Adv. 2014, 4, 6173–6214. [Google Scholar] [CrossRef]
- Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Pd(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115. [Google Scholar] [CrossRef] [PubMed]
- Boyarskiy, V.P.; Ryabukhin, D.S.; Bokach, N.A.; Vasilyev, A.V. Alkenylation of arenes and heteroarenes with slkynes. Chem. Rev. 2016, 116, 5894–5986. [Google Scholar] [CrossRef] [PubMed]
- Le Bras, J.; Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev. 2011, 111, 1170–1214. [Google Scholar] [CrossRef]
- Gottumukkala, A.L.; Derridj, F.; Djebbar, S.; Doucet, H. Alkenyl bromides: Useful coupling partners for the palladium-catalysed coupling with heteroaromatics via a C–H bond activation. Tetrahedron Lett. 2008, 49, 2926–2930. [Google Scholar] [CrossRef]
- Sahnoun, S.; Messaoudi, S.; Brion, J.-D.; Alami, M. Pd/Cu-catalyzed direct alkenylation of azole heterocycles with alkenyl halides. Eur. J. Org. Chem. 2010, 2010, 6097–6102. [Google Scholar] [CrossRef]
- Ackermann, L.; Barfüsser, S.; Pospech, J. Palladium-catalyzed direct arylations, alkenylations, and benzylations through C–H bond cleavages with sulfamates or phosphates as electrophiles. Org. Lett. 2010, 12, 724–726. [Google Scholar] [CrossRef]
- Gerelle, M.; Dalencon, A.J.; Willis, M.-C. Palladium-catalyzed direct functionalization of benzoxazoles with alkenyl iodides. Tetrahedron Lett. 2012, 53, 1954–1957. [Google Scholar] [CrossRef]
- Schneider, C.; Masi, D.; Couve-Bonnaire, S.; Pannecoucke, X.; Hoarau, C. Palladium- and copper-catalyzed stereocontrolled direct C–H fluoroalkenylation of heteroarenes using gem-bromofluoroalkenes. Angew. Chem. Int. Ed. 2013, 52, 3246–3249. [Google Scholar] [CrossRef]
- Schröder, F.; Ojeda, M.; Erdmann, N.; Jacobs, J.; Luque, R.; Noël, T.; Van Meervelt, L.; Van der Eycken, J.; Van der Eycken, E.V. Supported gold nanoparticles as efficient and reusable heterogeneous catalyst for cycloisomerization reactions. Green Chem. 2015, 17, 3314–3318. [Google Scholar] [CrossRef]
- Zuliani, A.; Ranjan, P.; Luque, R.; Van der Eycken, E.V. Heterogeneously catalyzed synthesis of imidazolones via cycloisomerizations of propargylic ureas using Ag and Au/Al SBA-15 systems. ACS Sustain. Chem. Eng 2019, 7, 5568–5575. [Google Scholar] [CrossRef]
- Manno, R.; Ranjan, P.; Sebastian, V.; Mallada, R.; Irusta, S.; Sharma, U.K.; Van der Eycken, E.V.; Santamaria, J. Continuous microwave-assisted synthesis of silver nanoclusters confined in mesoporous SBA-15: Application in alkyne cyclizations. Chem. Mater. 2020, 32, 2874–2883. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Y.; Zhao, N.; Wang, Y.; Li, J.; Wang, Z. Nano CuO-catalyzed C–H functionalization of 1,3-azoles with bromoarenes and bromoalkenes. Tetrahedron 2014, 70, 6120–6126. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Copper-mediated direct arylation of benzoazoles with aryl iodides. Tetrahedron Lett. 2008, 49, 1598–1600. [Google Scholar] [CrossRef]
- Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi, J.; Itami, K. C–H alkenylation of azoles with enols and esters by nickel catalysis. Angew. Chem. Int. Ed. 2013, 52, 10048–10051. [Google Scholar] [CrossRef] [PubMed]
- Muto, K.; Hatakeyama, T.; Yamaguchi, J.; Itami, K. C–H arylation and alkenylation of imidazoles by nickel catalysis: Solvent-accelerated imidazole C–H activation. Chem. Sci. 2015, 6, 6792–6798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.C.; Wu, Y.; So, C.M.; Wong, S.M.; Lei, A.; Kwong, F.Y. Catalytic direct C2-alkenylation of oxazoles at parts per million levels of palladium/PhMezole-Phos complex. Org. Lett. 2016, 18, 5300–5303. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, X.-X.; Gao, T.; Li, B.; Chen, S. CuCl-Catalyzed direct C–H alkenylation of benzoxazoles with allyl halides. Org. Biomol. Chem. 2017, 15, 7282–7285. [Google Scholar] [CrossRef]
- Yao, Y.-X.; Fang, D.-M.; Gao, F.; Liang, X.-X. Room-temperature palladium-catalyzed direct 2-alkenylation of azole derivatives with alkenyl bromides. Tetrahedron Lett. 2019, 60, 68–71. [Google Scholar] [CrossRef]
- Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. Palladium-catalyzed direct oxidative alkenylation of azoles. J. Org. Chem. 2010, 75, 5421–5424. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wojtas, L.; Antilla, J.C. Pd-catalyzed C4-olefination of oxazoles via C–H bond activation: Divergent synthesis of functionalized amino alcohol and amino acid derivatives. Org. Lett. 2011, 13, 5040–5043. [Google Scholar] [CrossRef]
- Tozer, M.J.; Herpinb, T.F. Methods for the synthesis of gem-difluoromethylene compounds. Tetrahedron 1996, 52, 8619–8683. [Google Scholar] [CrossRef]
- Wang, X.; Fang, X.; Yang, X.; Ni, M.; Wu, F. Synthesis of 1,3,5-Trisubstituted [4-tert-Butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-1,3-dioxan-4-yl)acetate]pyrazoles via a Pd-Catalyzed C—H Activation. Chin. J. Chem. 2012, 30, 2767–2773. [Google Scholar] [CrossRef]
- Li, Z.; Ma, L.; Tang, C.; Xu, J.; Wu, X.; Yao, H. Palladium(II)-catalyzed oxidative Heck coupling of thiazole-4-carboxylates. Tetrahedron Lett. 2011, 52, 5643–5647. [Google Scholar] [CrossRef]
- Huang, Y.; Song, F.; Wang, Z.; Xi, P.; Wu, N.; Wang, Z.; Lan, J.; You, J. Dehydrogenative heck coupling of biologically relevant N-heteroarenes with alkenes: Discovery of fluorescent core frameworks. Chem. Commun. 2012, 48, 2864–2866. [Google Scholar] [CrossRef]
- Lee, W.C.; Wang, T.H.; Ong, T.G. Ligand promoted Pd-catalyzed dehydrogenative alkenylation of hetereoarenes. Chem. Commun. 2014, 50, 3671–3673. [Google Scholar] [CrossRef]
- Liu, W.; Yu, X.; Kuang, C. Palladium-catalyzed C-2 selective olefination of thiazoles. Org. Lett. 2014, 16, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Pilla, M.; Andreoli, M.; Tessari, M.; Delle-Fratte, S.; Roth, A.; Butler, S.; Brown, F.; Shah, P.; Bettini, E.; Cavallini, P.; et al. The identification of novel orally active mGluR5 antagonist GSK2210875. Bioorg. Med. Chem. Lett. 2010, 20, 7521–7524. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, S.; Zhan, H.; Lin, J.; He, P.; Jiang, Y. Highly regioselective palladium-catalyzed direct alkenylation of thiazolo[3,2-b]-1,2,4-triazoles via CH activation. Tetrahedron Lett. 2014, 55, 3549–3552. [Google Scholar] [CrossRef]
- Liu, X.W.; Shi, J.L.; Wei, J.B.; Yang, C.; Yan, J.X.; Peng, K.; Dai, L.; Li, C.G.; Wang, B.Q.; Shi, Z.J. Diversified syntheses of multifunctionalized thiazole derivatives via regioselective and programmed C–H activation. Chem. Commun. 2015, 51, 4599–4602. [Google Scholar] [CrossRef]
- Huang, G.; Teng, M.; Liu, B.; Rong, M.; Liu, Y.; Chen, Y. Palladium-catalyzed site-selective C H alkenylation of imidazo[2,1-b]thiazoles. J. Organomet. Chem. 2016, 818, 163–167. [Google Scholar] [CrossRef]
- Nakanowatari, S.; Muller, T.; Oliveira, J.C.A.; Ackermann, L. Bifurcated nickel-catalyzed functionalizations: Heteroarene C–H activation with allenes. Angew. Chem. Int. Ed. 2017, 56, 15891–15895. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Chen, C.; Xu, X.; Pan, Y.; Zhang, Z.; Li, H.; Xu, L. Rhodium(III)-catalyzed selective direct olefination of imidazoles. Adv. Synth. Catal. 2018, 360, 985–994. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, Y.J.; Han, I.; Joo, J.-M. Regioselective C–H alkenylation of imidazoles and its application to the synthesis of unsymmetrically substituted benzimidazoles. Chem. Commun. 2018, 54, 6879–6882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kapur, M. Catalyst control in positional-selective C–H alkenylation of isoxazoles and a ruthenium-mediated assembly of trisubstituted pyrroles. Org. Lett. 2019, 21, 2134–2138. [Google Scholar] [CrossRef]
- Achar, T.-K.; Biswas, J.-P.; Porey, -S.; Pal, -T.; Ramakrishna, K.; Maiti, S.; Maiti, D. Palladium-catalyzed template directed C-5 selective olefination of thiazoles. J. Org. Chem. 2019, 84, 8315–8321. [Google Scholar] [CrossRef]
- Fujii, N.; Kakiuchi, F.; Chatani, N.; Murai, S. Transition metal-catalyzed intramolecular CH/olefin coupling. Chem. Lett. 1996, 25, 939–940. [Google Scholar] [CrossRef]
- Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed C− H alkenylation and alkylation of 1, 3, 4-oxadiazoles with alkynes and styrenes. J. Org. Chem. 2009, 74, 6410–6413. [Google Scholar] [CrossRef]
- Kanyiva, K.-S.; Löbermann, F.; Nakao, Y.; Hiyama, T. Regioselective alkenylation of imidazoles by nickel/Lewis acid catalysis. Tetrahedron Lett. 2009, 50, 3463–3466. [Google Scholar] [CrossRef]
- Ding, Z.; Yoshikai, N. Cobalt-catalyzed addition of azoles to alkynes. Org. Lett. 2010, 12, 4180–4183. [Google Scholar] [CrossRef] [PubMed]
- Yoshikai, N.; Ding, Z. Cobalt-catalyzed alkenylation of thiazoles with alkynes via C–H bond functionalization. Synthesis 2011, 2011, 2561–2566. [Google Scholar] [CrossRef]
- Liu, S.; Sawicki, J.; Driver, T.-G. Ni-catalyzed alkenylation of triazolopyridines: Synthesis of 2, 6-disubstituted pyridines. Org. Lett. 2012, 14, 3744–3747. [Google Scholar] [CrossRef]
- Yu, M.S.; Lee, W.C.; Chen, C.H.; Tsai, F.Y.; Ong, T.G. Controlled regiodivergent C–H bond activation of imidazo[1,5-a]pyridine via synergistic cooperation between aluminum and nickel. Org. Lett. 2014, 16, 4826–4829. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Xu, J.; Yao, H.; Lin, A.; Huang, Y. Rh(III)-catalyzed cyclization reaction of azoles with alkynes: Efficient synthesis of azole-fused-pyridines. Org. Biomol. Chem. 2015, 13, 9186–9189. [Google Scholar] [CrossRef]
- Tan, G.; Zhu, L.; Liao, X.; Lan, Y.; You, J. Rhodium/Copper cocatalyzed highly trans-selective 1, 2-diheteroarylation of alkynes with azoles via C–H addition/oxidative cross-coupling: A combined experimental and theoretical study. J. Am. Chem. Soc. 2017, 139, 15724–15737. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Shin, C.; Park, S.E.; Joo, J.M. Regio- and stereoselective synthesis of thiazole-containing triarylethylenes by hydroarylation of alkynes. J. Org. Chem. 2019, 84, 12913–12924. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Hosseini-Eshbala, F.; Dong, Y.X.; Breit, B. Palladium-catalyzed trisallylation of benzoxazoles and 2-aryl-1,3,4-oxadiazoles with alkyne. Chem. Commun. 2019, 55, 624–627. [Google Scholar] [CrossRef]
- Kaur, P.; Kumar, V.; Kumar, R. Recent advances in decarboxylative C–C bond formation using direct or in situ generated alkenyl acids. Catal. Rev. 2019, 62, 118–161. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-catalyzed decarboxylative C–H functionalization. Chem. Rev. 2017, 117, 8864–8907. [Google Scholar] [CrossRef]
- Rousee, K.; Schneider, C.; Couve-Bonnaire, S.; Pannecoucke, X.; Levacher, V.; Hoarau, C. Pd- and Cu-catalyzed stereo- and regiocontrolled decarboxylative/C–H fluoroalkenylation of heteroarenes. Chem. Eur. J. 2014, 20, 15000–15004. [Google Scholar] [CrossRef] [PubMed]
- Rouchet, J.-B.E.Y.; Hachem, M.; Schneider, C.; Hoarau, C. Pd-Catalyzed regioselective decarboxylative/C–H α-alkoxyalkenylation of heterocycles using α-carboxyvinylethers. ACS Catal. 2017, 7, 5363–5369. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J. 2010, 16, 11212–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, S.; Kozhushkov, S.I.; Ackermann, L.; Vaccaro, L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem. 2016, 18, 3471–3493. [Google Scholar] [CrossRef] [Green Version]
- Vechorkin, O.; Proust, V.; Hu, X. The nickel/copper-catalyzed direct alkylation of heterocyclic C–H bonds. Angew. Chem. Int. Ed. 2010, 49, 3061–3064. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Palladium- and nickel-catalyzed direct alkylation of azoles with unactivated alkyl bromides and chlorides. Chem. Eur. J. 2010, 16, 12307–123011. [Google Scholar] [CrossRef]
- Ackermann, L.; Barfüsser, S.; Kornhaass, C.; Kapdi, A.R. C–H Bond arylations and benzylations on oxazol (in) es with a palladium catalyst of a secondary phosphine oxide. Org. Lett. 2011, 13, 3082–3085. [Google Scholar] [CrossRef]
- Ryu, J.; Cho, S.H.; Chang, S. A versatile rhodium(I) catalyst system for the addition of heteroarenes to both alkenes and alkynes by a C–H bond activation. Angew. Chem. Int. Ed. 2012, 51, 3677–3681. [Google Scholar] [CrossRef]
- Shih, W.C.; Chen, W.C.; Lai, Y.C.; Yu, M.S.; Ho, J.J.; Yap, G.P.; Ong, T.G. The regioselective switch for amino-NHC mediated C–H activation of benzimidazole via Ni–Al synergistic catalysis. Org. Lett. 2012, 14, 2046–2049. [Google Scholar] [CrossRef]
- Filloux, C.M.; Rovis, T. Rh(I)-bisphosphine-catalyzed asymmetric, intermolecular hydroheteroarylation of alpha-substituted acrylate derivatives. J. Am. Chem. Soc. 2015, 137, 508–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Jang, H.-L.; Jung, H.; Joo, J.-M. Catalytic C–H allylation and benzylation of pyrazoles. J. Org. Chem. 2015, 80, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-Y.; Zhang, Y.; Hu, Y.-Y.; Shao, L.-X. N-heterocyclic carbene-Pd(II)-1-methylimidazole complex catalyzed C–H bond benzylation of (benz)oxazoles with benzyl chlorides. Tetrahedron 2015, 71, 6818–6823. [Google Scholar] [CrossRef]
- Lei, B.; Wang, X.; Ma, L.; Jiao, H.; Zhu, L.; Li, Z. DDQ-promoted direct C5-alkylation of oxazoles with alkylboronic acids via palladium-catalysed C–H bond activation. Org. Biomol. Chem. 2017, 15, 6084–6088. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.-J.; Wang, Z.-X. Palladium-catalyzed C−H benzylation of (benz)oxazoles with benzylic quaternary ammonium triflates. Asian J. Org. Chem. 2018, 7, 1626–1634. [Google Scholar] [CrossRef]
- Mandapati, P.; Braun, J.D.; Sidhu, B.K.; Wilson, G.; Herbert, D.E. Catalytic C–H bond alkylation of azoles with alkyl halides mediated by nickel(II) complexes of phenanthridine-based N^N–^N Pincer Ligands. Organometallics 2020, 39, 1989–1997. [Google Scholar] [CrossRef]
- Nakao, Y.; Kashihara, N.; Kanyiva, K.-S.; Hiyama, T. Nickel-catalyzed hydroheteroarylation of vinylarenes. Angew. Chem. Int. Ed. 2010, 49, 4451–4454. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. Copper-catalyzed direct benzylation or allylation of 1,3-azoles with N-tosylhydrazones. J. Am. Chem. Soc. 2011, 133, 3296–3299. [Google Scholar] [CrossRef]
- Makida, Y.; Ohmiya, H.; Sawamura, M. Regio- and stereocontrolled introduction of secondary alkyl groups to electron-deficient arenes through copper-catalyzed allylic alkylation. Angew. Chem. Int. Ed. 2012, 51, 4122–4127. [Google Scholar] [CrossRef]
- Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Nickel- and cobalt-catalyzed direct alkylation of azoles with N-tosylhydrazones bearing unactivated alkyl groups. Angew. Chem. Int. Ed. 2012, 51, 775–779. [Google Scholar] [CrossRef]
- Vachhani, D.D.; Sharma, A.; Van der Eycken, E.V. Copper-catalyzed direct secondary and tertiary C–H alkylation of azoles through a heteroarene-amine-aldehyde/ketone coupling reaction. Angew. Chem. Int. Ed. 2013, 52, 2547–2550. [Google Scholar]
- Salvanna, N.; Reddy, G.-C.; Rao, B.-R.; Das, B. Copper-catalyzed direct cross-coupling of 1,3,4-oxadiazoles with N-tosylhydrazones: Efficient synthesis of benzylated 1,3,4-oxadiazoles. RSC Adv. 2013, 3, 20538–20544. [Google Scholar]
- Tabuchi, S.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of triarylmethanes by palladium-catalyzed C–H/C–O coupling of oxazoles and diarylmethanol derivatives. J. Org. Chem. 2014, 79, 5401–5411. [Google Scholar]
- Teng, Q.; Hu, J.; Ling, L.; Sun, R.; Dong, J.; Chen, S.; Zhang, H. Copper-catalyzed direct alkylation of 1,3-azoles with N-tosylhydrazones bearing a ferrocenyl group: A novel method for the synthesis of ferrocenyl-based ligands. Org. Biomol. Chem. 2014, 12, 7721–7727. [Google Scholar] [PubMed]
- Wu, X.; Lei, C.; Yue, G.; Zhou, J.S. Palladium-catalyzed direct cyclopropylation of heterocycles. Angew. Chem. Int. Ed. 2015, 54, 9601–9605. [Google Scholar]
- Tran, G.; Confair, D.; Hesp, K.D.; Mascitti, V.; Ellman, J.-A. C2-selective branched alkylation of benzimidazoles by rhodium(I)-catalyzed C–H activation. J. Org. Chem. 2017, 82, 9243–9252. [Google Scholar]
- Yim, J.-C.; Nambo, M.; Crudden, C.-M. Pd- catalyzed desulfonative cross-coupling of benzylic sulfone derivatives with 1,3-Oxazoles. Org. Lett. 2017, 19, 3715–3718. [Google Scholar]
- Vijaykumar, G.; Jose, A.; Vardhanapu, P.K.; Mandal, S.K. Abnormal-NHC-supported nickel catalysts for hydroheteroarylation of vinylarenes. Organometallics 2017, 36, 4753–4758. [Google Scholar]
- Li, R.P.; Shen, Z.W.; Wu, Q.J.; Zhang, J.; Sun, H.M. N-heterocyclic carbene ligand-controlled regioselectivity for nickel-catalyzed hydroarylation of vinylarenes with benzothiazoles. Org. Lett. 2019, 21, 5055–5058. [Google Scholar]
- Wang, S.; Xu, S.; Yang, C.; Sun, H.; Wang, J. Formal carbene C–H bond insertion in the Cu(I)-catalyzed reaction of bis(trimethylsilyl)diazomethane with benzoxazoles and oxazoles. Org. Lett. 2019, 21, 1809–1812. [Google Scholar]
- Xie, P.; Huang, H.; Xie, Y.; Guo, S.; Xia, C. Palladium-catalyzed Selective C–H benzylation towards functionalized azoles with a quaternary carbon center. Adv. Synth. Catal. 2012, 354, 1692–1700. [Google Scholar] [CrossRef]
- Pacheco Berciano, B.; Lebrequier, S.; Besselievre, F.; Piguel, S. 1, 1-Dibromo-1-alkenes as valuable partners in the copper-catalyzed direct alkynylation of azoles. Org. Lett. 2010, 12, 4038–4041. [Google Scholar]
- Ackermann, L.; Kornhaass, C.; Zhu, Y. Palladium-catalyzed direct C–H bond alkynylations of heteroarenes using gem-dichloroalkenes. Org. Lett. 2012, 14, 1824–1826. [Google Scholar]
- Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Nickel-and copper-catalyzed direct alkynylation of azoles and polyfluoroarenes with terminal alkynes under O2 or atmospheric conditions. Org. Lett. 2010, 12, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, D.; Yoo, E.J.; Lee, P.H. Palladium-catalyzed decarboxylative C–H alkynylation of benzoxazoles with α,β-Ynoic Acids. Eur. J. Org. Chem. 2013, 7902–7906. [Google Scholar] [CrossRef]
- Theunissen, C.; Evano, G. Room-temperature direct alkynylation of arenes with copper acetylides. Org. Lett. 2014, 16, 4488–4491. [Google Scholar] [PubMed]
- Parsharamulu, T.; Vishnuvardhan Reddy, P.; Likhar, P.-R.; Lakshmi Kantam, M. Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes catalyzed by Pd(II)–carbene complex. Tetrahedron 2015, 71, 1975–1981. [Google Scholar]
- Ha, H.; Shin, C.; Bae, S.; Joo, J.M. Divergent Palladium-catalyzed cross-coupling of nitropyrazoles with terminal alkynes. Eur. J. Org. Chem. 2018, 2018, 2645–2650. [Google Scholar] [CrossRef]
- Patel, U.-N.; Punji, B. A copper- and phosphine-free nickel(II)-catalyzed method for C−H bond alkynylation of benzothiazoles and related azoles. Asian J. Org. Chem. 2018, 7, 1390–1395. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Ranjan, P.; Voskressensky, L.G.; Van der Eycken, E.V.; Sharma, U.K. Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles. Molecules 2020, 25, 4970. https://doi.org/10.3390/molecules25214970
Chen S, Ranjan P, Voskressensky LG, Van der Eycken EV, Sharma UK. Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles. Molecules. 2020; 25(21):4970. https://doi.org/10.3390/molecules25214970
Chicago/Turabian StyleChen, Su, Prabhat Ranjan, Leonid G. Voskressensky, Erik V. Van der Eycken, and Upendra K. Sharma. 2020. "Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles" Molecules 25, no. 21: 4970. https://doi.org/10.3390/molecules25214970
APA StyleChen, S., Ranjan, P., Voskressensky, L. G., Van der Eycken, E. V., & Sharma, U. K. (2020). Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles. Molecules, 25(21), 4970. https://doi.org/10.3390/molecules25214970