Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Visual Aspect of Ag2Se NPs
2.2. UV–Vis Spectroscopy
2.3. X-ray Diffraction
2.4. Transmission Electron Microscopy
2.5. Scanning Electron Microscopy–Energy-Dispersive Spectroscopy
2.6. Biological Activity
2.6.1. Cytotoxicity Assessment by MTT Assay
2.6.2. Bactericidal Tests
3. Materials and Methods
3.1. Materials
3.2. Green Synthesis of Silver Selenide NPs
3.3. Physico-Chemical Characterization
3.3.1. Ultraviolet–Visible (UV–Vis) Spectroscopy
3.3.2. X-ray Diffraction (XRD)
3.3.3. Transmission Electron Microscopy (TEM)
3.3.4. Scanning Electron Microscopy–Energy-Dispersive Spectroscopy (SEM–EDS)
3.4. Biological Activity of Ag2Se NPs
3.4.1. MTT Assay Using Human Fibroblasts
3.4.2. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, C.B.; Kagan, C.R. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystals assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Cortez-Valadez, M.; Flores-López, N.S.; Flores-Acosta, M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull. 2018, 99, 385–392. [Google Scholar] [CrossRef]
- Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326–4354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383. [Google Scholar] [CrossRef] [PubMed]
- Talapin, D.V.; Lee, J.S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458. [Google Scholar] [CrossRef] [PubMed]
- Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Helan, P.P.J.; Mohanraj, K.; Sivakumar, G. Synthesis and characterization of β-Ag2Se and β-AgCuSe nanoparticles via facile precipitation route. Trans. Nonferrous Met. Soc. China 2015, 25, 2241–2246. [Google Scholar]
- Tang, H.; Yang, S.T.; Yang, Y.F.; Ke, D.M.; Liu, J.H.; Chen, X.; Wang, H.; Liu, Y. Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl. Mater. Interfaces 2016, 8, 17859–17869. [Google Scholar] [CrossRef]
- Wu, T.; Liang, X.; He, K.; Wei, T.; Wang, Y.; Zou, L.; Bai, C.; Liu, N.; Zhang, T.; Xue, Y.; et al. The role of NLRP3 inflammasome activation in the neuroinflammatory responses to Ag2Se quantum dots in microglia. Nanoscale 2019, 11, 20820–20836. [Google Scholar] [CrossRef]
- Shimojo, F.; Okazaki, H. Boundary condition effect in MD simulation: A case of the α→β phase transition in superionic conductor Ag2Se. J. Phys. Soc. Jpn. 1993, 62, 179–182. [Google Scholar] [CrossRef]
- Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816. [Google Scholar] [CrossRef]
- Cao, H.; Xiao, Y.; Lu, Y.; Yin, J.; Li, B.; Wu, S.; Wu, X. Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Res. 2010, 3, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Xiong, S.; Xia, Z.; Liu, F.; Han, C.; Zhang, D. Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect. Semicond Sci. Technol. 2012, 27, 125017. [Google Scholar] [CrossRef]
- Schoen, D.T.; Xie, C.; Cui, Y. Electrical switching and phase transformation in silver selenide nanowires. J. Am. Chem. Soc. 2007, 129, 4116–4117. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Shi, H.; Tang, Y.; Jiao, K.; Fu, X. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J. Mater. Chem. 2008, 18, 2573–2580. [Google Scholar] [CrossRef]
- Sahu, A.; Qi, L.; Kang, M.S.; Deng, D.; Norris, D.J. Facile synthesis of silver chalcogenide (Ag2E.; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 6509–6512. [Google Scholar] [CrossRef] [PubMed]
- Pandiaraman, M.; Soundararajan, N. Micro-Raman studies on thermally evaporated Ag2Se thin films. J. Theor. Appl. Phys. 2012, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Jeffryes, C.; Mechouet, M.; Agathos, S.N. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering 2017, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Lin, J.; Jaramillo, F.E.; Bazylinski, D.A.; Je, C.; Dahoumane, S.A. In vivo biosynthesis of inorganic nanomaterials using eukaryotes—A review. Molecules 2020, 25, 3246. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.; Sicard, C.; Bazylinski, D.A.; Jeffryes, C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—A review. Green Chem. 2017, 19, 552–587. [Google Scholar] [CrossRef]
- Shan, W.J.; Yan, Q.; Li, D.; Fang, D.W.; Zang, S.L. Ultrasonic synthesis of Ag2Se nanocrystal in perrhenate solution. Adv. Mater. Res. 2014, 919, 2109–2111. [Google Scholar] [CrossRef]
- Zhan, J.H.; Yang, X.G.; Li, S.D.; Wang, D.W.; Xie, Y.; Qian, Y.T. Synthesis of Ag2Se by sonochemical reaction of Se with AgNO3 in non-aqueous solvent. Int. J. Inorg. Mater. 2001, 3, 47–49. [Google Scholar] [CrossRef]
- Li, B.; Xie, Y.; Huang, J.; Qian, Y. Sonochemical synthesis of silver, copper and lead selenides. Ultrason. Sonochem. 1999, 6, 217–220. [Google Scholar] [CrossRef]
- Henam, S.D.; Ahmad, F.; Shah, M.A.; Parveen, S.; Wani, A.H. Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Bafana, A.P.; Pawar, P.; Rahman, A.; Dahoumane, S.A.; Jeffryes, C.S. High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology. Sci. Rep. 2018, 8, 5106. [Google Scholar]
- Kumar, S.V.; Bafana, A.P.; Pawar, P.; Faltane, M.; Rahman, A.; Dahoumane, S.A.; Kucknoor, A.; Jeffryes, C.S. Optimized production of antibacterial copper oxide nanoparticles in a microwave-assisted synthesis reaction using response surface methodology. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 573, 170–178. [Google Scholar] [CrossRef]
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, S.; Luo, J.; Wang, X.; Sun, R. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale 2015, 7, 690–700. [Google Scholar] [CrossRef]
- Durmazel, S.; Üzer, A.; Erbil, B.; Sayln, B.; Apak, R. Silver nanoparticle formation-based colorimetric determination of reducing sugars in food extracts via Tollens’ reagent. ACS Omega 2019, 4, 7596–7604. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-biointerface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Raveendran, P.; Fu, J.; Wallen, S.L. Completely “Green” Synthesis and stabilization of metal nanoparticles. J. Am. Chem Soc. 2003, 125, 13940–13941. [Google Scholar] [CrossRef]
- Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Sharma, A.R.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.S.; Lee, S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 2014, 19, 2761–2770. [Google Scholar] [CrossRef]
- Ocsoy, I.; Tasdemir, D.; Mazicioglu, S.; Celik, C.; Katı, A.; Ulgen, F. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater. Lett. 2018, 2012, 45–50. [Google Scholar] [CrossRef]
- Castro-Guerrero, C.F.; Morales-Cepeda, A.B.; Hernández-Vega, L.K.; Díaz-Guillén, M.R. Fructose-mediated gold nanoparticles synthesis. Cogent Chem. 2018, 4, 1447262. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Singh, P.; Garg, A.; Pandit, S.; Mokkapati, V.R.S.S.; Mijakovic, I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials 2018, 8, 1009. [Google Scholar] [CrossRef] [Green Version]
- Marulasiddeshwara, M.B.; Dakshayani, S.S.; Sharath Kumar, M.N.; Chethana, R.; Raghavendra Kumar, P.; Devaraja, S. Facile one-pot green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent. Mater. Sci. Eng. C 2017, 81, 182–190. [Google Scholar] [CrossRef]
- Allahverdiyev, A.M.; Kon, K.V.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Coping with antibiotic-resistant: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. 2011, 9, 1035–1052. [Google Scholar]
- Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 532–547. [Google Scholar] [CrossRef]
- Van Giau, V.; An, S.S.A.; Hulme, J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des. Devel. Ther. 2019, 13, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Patel, G.; Huprikar, S.; Factor, S.H.; Jenkins, S.G.; Calfee, D.P. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect. Control Hosp. Epidemiol. 2008, 29, 1099–1106. [Google Scholar] [CrossRef]
- Sibiya, P.N.; Moloto, M.J. Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles. Chalcogenide Lett. 2014, 11, 577–588. [Google Scholar]
- Sibiya, N.P.; Moloto, M.J. Shape control of silver selenide nanoparticles using green capping molecules. Green Process. Synth. 2017, 6, 183–188. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 2017, 24, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. Controlled growth of silver nanoparticles in a hydrothermal process. China Particuol. 2007, 5, 206–212. [Google Scholar] [CrossRef]
- Ahmed, S.; Ullah, S.; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Kumar, S.; Bafana, A.; Dahoumane, S.A.; Jeffryes, C. Biosynthetic conversion of Ag+ to highly stable Ag0 nanoparticles by wild type and cell wall deficient strains of Chlamydomonas reinhardtii. Molecules 2019, 24, 98. [Google Scholar] [CrossRef] [Green Version]
- Anthony, S.P. Synthesiss of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication. Matter. Lett. 2009, 63, 3405–3409. [Google Scholar] [CrossRef]
- Fernández-Díaz, E.; Espinoza-Martinez, A.B.; Flores-Pacheco, A.; Ramírez-Bon, R.; Castillo, S.J.; Ochoa Landin, R. Synthesis and characterization of silver selenide thin films by chemical bath deposition and ionic exchange. J. Electron. Mater. 2019, 48, 3405–3409. [Google Scholar]
- Pejova, B.; Najdoski, M.; Grozdanov, I.; Dey, S.K. Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films. Mater. Lett. 2000, 43, 269–273. [Google Scholar] [CrossRef]
- Harpeness, R.; Palchik, O.; Gedanken, A.; Palchik, V.; Amiel, S.; Slifkin, M.A.; Weiss, A.M. Preparation and characterization of Ag2E (E = Se, Te) using the sonochemically assisted polyol method. Chem Mater. 2002, 14, 2094–2102. [Google Scholar] [CrossRef]
- Kumashiro, Y.; Ohachi, T.; Taniguchi, I. Phase transition and cluster formation in silver selenide. Solid State Ion. 1996, 86–88, 761–766. [Google Scholar] [CrossRef]
- Kristl, M.; Gyergyek, S.; Kristl, J. Synthesis and characterization of nanosized silver chalcogenides under ultrasonic irradiation. Mater. Express 2015, 5, 359–366. [Google Scholar] [CrossRef]
- Tsai, M.L.; Bai, S.W.; Chen, R.H. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle. Carbohydr. Polym. 2008, 71, 448–457. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.; Pathak, R.N. Sonochemical synthesis of silver nanoparticles using starch: A comparison. Bioinorg. Chem. Appl. 2014, 2014, 784268. [Google Scholar] [CrossRef]
- Yao, Q.; Arachchige, I.U.; Brock, S.L. Expanding the repertoire of chalcogenide nanocrystal networks: Ag2Se gels and aerogels by cation exchange reactions. J. Am. Chem. Soc. 2009, 131, 2800–2801. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Strain | Maximum Zone of Inhibition (mm) | |||
---|---|---|---|---|
E1 | E2 | E3 | Ref. Drug | |
E. coli (Gram −) | 3.2 | 4.4 | 3.4 | 5.0 |
S. typhimurium (Gram −) | 2.0 | 1.0 | 3.0 | 6.0 |
P. aeruginosa (Gram −) | 0.5 | 0.0 | 1.0 | 3.0 |
S. aureus (Gram +) | 2.0 | 4.0 | 5.1 | 8.0 |
N° | Composition | V(DIW) | S | F | V(Ag+) | V(Se4+) | Time |
---|---|---|---|---|---|---|---|
mL | mg mL−1 | mg mL−1 | mL | mL | min | ||
E1 | AgNO3 + H2SeO3 + F + S | 85 | 10 | 5 | 10 | 5 | 30 |
E2 | AgNO3 + H2SeO3 + F + S | 85 | 10 | 10 | 10 | 5 | 30 |
E3 | AgNO3 + H2SeO3 + F+ S | 85 | 10 | 20 | 10 | 5 | 30 |
E4 | AgNO3 + H2SeO3 + F+ S | 85 | 10 | 40 | 10 | 5 | 30 |
C1 | AgNO3 + H2SeO3 | 85 | 0 | 0 | 10 | 5 | 30 |
C2 | AgNO3 + H2SeO3 + S | 85 | 10 | 0 | 10 | 5 | 30 |
C3 | AgNO3 + H2SeO3 + F | 85 | 0 | 40 | 10 | 5 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, D.A.; Mendoza, L.; Vizuete, K.; Debut, A.; Arias, M.T.; Gavilanes, A.; Terencio, T.; Ávila, E.; Jeffryes, C.; Dahoumane, S.A. Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation. Molecules 2020, 25, 5193. https://doi.org/10.3390/molecules25215193
García DA, Mendoza L, Vizuete K, Debut A, Arias MT, Gavilanes A, Terencio T, Ávila E, Jeffryes C, Dahoumane SA. Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation. Molecules. 2020; 25(21):5193. https://doi.org/10.3390/molecules25215193
Chicago/Turabian StyleGarcía, Daniela Armijo, Lupe Mendoza, Karla Vizuete, Alexis Debut, Marbel Torres Arias, Alex Gavilanes, Thibault Terencio, Edward Ávila, Clayton Jeffryes, and Si Amar Dahoumane. 2020. "Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation" Molecules 25, no. 21: 5193. https://doi.org/10.3390/molecules25215193
APA StyleGarcía, D. A., Mendoza, L., Vizuete, K., Debut, A., Arias, M. T., Gavilanes, A., Terencio, T., Ávila, E., Jeffryes, C., & Dahoumane, S. A. (2020). Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation. Molecules, 25(21), 5193. https://doi.org/10.3390/molecules25215193