Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mineral Compound of Leaves and Goji Fruits
2.2. Leaf and Fruit Color
2.3. Polyphenolic Compounds and Health Promoting Capacities
2.4. Antioxidant Activity
2.5. Antidiabetic Activity of Goji Fruits
2.6. Soluble Sugars and Organic Acid
2.7. Antimicrobial Activity
3. Materials and Methods
3.1. Characteristics of the Research Area
3.1.1. Orchard Experiment
3.1.2. In Vitro Experiment
3.2. Characteristics of the Plant Material
3.2.1. Orchard Experiment
3.2.2. In Vitro Experiment
3.3. Analysis of the Chemical Compounds
3.4. Nutritional Value and Polyphenols of Leaves and Fruits
3.5. Antidiabetic Activity (α-Amylase, α-Glucosidase)
3.6. Antimicrobial Activity Assay
3.7. Area of one Leaf (cm2)
3.8. Color and Pigment Parameters
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Potterat, O. Goji (Lycium barbarum and Lycium chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, A.N.; Silvestre, D.M.; de Oliveira Leme, F.; Nomura, C.S.; Naozuka, J. Elemental analysis of goji berries using axially and radially viewed inductively coupled plasma-opical emissin spectometry. Spectometry 2015, 30, 36–41. [Google Scholar]
- Kruczek, A.; Ochmian, I. The influence of shurbs cutting method on yielding and quality of the goji berries (Lycium barbarum L.). Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2016, 330, 131–138. [Google Scholar] [CrossRef]
- Dănăilă-Guidea, A.M.; Dobrinoiu, R.-V.; Vişan, L.; Toma, R.C. Protocol for efficient in vitro multiplication of Lycium barbarum L. (Goji) by direct organogenesis. Sci. Bull. Ser. F Biotechnol. 2015, 19, 34–38. [Google Scholar]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruczek, A.; Ochmian, I.; Krupa-Małkiewicz, M.; Lachowicz, S. Comparison of morphological, antidiabetic and antioxidant properties of goji fruits. Acta Univ. Cibiniensis Ser. E Food Technol. 2020, 24, 1–14. [Google Scholar] [CrossRef]
- Chang, R.C.C.; So, K.F. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cell. Mol. Neurobiol. 2008, 28, 643–652. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Goji berry (Lycium barbarum): Composition and health effects–a review. Pol. J. Food Nutr. Sci. 2016, 66, 67–76. [Google Scholar] [CrossRef]
- Osman, N.I.; Awal, A.; Sidik, N.J.; Abdullah, S. In vitro regeneration and antioxidant properties of Lycium barbarum L. (goji). J. Teknol. 2013, 62, 35–38. [Google Scholar]
- Dzhugalov, H.; Lichev, V.; Yordanov, A.; Kaymakanov, P.; Dimitrova, V.; Kutoranov, G. First results of testing Goji berry (Lycium barbarum L.) in Plovdiv region, Bulgaria. Sci. Pap. Ser. B Hortic. 2015, 59, 47–50. [Google Scholar]
- Kruczek, A.; Krupa-Małkiewicz, M.; Ochmian, I. The influence of shrubs cutting method on yielding and quality of the goji berries (Lycium barbarum L.). Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2017, 336, 67–74. [Google Scholar] [CrossRef]
- Bogacz, K. Goji—Fruit of health and longevity. PFiOW 2009, 9, 33–34. [Google Scholar]
- Chen, P.Y.; Shih, T.H.; Chang, K.C.; Wang, J.S.; Yang, C.M.; Chang, Y.S. Potential of galled leaves of Goji (Lycium chinense) as functional food. BMC Nutrition. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sá, R.R.; da Cruz Caldas, J.; de Andrade Santana, D.; Lopes, M.V.; dos Santos, W.N.L.; Korn, M.G.A.; Júnior, A.D.F.S. Multielementar/centesimal composition and determination of bioactive phenolics in dried fruits and capsules containing Goji berries (Lycium barbarum L.). Food Chem. 2019, 273, 15–23. [Google Scholar]
- Glonek, J.; Komosa, A. Fertigation of highbush blueberry (Vaccinium corymbosum L.). Part I. The effect on growth and yield. Acta Sci. Pol. Hortorum Cultus 2013, 12, 47–57. [Google Scholar]
- Ochmian, I.; Malinowski, R.; Kubus, M.; Malinowska, K.; Sotek, Z.; Racek, M. The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci. Hort. 2019, 257, 108690. [Google Scholar] [CrossRef]
- Maret, W. The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci. 2016, 17, 66. [Google Scholar] [CrossRef] [Green Version]
- Kulaitienė, J.; Vaitkevičienė, N.; Jarienė, E.; Černiauskienė, J.; Jeznach, M.; Paulauskienė, A. Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania. Biol. Agric. Hortic. 2020, 36, 130–140. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Stanisz, E.; Waśkiewicz, A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem. 2017, 221, 228–236. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Córdova, M.L.F.-D.; Ortega-Barrales, P.; Ruiz-Medina, A. Characterization and comparison of the chemical composition of exotic superfoods. Microchem. J. 2013, 110, 444–451. [Google Scholar] [CrossRef]
- European Commission. Regulation EU. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Niro, S.; Fratianni, A.; Panfili, G.; Falasca, L.; Cinquanta, L.; Alam, M.R. Nutritional evaluation of fresh and dried goji berries cultivated in Italy. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Dougnon, T.V.; Bankolé, H.S.; Johnson, R.C.; Klotoé, J.R.; Dougnon, G.; Gbaguidi, F.; Rhin, B.H. Phytochemical screening, nutritional and toxicological analyses of leaves and fruits of Solanum macrocarpon Linn (Solanaceae) in Cotonou (Benin). Food Nutr. Sci. 2012, 3, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Kiełbasa, P.; Juliszewski, T. Pomiar powierzchni liści wybranych roślin metodą video-komputerową. [Measurement of the leaf surface for the selected plants using video-computer method]. Inżynieria Rol. 2005, 14, 169–175. [Google Scholar]
- Antal, T.; Sikolya, L.; Kerekes, B. Assessment of freezing pre-treatments for the freeze dried of apple slices. Acta Univ. Cibiniensis Ser. E Food Technol. 2013, 17, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Oszmiański, J.; Lachowicz, S.; Krupa-Małkiewicz, M. Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Sci. Hortic. 2019, 256, 108588. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Lachowicz, S.; Wiśniewski, R.; Ochmian, I.; Drzymała, K.; Pluta, S. Anti-microbiological, anti-hyperglycemic and anti-obesity potency of natural antioxidants in fruit fractions of saskatoon berry. Antioxidants 2019, 8, 397. [Google Scholar] [CrossRef] [Green Version]
- Yusufe, M.; Mohammed, A.; Satheesh, N. Effect of duration and drying temperature on characteristics of dried tomato (Lycopersicon esculentum L.) Cochoro variety. Acta Univ. Cibiniensis Ser. E Food Technol. 2017, 21, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Kozos, K.; Mijowska, K. Influence of storage conditions on changes in physical parameters and chemical composition of highbush blueberry (Vaccinium corymbosum L.) fruit during storage. Bulg. J. Agric. Sci. 2015, 21, 178–183. [Google Scholar]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods. 2018, 48, 632–642. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 5, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Montesano, D.; Rocchetti, G.; Cossignani, L.; Lucini, L.; Simonetti, M.S.; Blasia, F. Italian Lycium barbarum L. berry: Chemical characterization and nutraceutical value. Nat. Prod. Commun. 2018, 13, 1934578X1801300913. [Google Scholar] [CrossRef] [Green Version]
- Bratu, M.M.; Birghila, S.; Popescu, A.; Negreanu-Pirjol, B.S.; Negreanu-Pirjol, T. Correlation of antioxidant activity of dried berry infusions with the polyphenols and selected microelements contents. Bull. Chem. Soc. Ethiop. 2018, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Arya, V.; Kaur, R.; Bhat, Z.A.; Gupta, V.K.; Kumar, V. A review of immunomodulators in the Indian traditional health care system. J. Microbiol. Immunol. Infect. 2012, 45, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 77–106. [Google Scholar]
- Varadarajan, P.; Rathinaswamy, G.; Asirvatahm, D. Antimicrobial properties and phytochemical constituents of Rheo discolor Hance. Ethnobot. Leafl. 2008, 12, 841–845. [Google Scholar]
- Dahech, I.; Farah, W.; Trigui, M.; Hssouna, A.B.; Belghith, H.; Belghith, K.S.; Abdallah, F.B. Antioxidant and antimicrobial activities of Lycium shawii fruits extract. Int. J. Biol. Macromol. 2013, 60, 328–333. [Google Scholar] [CrossRef]
- Mijowska, K.; Ochmian, I.; Oszmiański, J. Rootstock effects on polyphenol content in grapes of ‘Regent’cultivated under cool climate condition. J. Appl. Bot. Food Qual. 2017, 90, 159–164. [Google Scholar]
- Sadowski, A.; Nurzyński, J.; Pacholak, E.; Smolarz, K. Określanie Potrzeb nawożenia Roślin Sadowniczych. II. Zasady, Liczby Graniczne i Dawki Nawożenia. Instrukcja Upowszechnieniowa nr 3; SGGW: Warszawa, Poland, 1990; pp. 1–25. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiolol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. PN-R-04016-21. Chemical and Agricultural Analysis of Soil. Determination of the Content of Available Zinc, Copper, Manganese, Iron; Polish Committee for Standardization: Warszav, Poland, 1992. [Google Scholar]
- IUNG (Institute of Soil Science and Plant Cultivation). Methods of Laboratory Tests in Chemical Laboratories. Part II. The Study of Plant Material; IUNG: Puławy, Poland, 1972; pp. 25–83. [Google Scholar]
- Lityński, T.; Jurkowska, H.; Gorlach, E. Chemical Analysis of Soil; PWN: Warszawa, Poland, 1976; pp. 135–143. [Google Scholar]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of photochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 2018, 244, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Morales, P.; Sánchez-Mata, M.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F. Nutritional parameters of infusions and decoctions obtained from Fragaria vesca L. roots and vegetative parts. LWT Food Sci. Technol. 2015, 62, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Rapak, A.; Ochmian, I. Profile and content of phenolic compounds in leaves, flowers, roots, and stalks of Sanguisorba officinalis L. determined with the LC-DAD-ESI-QTOF-MS/MS analysis and their in vitro antioxidant, antidiabetic, antiproliferative potency. Pharmaceuticals 2020, 13, 191. [Google Scholar] [CrossRef]
- Nickavar, B.; Yousefian, N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbr. Lebensm. 2011, 6, 191–195. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of a variety of essentials oils on respiratory tract pathogens, using the modified dilution assay method. J. Inf. Chemother. 2001, 7, 251–254. [Google Scholar] [CrossRef]
- Ochmian, I.; Kozos, K.; Chelpinski, P.; Szczepanek, M. Comparison of berry quality in highbush blueberry cultivars grown according to conventional and organic methods. Turk. J. Agric. Forest. 2015, 39, 174–181. [Google Scholar] [CrossRef]
- Krupa-Małkiewicz, M.; Kosatka, A.; Smolik, B.; Sędzik, M. Induced mutations through EMS treatment and in vitro screening for salt tolerance plant of Petunia × atkinsiana D. Don. Not. Bot. Horti Agrobot. 2017, 45, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Piwowarczyk, R.; Ochmian, I.; Lachowicz, S.; Kapusta, I.; Sotek, Z.; Błaszak, M. Phytochemical parasite-host relations and interactions: A Cistanche armena case study. Sci. Total Environ. 2020, 716, 137071. [Google Scholar] [CrossRef] [PubMed]
Compounds (g/kg) | Leaves | Fruit | ||||
---|---|---|---|---|---|---|
No. 1 | New Big | No. 1 | New Big | |||
Orchard | In Vitro | Orchard | In Vitro | Orchard | ||
N (22–32 2) | 42.08 ± 1.71a 1 | 57.14 ± 2.37b | 43.50 ± 1.98a | 77.92 ± 3.05c | 29.85 ± 1.30B | 24.32 ± 0.92A |
P (19–30) | 7.85 ± 0.42a | 11.93 ± 0.56c | 8.52 ± 0.47b | 13.78 ± 0.51b | 5.38 ± 0.19B | 4.85 ± 0.15A |
K (12–20) | 29.57 ± 1.17b | 57.06 ± 1.98d | 14.73 ± 0.52a | 52.06 ± 1.50c | 4.30 ± 0.13A | 3.98 ± 0.11 A |
Ca (4–8) | 11.00 ± 0.52b | 3.87 ± 0.18a | 11.39 ± 0.48b | 4.00 ± 0.21a | 0.91 ± 0.04B | 0.75 ± 0.03A |
Mg (2–4.4) | 5.89 ± 0.17b | 2.87 ± 0.09a | 7.50 ± 0.27c | 3.04 ± 0.11a | 1.11 ± 0.05A | 1.02 ± 0.05A |
Na (no data) | 4.22 ± 0.23c | 2.17 ± 0.19b | 4.60 ± 0.25d | 1.82 ± 0.13a | 4.03 ± 0.19B | 3.82 ± 0.15A |
Compounds (g/kg) | Leaves | Fruit | ||||
---|---|---|---|---|---|---|
No. 1 | New Big | No. 1 | New Big | |||
orchard | In vitro | Orchard | In vitro | Orchard | ||
Fe (40–60 2) | 120.13 ± 7.20c 1 | 71.00 ± 3.82a | 97.81 ± 4.07b | 77.44 ± 3.55a | 66.03 ± 2.04A | 79.44 ± 2.63B |
Zn (8–14) | 18.62 ± 0.35b | 26.77 ± 0.47c | 14.53 ± 0.27a | 35.07 ± 0.31d | 8.16 ± 0.24A | 8.73 ± 0.19B |
Mn (70–260) | 50.70 ± 1.04b | 176.89 ± 3.57c | 42.07 ± 0.88a | 244.64 ± 5.03d | 7.04 ± 0.12A | 7.74 ± 0.10B |
Cu (5–20) | 8.42 ± 0.19d | 3.39 ± 0.16a | 6.06 ± 0.14c | 3.90 ± 0.11b | 4.72 ± 0.98A | 5.64 ± 1.25B |
Se | 0.089 ± 0.005b | n.d. 3 | 0.062 ± 0.004a | n.d. | 0.012 ± 0.001B | 0.009 ± 0.001A |
Pb | 0.034 ± 0.03a | n.d. | 0.054 ± 0.05b | n.d. | 0.017 ± 0.001A | 0.029 ± 0.002B |
Cd | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Ni | 0.019 ± 0.002b | n.d. | 0.011 ± 0.002a | n.d. | 0.007 ± 0.001B | 0.003 ± 0.000A |
Compounds | Cultivar | ||||||
---|---|---|---|---|---|---|---|
No. 1 | New Big | No. 1 | New Big | ||||
Leaves | Fruit | ||||||
Orchard | In Vitro | Orchard | In Vitro | Orchard | |||
Leaf area (cm2) | 3.53 ± 0.31c 1 | 2.11 ± 0.17a | 4.18 ± 0.39d | 2.78 ± 0.15b | - | - | |
Color parameters | L* | 47.82 ± 2.55a | 42.36 ± 1.53b | 42.50 ± 2.71b | 34.57 ± 1.70c | 35.88 ± 1.45B | 44.72 ± 2.04A |
a* | −36.27 ± 3.08ab | −38.94 ± 1.98b | −33.84 ± 2.55a | −43.56 ± 2.12c | 25.63 ± 3.24A | 33.34 ± 3.42B | |
b* | 30.63 ± 2.50c | 27.73 ± 1.45bc | 23.71 ± 2.26a | 25.25 ± 1.63ab | 27.05 ± 2.44A | 41.40 ± 2.79B | |
NAI | −0.76 ± 0.10b | −0.69 ± 0.06a | -0.82 ± 0.07c | −0.74 ± 0.05b | 0.62 ± 0.05A | 0.71 ± 0.05B | |
NDVI | 0.69 ± 0.04a | 0.76 ± 0.05b | 0.84 ± 0.05c | 0.91 ± 0.03d | −0.46 ± 0.04B | −0.38 ± 0.03A |
Compounds (mg/100 g DW) | Leaves | Fruits | ||||
---|---|---|---|---|---|---|
No. 1 | New Big | No. 1 | New Big | |||
In Vitro | Orchard | In Vitro | Orchard | |||
Quercetin-3-O-Gal | n.d. | n.d. | n.d. | n.d. | 0.80A 1 | 2.98B |
Kaempferol-3-O-Glc-7-O-Soph | n.d. | n.d. | 11.47a | 14.25b | n.d. | n.d. |
Quercetin-3-O-Rut-7-O-Glu | n.d. | n.d. | n.d. | n.d. | 2.94B | 2.07A |
Quercetin-3-O-Soph-7-O-Rha | 12.73b | 14.65b | 4.42a | 24.03c | 0.24A | 2.31B |
Kaempferol-3-O-Rut-7-O-Glu | n.d. | n.d. | n.d. | n.d. | 6.38A | 17.22B |
Quercetin-3-O-Glu | n.d. | n.d. | 2.37b | 0.72a | 3.05A | 3.50A |
Quercetin-3-O-Rut | 12.58a | 23.81b | 31.42c | 33.89c | 11.29B | 7.57A |
Quercetin-3-O-Glu-7-O-Rha | 0.22a | 0.48b | 1.04c | 0.58b | n.d. | n.d. |
Kaempferol-3-O-Rhu | 0.77a | 0.95b | n.d. | n.d. | 0.18 | n.d. |
Kaempferol-3-O-Glu-7-O-Rha | 0.68a | 0.75a | 1.21c | 0.94b | n.d. | n.d. |
Total flavonols | 26.98a | 40.64b | 51.93c | 74.41d | 24.88A | 35.65B |
Procyanidin B dimer | 0.99b | 3.04c | 0.49a | 8.01d | 0.62A | 0.51A |
(+)-Catechin | n.d. | n.d. | 7.38a | 21.41b | 18.44B | 11.04A |
Total flavan-3-ols | 0.99a | 3.04b | 7.87c | 29.42d | 19.06B | 11.55A |
Tetragalloyl-glucose | 0.23a | 0.29a | 4.22c | 3.81b | n.d. | n.d. |
Galloylquinic acid | 0.17a | 0.21a | 2.55c | 2.09b | n.d. | n.d. |
Total hydrolyzable tannins | 0.40a | 0.50a | 6.77c | 5.9b | ||
5-O-Ferruloylquinic acid | 0.41b | 0.30a | 1.77 | 1.60c | 0.56B | 0.21A |
p-Coumaric acid | 1.66 | 1.52 | 2.15d | 1.06 | 8.29B | 6.35A |
Caffeic acid | 0.64b | 0.82c | 0.37a | 0.34a | n.d. | n.d. |
Caftaric acid | n.d. | n.d. | n.d. | n.d. | 0.74A | 5.06B |
p-Coumaroyl acid dihexoside | n.d. | n.d. | n.d. | n.d. | 4.22B | 3.50A |
3-O-Caffeoylquinic acid (neochlorogenic acid) | 0.51c | 0.56c | 0.38b | 0.27a | 4.11A | 11.04B |
3-O-Caffeoylquinic acid derivative | 1.33d | 1.12c | 0.17a | 0.33b | 10.24B | 8.22A |
4-O-Caffeoylquinic acid (cryptochlorogenic acid) | 0.44b | 0.58c | 0.20a | 1.87d | n.d. | n.d. |
5-O-Caffeoylquinic acid (chlorogenic acid) | 66.47c | 73.05d | 31.04a | 52.15b | n.d. | n.d. |
5-O-Caffeoylquinic acid isomer | 2.81d | 2.33c | 1.27b | 0.44a | 2.52A | 4.21B |
Total phenolic acids | 71.56c | 77.64c | 33.06a | 55.06b | 21.09A | 26.97A |
TOTAL | 102.64A | 124.46B | 103.92A | 167.79C | 74.62A | 85.79B |
Nutritional Value | Leaves | Fruit | |||||
---|---|---|---|---|---|---|---|
No. 1 | New Big | No. 1 | New Big | ||||
In Vitro | Orchard | In Vitro | Orchard | Orchard | |||
DPPH (mmol Trolox/100g) | 3.88c1 | 3.26b | 4.25d | 2.48a | 7.61B | 5.33A | |
FRAP (mmol Trolox/100g) | 4.02c | 2.54a | 5.89d | 3.48b | 2.89A | 3.93B | |
α-amylase IC50 (mg/mL) | 112.6b | 75.1a | 172.9d | 134.0c | 33.45A | 37.01A | |
α-glucosidase IC50 (mg/mL) | 25.41a | 22.05a | 42.28b | 37.06b | 8.36A | 7.44A | |
Soluble sugars (g/100 g DW) | fructose | 1.88c | 0.89a | 2.51d | 1.33b | 9.67A | 11.83B |
glucose | 1.55c | 0.51a | 1.88d | 1.04b | 10.11A | 13.06B | |
sucrose | 0.20b | 0.24c | 0.18b | 0.12a | 0.51A | 0.77B | |
Organic acid (g/100 g DW) | oxalic acid | 0.021a | 0.024a | 0.073b | 0.080b | n.d. | 0.362 |
citric acid | 0.115b | 0.292c | 0.083a | 0.314d | 0.951A | 1.485B | |
succinic acid | 0.027ab | 0.035bc | 0.021a | 0.042c | 0.547B | 0.322A | |
fumaric acid | 0.019bc | 0.023c | 0.016ab | 0.014a | 0.078B | 0.066A |
Inhibition Zone—IZ (mm) and Minimal Inhibitory Concentration—MIC (μg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Bacterial Strains | No. 1 | New Big | Standard Antibiotic (Gentamicin) | ||||||
Orchard | In Vitro | Orchard | In Vitro | ||||||
IZ | MIC | IZ | MIC | IZ | MIC | IZ | MIC | ||
E. coli | 9.6 ± 0.9 | >100 | 8.6 ± 0.6 | >100 | 10.5 ± 0.8 | 100 | 9.8 ± 0.8 | >100 | 12.5 |
P. vulgaris | 12.2 ± 0.8 | 75 | 11.3 ± 0.9 | 75 | 14.3 ± 0.8 | 50 | 13.5 ± 0.9 | 100 | 17.0 |
B. subtilis | 14.7 ± 0.8 | 100 | 13.2 ± 1.0 | 100 | 16.7 ± 1.1 | 100 | 14.2 ± 0.8 | >100 | 21.4 |
S. aureus | 9.0 ± 0.6 | 75 | 8.8 ± 0.9 | 100 | 9.6 ± 0.8 | 75 | 9.1 ± 0.7 | >100 | 14.6 |
L. monocytogenes | 10.3 ± 0.8 | 100 | 10.2 ± 0.7 | >100 | 10.9 ± 0.9 | 75 | 10.5 ± 0.4 | >100 | 18.6 |
N | P | K | Mg | Ca | Na | Fe | Mn | Zn | Cu | Cd | Pb | Ni | Se |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g/kg | mg/kg | ||||||||||||
17.33 | 123.3 | 284.7 | 72.7 | 452 | 11.3 | 83.4 | 57.3 | 37.0 | 7.52 | 0.296 | 31.3 | 4.67 | 0.031 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruczek, A.; Krupa-Małkiewicz, M.; Lachowicz, S.; Oszmiański, J.; Ochmian, I. Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals. Molecules 2020, 25, 5314. https://doi.org/10.3390/molecules25225314
Kruczek A, Krupa-Małkiewicz M, Lachowicz S, Oszmiański J, Ochmian I. Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals. Molecules. 2020; 25(22):5314. https://doi.org/10.3390/molecules25225314
Chicago/Turabian StyleKruczek, Arleta, Marcelina Krupa-Małkiewicz, Sabina Lachowicz, Jan Oszmiański, and Ireneusz Ochmian. 2020. "Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals" Molecules 25, no. 22: 5314. https://doi.org/10.3390/molecules25225314
APA StyleKruczek, A., Krupa-Małkiewicz, M., Lachowicz, S., Oszmiański, J., & Ochmian, I. (2020). Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals. Molecules, 25(22), 5314. https://doi.org/10.3390/molecules25225314