Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.1.1. Chlorophyll a in Ethanol
3.1.2. Cremophor Nano-Emulsion Preparation
3.1.3. Complex Formation with Chlorophyll a
3.2. Methods
3.2.1. Stability
3.2.2. UV-Vis Absorption Spectroscopy
3.2.3. Steady-state Fluorescence Spectroscopy
3.2.4. Dynamic Light Scattering
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, S.; Zhang, N.; Jing, P. Insights into interaction of chlorophylls with sodium caseinate in aqueous nanometre-scale dispersion: Color stability, spectroscopic, electrostatic, and morphological properties. RSC Adv. 2019, 9, 4530. [Google Scholar]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural colorants: Food colorants from natural sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [PubMed]
- Wrolstad, R.E. Interaction of natural colors with other ingredients. J. Food Sci. 2004, 69, 419–425. [Google Scholar]
- Song, B.H.; Lee, D.H.; Kim, B.C.; Ku, S.H.; Park, E.J.; Kwon, I.H.; Kim, K.H.; Kim, K.J. Photodynamic therapy using chlorophyll-a in the treatment of acne vulgaris: A randomized, single-blind, split-face study. J. Am. Acad. Dermatol. 2014, 71, 764–771. [Google Scholar] [PubMed]
- Pemmaraju, D.; Appidi, T.; Minhas, G.; Singh, S.P.; Khan, N.; Pal, M.; Srivastava, R.; Rengan, A.K. Chlorophyll rich biomolecular fraction of A. cadamba loaded into polymeric nanosystem coupled with photothermal therapy: A synergistic approach for cancer theranostics. Int. J. Biol. Macromol. 2018, 110, 383–391. [Google Scholar]
- Zhou, H.; Xia, L.; Zhong, J.; Xiong, S.; Yi, X.; Chen, L.; Zhu, R.; Shi, Q.; Yang, K. Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy. Nanoscale 2019, 11, 19823. [Google Scholar]
- Jubert, C.; Mata, J.; Bench, G.; Dashwood, R.; Pereira, C.; Tracewell, W.; Turteltaub, K.; Williams, D.; Bailey, G. Effects of chlorophyll and chlorophyllin on low-dose aflatoxin B1 pharmacokinetics in human volunteers: A pilot study. Cancer Prev. Res. 2009, 2, 1015–1022. [Google Scholar]
- Kensler, T.W.; Qian, G.S.; Chen, J.G.; Groopman, J.D. Translational strategies for cancer prevention in liver. Nat. Rev. Cancer 2003, 3, 321–329. [Google Scholar] [PubMed]
- Ferruzzi, M.G.; Faolla, M.L.; Schwartz, S.J. Sodium copper chlorophyllin: In vitro digestive stability and accumulation by Caco-2 human intestinal. J. Agric. Food Chem. 2002, 50, 2173–2179. [Google Scholar] [PubMed]
- Janik-Zabrotowicz, E.; Arczewska, M.; Zubik, M.; Terpilowski, K.; Skrzypek, T.H.; Swietlicka, I.; Gagos, M. Cremophor EL nano-emulsion monomerizes chlorophyll a in water medium. Biomolecules 2019, 9, 881. [Google Scholar]
- Nazzal, S.; Smalyukh, I.; Lavrentovich, O.D.; Khan, M.A. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation. Int. J. Pharm. 2002, 235, 247–265. [Google Scholar] [CrossRef]
- Mohsin, K.; Alamri, R.; Ahmad, A.; Raish, M.; Alanazi, F.K.; Hussain, M.D. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water soluble drug. Int. J. Nanomed. 2016, 11, 2829–2838. [Google Scholar]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond) 2010, 5, 1595–1616. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, R.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Controlled Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Nikam, T.H.; Patil, M.P.; Patil, S.S.; Vadnere, G.P.; Lodhi, S. Nanoemulsion: A brief review on development and application in parenteral drug delivery. Adv. Pharm. J. 2018, 3, 43–54. [Google Scholar] [CrossRef]
- Rizzi, V.; Vurro, D.; Placido, T.; Fini, P.; Petrella, A.; Semeraro, P.; Cosma, P. Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability. Coll. Surf. B Biointer. 2018, 161, 555–562. [Google Scholar] [CrossRef]
- Weiss, C. Electronic absorption spectra of chlorophylls. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, NY, USA, 1978; pp. 211–223. [Google Scholar]
- Kobayashi, M.; Akiyama, M.; Kano, H.; Kise, H. Spectroscopy and structure determination. In Chlorophylls and Bacteriochlorophylls; Grimm, B., Porra, R.J., Rudiger, W., Scheer, H., Eds.; Springer: Dordrecht, NL, USA, 2006; Volume 25. [Google Scholar]
- Karcz, D.; Boroń, B.; Matwijczuk, A.; Furso, J.; Staroń, J.; Ratuszna, A.; Fiedor, L. Lessons from chlorophylls: Modifications of porphyrinoids towards optimized solar energy conversion. Molecules 2014, 19, 15938–15954. [Google Scholar] [CrossRef] [Green Version]
- Adachi, M.; Murata, Y. Relationship between p-conjugation size and electronic absorption spectrum: Novel p-conjugation size dependence of indoaniline dyes. J. Phys. Chem. A 1998, 102, 841–845. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—The story told by individual leaves. AoB Plants 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Vladkova, R. Chlorophyll a self-assembly in polar solvent–water mixtures. Photochem. Photobiol. 2000, 71, 71–83. [Google Scholar]
- Shen, S.C.; Hsu, S.Y.; Nenghuang, C.; Swi-Beawu, J. Color loss in ethanolic solutions of chlorophyll a. J. Agric. Food Chem. 2010, 58, 8056–8060. [Google Scholar]
- Frąckowiak, D.; Zelent, B.; Helluy, A.; Niedbalska, M.; Goc, J.; Leblanc, R.M. Aggregation of chlorophylls a and b in polymer films and monolayers. J. Photochem. Photobiot. A Chem. 1992, 69, 213–222. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, B.; Liu, Z.; Wu, W. Preparation of photostable chlorophyll/PVA film. Adv. Mater. Res. 2011, 239, 2707–2710. [Google Scholar] [CrossRef]
- Chu, M.; Li, H.; Wu, Q.; Wo, F.; Shi, D. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies. Biomaterials 2014, 35, 8357–8373. [Google Scholar] [CrossRef]
- Itoh, T.; Yano, K.; Inada, Y.; Fukushima, Y. Photostabilized chlorophyll a in mesoporous silica: Adsorption properties and photoreduction activity of chlorophyll a. J. Am. Chem. Soc. 2002, 124, 13437–13441. [Google Scholar]
- Lipke, A.; Trytek, M.; Fiedurek, J.; Majdan, M.; Janik, E. Spectroscopic and biocatalytic properties of a chlorophyll-containing extract in silica gel. J. Mol. Struct. 2013, 1052, 158–164. [Google Scholar] [CrossRef]
- Barazzouk, S.; Bekal, L.; Hotchandani, S. Enhanced photostability of chlorophyll-a using gold nanoparticles as an efficient photoprotector. J. Mater. Chem. 2012, 22, 25316. [Google Scholar] [CrossRef]
- Trytek, M.; Janik, E.; Maksymiec, W.; Fiedurek, J.; Lipke, A.; Majdan, M. The spectral and catalytic studies of chlorophylls and pheophytins in mimetic biotransformation of a-pinene. J. Photochem. Photobiol. A Chem. 2011, 223, 14–24. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Shi, Z.; Pan, M.; Yu, D. Protein-encapsulated chlorophyll a molecules for biological solar cells. Mat. Design 2020, 195, 108983. [Google Scholar]
- Petrovic, S.M.; Barbinta-Patrascuz, M.E.; Zvezdanovic, J.B.; Savic, S.R.; Cvetkovic, D.J. In vitro studies on chlorophyll stability in water and nanoliposomes affected by “Azo” initiators of free radicals. Rom. J. Phys. 2019, 64, 1–11. [Google Scholar]
- Bahceci, K.S.; Serpen, A.; Gokmen, V.; Acar, J. Study of lipoxygenase and peroxidase as indicator enzymes in green beans: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. J. Food Eng. 2005, 66, 187–192. [Google Scholar] [CrossRef]
- Meier, H.; Gerold, J.; Kolshorn, H.; Muhling, B. Extension of conjugation leading to bathochromic or hypsochromic effects in OPV series. Chem. Eur. J. 2004, 10, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Agostiano, A.; Catucci, L.; Cosma, P.; Fini, P. Aggregation processes and photophysical properties of chlorophyll a in aqueous solutions modulated by the presence of cyclodextrins. Phys. Chem. Chem. Phys. 2003, 5, 2122–2128. [Google Scholar] [CrossRef]
- Broyde, S.B.; Brody, S.S. Emission spectra of chlorophyll-a in polar and nonpolar solvents. J. Chem. Phys. 1967, 46, 3334–3340. [Google Scholar] [CrossRef]
- Oksanen, J.A.I.; Zenkevich, E.I.; Knyukshto, V.N.; Pakalnis, S.; Hynninen, P.H.; Korppi-Tommola, J.E.I. Investigations of Chl a aggregates cross-linked by dioxane in 3-methylpentane. Biochim. Biophys. Acta 1997, 1321, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Alzeer, J.; Hadeed, K.H. Ethanol and its Halal status in food industries. Trends Food Sci. Tech. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- Limantara, L.; Heriyanto. Photostability of bacteriochlorophyll a and its derivatives as potential sensitizers for photodynamic cancer therapy: The study on acetone-water and methanol-water solvents. Indo. J. Chem. 2011, 11, 154–162. [Google Scholar] [CrossRef]
- Foyer, C.H. Photosynthesis; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
Effect Level | Mean Difference | Standard Error | t | p |
---|---|---|---|---|
1 mW | 0.059150 | 0.011275 | 5.2460 | 0.000001 * |
0.1 mW | −0.000048 | 0.011275 | −0.0043 | 0.996596 ns |
1 mW*Time | 0.001410 | 0.000202 | 6.9916 | 0.000000 * |
0.1 mW*Time | 0.000224 | 0.000202 | 1.1093 | 0.269995 ns |
Dark*Time | −0.000090 | 0.000247 | −0.3659 | 0.715222 ns |
Sample Availability: Samples of the compounds are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janik-Zabrotowicz, E.; Arczewska, M.; Prochniewicz, P.; Świetlicka, I.; Terpiłowski, K. Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions. Molecules 2020, 25, 5059. https://doi.org/10.3390/molecules25215059
Janik-Zabrotowicz E, Arczewska M, Prochniewicz P, Świetlicka I, Terpiłowski K. Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions. Molecules. 2020; 25(21):5059. https://doi.org/10.3390/molecules25215059
Chicago/Turabian StyleJanik-Zabrotowicz, Ewa, Marta Arczewska, Patrycja Prochniewicz, Izabela Świetlicka, and Konrad Terpiłowski. 2020. "Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions" Molecules 25, no. 21: 5059. https://doi.org/10.3390/molecules25215059
APA StyleJanik-Zabrotowicz, E., Arczewska, M., Prochniewicz, P., Świetlicka, I., & Terpiłowski, K. (2020). Stability of Chlorophyll a Monomer Incorporated into Cremophor EL Nano-Micelles under Dark and Moderate Light Conditions. Molecules, 25(21), 5059. https://doi.org/10.3390/molecules25215059