An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension
Abstract
:1. Hypertension and the Global Problem
2. Pathways Involved in the Renin–Angiotensin System
3. Disadvantages of Pharmaceutical Drugs in the Management of Hypertension
4. Use of Traditional Medicine in the Management of Hypertension
5. Ethno-Medicinal Plants, Hypertension and the Effect on the ACE1 RAS Pathway
6. The ACE2 Pathway and the Effect on Hypertension
7. Therapeutic Substances Targeting the ACE2 Pathway
7.1. Pharmaceutical Drugs Prescribed for Hypertension Influencing the ACE2 Pathway
7.2. Ethno-Medicinal Plants Influencing the ACE2 Pathway
8. Challenges and Future Prospects of Using Anti-Hypertensive Medicinal Plants
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olshansky, S.J.; Passaro, D.J.; Hershow, R.C.; Layden, J.; Carnes, B.A.; Brody, J.; Hayflick, L.; Butler, R.N.; Allison, D.B.; Ludwig, D.S. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 2005, 352, 1138–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappuccio, F.P.; Miller, M.A. Cardiovascular disease and hypertension in sub-Saharan Africa: Burden, risk and interventions. Intern. Emerg. Med. 2016, 11, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd-Sherlock, P.; Beard, J.; Minicuci, N.; Ebrahim, S.; Chatterji, S. Hypertension among older adults in low-and middle-income countries: Prevalence, awareness and control. Int. J. Epidemiol. 2014, 43, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, G.D.; Aboyade, O.M.; Clark, B.L.; Puoane, T.R. The prevalence of traditional herbal medicine use among hypertensives living in South African communities. BMC Complement. Altern. Med. 2013, 13, 38. [Google Scholar]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.; Khang, Y.-H.; Stevens, G.A. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2· 7 million participants. Lancet 2011, 378, 31–40. [Google Scholar] [CrossRef]
- Opie, L.H.; Seedat, Y.K. Hypertension in sub-Saharan African populations. Circulation 2005, 112, 3562–3568. [Google Scholar] [CrossRef]
- Alsheikh-Ali, A.A.; Omar, M.I.; Raal, F.J.; Rashed, W.; Hamoui, O.; Kane, A.; Alami, M.; Abreu, P.; Mashhoud, W.M. Cardiovascular risk factor burden in Africa and the middle east: The Africa middle east cardiovascular epidemiological (ACE) study. PLoS ONE 2014, 9, e102830. [Google Scholar] [CrossRef] [Green Version]
- Organization, W.H. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Seedat, Y.; Rayner, B. South African hypertension guideline 2011. Samj S. Afr. Med J. 2012, 102, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.C.; Jäger, A.K.; van Staden, J. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J. Ethnopharmacol. 1999, 68, 63–70. [Google Scholar] [CrossRef]
- Steyn, K.; Bradshaw, D.; Norman, R.; Laubscher, R. Determinants and treatment of hypertension in South Africans: The first Demographic and Health Survey. S. Afr. Med. J. 2008, 98, 376–380. [Google Scholar] [PubMed]
- Connor, M.; Rheeder, P.; Bryer, A.; Meredith, M.; Beukes, M.; Dubb, A.; Fritz, V. The South African stroke risk in general practice study. S. Afr. Med. J. 2005, 95. [Google Scholar]
- Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000, 275, 33238–33243. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Santos, R.A.; Ferreira, A.J.; Verano-Braga, T.; Bader, M. Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: New players of the renin–angiotensin system. J. Endocrinol. 2013, 216, R1–R17. [Google Scholar] [CrossRef] [Green Version]
- McKinney, C.A.; Fattah, C.; Loughrey, C.M.; Milligan, G.; Nicklin, S.A. Angiotensin-(1–7) and angiotensin-(1–9): Function in cardiac and vascular remodelling. Clin. Sci. 2014, 126, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Katovich, M.J.; Grobe, J.L.; Huentelman, M.; Raizada, M.K. Angiotensin-converting enzyme 2 as a novel target for gene therapy for hypertension. Exp. Physiol. 2005, 90, 299–305. [Google Scholar] [CrossRef]
- Yamazato, M.; Yamazato, Y.; Sun, C.; Diez-Freire, C.; Raizada, M.K. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension 2007, 49, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Varagic, J.; Ahmad, S.; Brosnihan, K.B.; Groban, L.; Chappell, M.C.; Tallant, E.A.; Gallagher, P.E.; Ferrario, C.M. Decreased cardiac Ang-(1-7) is associated with salt-induced cardiac remodeling and dysfunction. Ther. Adv. Cardiovasc. Dis. 2010, 4, 17–25. [Google Scholar] [CrossRef]
- Santos, R.A.; Ferreira, A.J.; e Silva, A.C.S. Recent advances in the angiotensin-converting enzyme 2–angiotensin (1–7)–Mas axis. Exp. Physiol. 2008, 93, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.J.; Santos, R.A.; Almeida, A.P. Angiotensin-(1-7): Cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 2001, 38, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-C.; Huang, D.-Y.; Yang, Y.-M.; Li, Y.-F.; Liu, G.-F.; Song, X.-H.; Du, K. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension 2004, 44, 907–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, S.M.; Scrieciu, M.; Mercuţ, V.; Ţuculina, M.; Dascălu, I. Hypertensive patients and their management in dentistry. ISRN Hypertens. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Doumas, M.; Tsakiris, A.; Douma, S.; Grigorakis, A.; Papadopoulos, A.; Hounta, A.; Tsiodras, S.; Dimitriou, D.; Giamarellou, H. Factors affecting the increased prevalence of erectile dysfunction in Greek hypertensive compared with normotensive subjects. J. Androl. 2006, 27, 469–477. [Google Scholar] [CrossRef]
- Trinder, Y. Common and less common adverse effects of antihypertensives: A general practitioner’s perspective: SA Hypertension Society Supplement. S. Afr. Fam. Pract. 2012, 54, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Liwa, A.C. Herbal and Alternative Medicine Utilization in Tanzanian Adults Admitted with Hypertension-Related Conditions; Weill Medical College of Cornell University: New York, NY, USA, 2015. [Google Scholar]
- Opie, L.H. Calcium channel antagonists in the treatment of coronary artery disease: Fundamental pharmacological properties relevant to clinical use. Prog. Cardiovasc. Dis. 1996, 38, 273–290. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Reid, A.-M.; Oosthuizen, C.B.; Fibrich, B.D.; Twilley, D.; Lambrechts, I.A.; de Canha, M.N.; Rademan, S.; Lall, N. Traditional Medicine: The Ancient Roots of Modern Practice. In Medicinal Plants for Holistic Health and Well-Being; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–11. [Google Scholar]
- Verma, R.; Hanif, K.; Sasmal, D.; Raghubir, R. Resurgence of herbal antihypertensives in management of hypertension. Curr. Hypertens. Rev. 2010, 6, 190–198. [Google Scholar] [CrossRef]
- Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.-L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol. 2002, 82, 97–103. [Google Scholar] [CrossRef]
- Taylor, J.; Rabe, T.; McGaw, L.; Jäger, A.; Van Staden, J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001, 34, 23–37. [Google Scholar] [CrossRef]
- De Wet, H.; Ramulondi, M.; Ngcobo, Z. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. S. Afr. J. Bot. 2016, 103, 78–88. [Google Scholar] [CrossRef]
- Mackraj, I.; Ramesar, S.; Singh, R.T. T. Violacea Lowers Blood Pressure and down Regulates AT1a Gene Expression in a Hypertensive Rat Model. FASEB J. 2007, 21, A1247. [Google Scholar]
- Somova, L.; Shode, F.; Ramnanan, P.; Nadar, A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003, 84, 299–305. [Google Scholar] [CrossRef]
- Ramesar, S.; Baijnath, H.; Govender, T.; Mackraj, I. Angiotensin I-converting enzyme inhibitor activity of nutritive plants in KwaZulu-Natal. J. Med. Food 2008, 11, 331–336. [Google Scholar] [CrossRef]
- Mackraj, I.; Ramesar, S. ACE Inhibitor Activity of Nutritive Plants in Kwa-Zulu Natal. FASEB J. 2007, 21, A1247. [Google Scholar]
- Raji, I.A.; Mugabo, P.; Obikeze, K. Effect of Tulbaghia violacea on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. J. Ethnopharmacol. 2012, 140, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Raji, I.; Obikeze, K.; Mugabo, P. Potential beneficial effects of Tulbaghia violacea William Henry Harvey (Alliaceae) on cardiovascular system-A review. Trop. J. Pharm. Res. 2015, 14, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Persson, I.A.L. The Pharmacological Mechanism of Angiotensin-converting Enzyme Inhibition by Green Tea, Rooibos and Enalaprilat–A Study on Enzyme Kinetics. Phytother. Res. 2012, 26, 517–521. [Google Scholar] [CrossRef]
- Preuss, H.G.; Clouatre, D.; Mohamadi, A.; Jarrell, S.T. Wild garlic has a greater effect than regular garlic on blood pressure and blood chemistries of rats. Int. Urol. Nephrol. 2001, 32, 525–530. [Google Scholar] [CrossRef]
- Sikora, J.; Markowicz-Piasecka, M.; Broncel, M.; Mikiciuk-Olasik, E. Extract of Aronia melanocarpa-modified hemostasis: In vitro studies. Eur. J. Nutr. 2014, 53, 1493–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacaille-Dubois, M.; Franck, U.; Wagner, H. Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants. Phytomedicine 2001, 8, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Brixius, K.; Willms, S.; Napp, A.; Tossios, P.; Ladage, D.; Bloch, W.; Mehlhorn, U.; Schwinger, R.H. Crataegus special extract WS® 1442 induces an endothelium-dependent, NO-mediated vasorelaxation via eNOS-phosphorylation at serine 1177. Cardiovasc. Drugs Ther. 2006, 20, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Singh, P.K.; Kumar, V. Anti-hypertensive medicinal plants and their mode of action. J. Herb. Med. 2016, 6, 107–118. [Google Scholar] [CrossRef]
- Caballero-George, C.; Vanderheyden, P.M.; De Bruyne, T.; Shahat, A.-A.; Van den Heuvel, H.; Solis, P.N.; Gupta, M.P.; Claeys, M.; Pieters, L.; Vauquelin, G. In vitro inhibition of [3H]-angiotensin II binding on the human AT1 receptor by proanthocyanidins from Guazuma ulmifolia bark. Planta Med. 2002, 68, 1066–1071. [Google Scholar] [CrossRef]
- Ojeda, D.; Jiménez-Ferrer, E.; Zamilpa, A.; Herrera-Arellano, A.; Tortoriello, J.; Alvarez, L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin-and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J. Ethnopharmacol. 2010, 127, 7–10. [Google Scholar] [CrossRef]
- Jabeen, Q.; Aslam, N. Hypotensive, angiotensin converting enzyme (ACE) inhibitory and diuretic activities of the aqueous-methanol extract of Ipomoea reniformis. Iran. J. Pharm. Res. IJPR 2013, 12, 769. [Google Scholar]
- Jaarin, K.; Foong, W.D.; Yeoh, M.H.; Kamarul, Z.Y.N.; Qodriyah, H.M.S.; Azman, A.; Zuhair, J.S.F.; Juliana, A.H.; Kamisah, Y. Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats. Clinics 2015, 70, 751–757. [Google Scholar] [CrossRef]
- Shaw, H.-M.; Wu, J.-L.; Wang, M.-S. Antihypertensive effects of Ocimum gratissimum extract: Angiotensin-converting enzyme inhibitor in vitro and in vivo investigation. J. Funct. Foods 2017, 35, 68–73. [Google Scholar] [CrossRef]
- Msomi, N.Z.; Simelane, M.B. Olea europaea subsp. africana (Oleaceae). In Active Ingredients from Aromatic and Medicinal Plants; InTech: London, UK, 2017. [Google Scholar]
- Saputri, F.; Mun’im, A.; Lukmanto, D.; Aisyah, S.; Rinandy, J. Inhibition of angiotensin converting enzyme (ACE) activity by some Indonesia edible plants. Int. J. Pharm. Sci. Res. 2015, 6, 1054–1059. [Google Scholar]
- Xie, Y.; Zhang, W. Antihypertensive activity of Rosa rugosa Thunb. flowers: Angiotensin I converting enzyme inhibitor. J. Ethnopharmacol. 2012, 144, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Huh, M.K. Inhibition of Angiotensin Converting Enzyme (ACE) by Viola Mandshurica Extraction. Eur. J. Adv. Res. Biol. Life Sci. Vol. 2015, 3. [Google Scholar]
- Yodjun, M.; Karnchanatat, A.; Sangvanich, P. Angiotensin I-converting enzyme inhibitory proteins and peptides from the rhizomes of Zingiberaceae plants. Appl. Biochem. Biotechnol. 2012, 166, 2037–2050. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, B.; Todiras, M.; Iliescu, R.; Popova, E.; Campos, L.A.; Oliveira, M.L.; Baltatu, O.C.; Santos, R.A.; Bader, M. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 2008, 52, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Freire, C.; Vázquez, J.; de Adjounian, M.F.C.; Ferrari, M.F.; Yuan, L.; Silver, X.; Torres, R.; Raizada, M.K. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol. Genom. 2006, 27, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.I.; Sumners, C. Angiotensin II in central nervous system physiology. Regul. Pept. 1998, 78, 1–11. [Google Scholar] [CrossRef]
- Paizis, G.; Tikellis, C.; Cooper, M.E.; Schembri, J.M.; Lew, R.A.; Smith, A.I.; Shaw, T.; Warner, F.J.; Zuilli, A.; Burrell, L.M. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut 2005, 54, 1790–1796. [Google Scholar] [CrossRef] [Green Version]
- Doobay, M.F.; Talman, L.S.; Obr, T.D.; Tian, X.; Davisson, R.L.; Lazartigues, E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2007. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.X.; Hu, Q.; Wang, Y.; Zhang, W.; Ma, Z.Y.; Feng, J.B.; Wang, R.; Wang, X.P.; Dong, B.; Gao, F. Angiotensin-converting enzyme (ACE) 2 overexpression ameliorates glomerular injury in a rat model of diabetic nephropathy: A comparison with ACE inhibition. Mol. Med. 2011, 17, 59–69. [Google Scholar] [CrossRef]
- Diz, D.I.; Garcia-Espinosa, M.A.; Gegick, S.; Tommasi, E.N.; Ferrario, C.M.; Tallant, E.A.; Chappell, M.C.; Gallagher, P.E. Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp. Physiol. 2008, 93, 694–700. [Google Scholar] [CrossRef]
- Chamsi-Pasha, M.A.; Shao, Z.; Tang, W.W. Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr. Heart Fail. Rep. 2014, 11, 58–63. [Google Scholar] [CrossRef]
- Huentelman, M.J.; Grobe, J.L.; Vazquez, J.; Stewart, J.M.; Mecca, A.P.; Katovich, M.J.; Ferrario, C.M.; Raizada, M.K. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp. Physiol. 2005, 90, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, M.C.; Modrall, J.; Diz, D.I.; Ferrario, C. Novel aspects of the renal renin-angiotensin system: Angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib. Nephrol. 2004, 143, 77–89. [Google Scholar] [PubMed]
- Bai, S.; Huang, Z.-G.; Chen, L.; Wang, J.-T.; Ding, B.-P. Effects of felodipine combined with puerarin on ACE2–Ang (1–7)–Mas axis in renovascular hypertensive rat. Regul. Pept. 2013, 184, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Wang, C.; Chen, B.; Zhang, F.; Liu, Y.; Lu, Q.; Guo, H.; Yan, C.; Sun, H.; Hu, G. Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology 2015, 131, 97–106. [Google Scholar] [CrossRef]
- Arumugam, S.; Thandavarayan, R.A.; Palaniyandi, S.S.; Giridharan, V.V.; Arozal, W.; Sari, F.R.; Soetikno, V.; Harima, M.; Suzuki, K.; Kodama, M. Candesartan cilexetil protects from cardiac myosin induced cardiotoxicity via reduction of endoplasmic reticulum stress and apoptosis in rats: Involvement of ACE2-Ang (1–7)-mas axis. Toxicology 2012, 291, 139–145. [Google Scholar] [CrossRef]
- Cao, L.; Xun, J.; Jiang, X.; Tan, R. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons. Die Pharm. Int. J. Pharm. Sci. 2013, 68, 677–680. [Google Scholar]
- Sukumaran, V.; Veeraveedu, P.T.; Gurusamy, N.; Lakshmanan, A.P.; Yamaguchi, K.I.; Ma, M.; Suzuki, K.; Kodama, M.; Watanabe, K. Telmisartan acts through the modulation of ACE-2/ANG 1–7/mas receptor in rats with dilated cardiomyopathy induced by experimental autoimmune myocarditis. Life Sci. 2012, 90, 289–300. [Google Scholar] [CrossRef]
- Hernández Prada, J.A.; Ferreira, A.J.; Katovich, M.J.; Shenoy, V.; Qi, Y.; Santos, R.A.; Castellano, R.K.; Lampkins, A.J.; Gubala, V.; Ostrov, D.A. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008, 51, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Flores-Monroy, J.; Ferrario, C.M.; Valencia-Hernández, I.; Hernández-Campos, M.E.; Martínez-Aguilar, L. Comparative effects of a novel angiotensin-converting enzyme inhibitor versus captopril on plasma angiotensins after myocardial infarction. Pharmacology 2014, 94, 21–28. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Ouyang, Y.; Yu, J.; Guo, S.; Liu, Z.; Li, D.; Han, J.; Wang, W. Cardioprotective effects of Qishenyiqi mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin-converting enzyme 2. Evid. Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tian, J.; Xu, Y.; Li, C.; Meng, X.; Fu, F. Protective effect of RA on myocardial infarction-induced cardiac fibrosis via AT1R/p38 MAPK pathway signaling and modulation of the ACE2/ACE ratio. J. Agric. Food Chem. 2016, 64, 6716–6722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiangqun, L.; Huanqin, C.; Xin, Y.; Qiongqiong, G.; Min, W.; Xingpo, L. Effects of Baicalin on the NF-κB and ACE2 Protein Expression in Atherosclerosis of ApoE-/-Mice Induced by Hyperlipaemia. Med. Plant 2013, 4. [Google Scholar]
- Tabassum, N.; Ahmad, F. Role of natural herbs in the treatment of hypertension. Pharmacogn. Rev. 2011, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilburn, A.J.; King, D.S.; Glisson, J.; Rockhold, R.W.; Wofford, M.R. The natural treatment of hypertension. J. Clin. Hypertens. 2004, 6, 242–248. [Google Scholar] [CrossRef]
- Sofowora, A. Medicinal Plants and Traditional Medicine in Africa; Karthala: Paris, France, 1982. [Google Scholar]
- Balick, M.J.; Cox, P.A. Plants, People, and Culture: The Science of Ethnobotany; Scientific American Library: New York, NY, USA, 1996. [Google Scholar]
- Kumar, S.; Kaushik, G.; Dar, M.A.; Nimesh, S.; Lopez-Chuken, U.J.; Villarreal-Chiu, J.F. Microbial degradation of organophosphate pesticides: A review. Pedosphere 2018, 28, 190–208. [Google Scholar] [CrossRef]
- Quinn, L.; de Vos, J.; Fernandes-Whaley, M.; Roos, C.; Bouwman, H.; Kylin, H.; Pieters, R.; van den Berg, J. Pesticide use in South Africa: One of the largest importers of pesticides in Africa. In Pesticides in the Modern World—Pesticides Use and Management; IntechOpen: London, UK, 2011. [Google Scholar]
- WHO. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999; Volume 2. [Google Scholar]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
Species | Mechanism | Bioactive Phytochemicals | Geographical Distribution | Reference | |
---|---|---|---|---|---|
* Adenopodia spicata | Spiny splinter bean | ACE1 inhibition | Flavonoids | Southern Africa | Duncan, Jäger and van Staden [12] |
* Agapanthus africanus | African lily | ACE1 inhibition | Flavonoids Sitosterol, yuccagenin, agapanthagenin, spirostan sapogenins. | South Africa | Duncan, Jäger and van Staden [12] |
* Agave Americana | Century plant, maguey, or American aloe | ACE1 inhibition | Flavonoids mono-2-ethylhexyl phthalate, 1,2-benzenedicarboxylic acid, n-docosane, and eicosane | Mexico, USA | Duncan, Jäger and van Staden [12] |
Allium sp. | Wild Garlic | Decrease circulating angiotensin II | Allicin | Indigenous: Central Asia Currently found worldwide | Preuss, et al. [43] |
* Amaranthus dubius | Red spinach, Chinese spinach, wild spinach | ACE1 inhibition | Flavonoids Niacin, thiamine, riboflavin, ascorbic acid, hydrocyanic acid, oxalic acid | Indigenous: China Currently found worldwide | Ramesar, Baijnath, Govender and Mackraj [38] |
* Amaranthus hybridus | Smooth amaranth, smooth pigweed | ACE1 inhibition | Flavonoids, steroids, terpenoids, cardiac glycosides | North America | Ramesar, Baijnath, Govender and Mackraj [38] |
Aronia melanocarpa | Chokeberry | Weak ACE1 inhibition | Polyphenols | North America | Sikora, et al. [44] |
Aspalathus linearis | Rooibos | ACE1 inhibition | Flavonoids, polyphenols | Western Cape, South Africa | Persson [42] |
* Asystasia gangetica | Creeping foxglove | ACE1 inhibition | Flavonoids Alkaloids, terpenes, salidroside, apigenin, ajugol, megastigmaneglucoside, benzyl β-D-glucopyranoside | Tropics | Ramesar, Baijnath, Govender and Mackraj [38] |
Berberis integerrima | Barberry | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | Iran | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Caragana microphylla | Littleleaf Peashrub | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | Mongolia, China | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Cecropia glaziovii | Pumpwood (guarumo) | ACE1 inhibition | Flavonoids and proanthocyanidins | S. America-southern and eastern Brazil | Lacaille-Dubois, et al. [45] |
Crataegus spp | Hawthorn | Weak ACE1 inhibitory effect | Bioflavonoids and proanthocyanidins | North America and Europe | Brixius, et al. [46] Rawat, et al. [47] |
* Dietes iridioides | African iris, Cape iris | ACE1 inhibition | Flavonoids | Sub-Saharan Africa | Duncan, Jäger and van Staden [12] |
Galinsoga parviflora | Potato weed | ACE1 inhibition | Not known | Central America. Currently found worldwide | Ramesar, Baijnath, Govender and Mackraj [38] |
Guazuma ulmifolia | West Indian elm | Inhibits binding of Ang II to angiotensin II type 1 receptor | Proanthocyanidins | Central America | Caballero-George, et al. [48] |
Hibiscus sabderiffa | Hibiscus | ACE1 inhibition | Anthocyanins (delphinidin-3-sambubiocyde and cynadine-3-sambubiocyde) | Africa, South East Asia, and Central America | Ojeda, et al. [49] |
Ipomoea reniformis | Morning glory | ACE1 inhibition | Polyphenols | Subcontinent of Asia, China, Indonesia, Australia and Africa | Jabeen and Aslam [50] |
* Justicia flava | Water-willow and shrimp plant | ACE1 inhibition | Flavonoids Sterols, salicyclic acid, lignins, docosanoic acid | tropical to warm temperate regions worldwide | Ramesar, Baijnath, Govender and Mackraj [38] |
* Mesembryanthemum sp. | Fig marigold or Icicle plant | ACE1 inhibition | Flavonoids Betanidin, isobetanin, sterols, sapogenines, triterpenes, tannins and alkaloids | Southern Africa | Duncan, Jäger and van Staden [12] |
Musanga cecropioides | Corkwood | ACE1 inhibition | Flavonoids and proanthocyanidins | Tropical Africa | Lacaille-Dubois, Franck and Wagner [45] |
Nigella sativa | Black cumin | ACE1 inhibition | Thymoquinone and polyphenols | Middle East, India and Northern Africa | Jaarin, et al. [51] |
Nymphaea alba | White waterlily | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | Europe, Middle East and North Africa | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Ocimum gratissimum | African basil | ACE1 inhibition | Phenolic compound, rutin | Africa, Madagascar, Southern Asia Naturalized in the West Indies and surrounding countries | Shaw, et al. [52] |
Olea europaea subsp. Africana | Wild olive | ACE1 inhibition | Oleuropein, esculin, ursolic acid, scopolin and oleanolic acid | Africa | Msomi and Simelane [53] |
Onopordum acanthium | Cotton thistle | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | Europe, northern Africa, the Canary Islands, the Caucasus, and southwest and central Asia. | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Oxygonum sinuatum | Double thorn | ACE1 inhibition | Not known | Sub-Saharan Africa | Ramesar, Baijnath, Govender and Mackraj [38] |
Peperomia pellucida | Shiny bush | ACE1 inhibition | Terpenoids, Glycosides, Antraquinones, Tannins | Indonesia | Saputri, et al. [54] |
Physalis viscosa | Sticky gooseberry | ACE1 inhibition | Not known | South America, Naturalised world-wide | Ramesar, Baijnath, Govender and Mackraj [38] |
* Protorhus longifolia | Red beech | ACE1 inhibition | Flavonoids Triterpenes | South Africa, Swaziland | Duncan, Jäger and van Staden [12] |
Quercus infectoria | Aleppo oak | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | Greece, Asia minor | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Rosa rugose | Beach rose | ACE1 inhibition | Not known | East Asia Naturalised in Europe and North America | Xie and Zhang [55] |
Rubus sp. | Berries | ACE1 inhibition | Flavonoids, flavinols, flavonols, anthocynins, isoflavones, flavones, and other phenolic compounds. | North America, Europe | Kearney, Whelton, Reynolds, Muntner, Whelton and He [6] |
Tulbaghia violacea | Garlic | Reduced BP–ACE1 and β1 inhibition (may not act via AT1 receptors or α1 receptors) | Bioflavonoids, steroidal saponins | South Africa, Zimbabwe | Duncan, Jäger and van Staden [12] Mackraj, Ramesar and Singh [36] Raji, Mugabo and Obikeze [40] Raji, Obikeze and Mugabo [41] Ramesar, Baijnath, Govender and Mackraj [38] |
Viola mandshurica | Manchurian violet | ACE1 inhibition | Not known | East Asian region, China, Taiwan, Mongolia, Japan, Russia and the Far East | Huh [56] |
Zingiber ottensii | Red beehive ginger | ACE 1 inhibition | Bioactive protein peptides | Tropics of Africa, Asia and the Americas | Yodjun, et al. [57] |
Category of Action | Mechanism of Action | Examples of Drugs/Active Ingredient | References |
---|---|---|---|
1. ACE2 activators | Decrease expression of ACE | Felodipine combined with puerarin * | Bai, et al. [68] |
Ibuprofen # | Qiao, et al. [69] | ||
Decrease expression of AT1R | Felodipine combined with puerarin * | Bai, Huang, Chen, Wang and Ding [68] | |
Ibuprofen # | Qiao, Wang, Chen, Zhang, Liu, Lu, Guo, Yan, Sun and Hu [69] | ||
Decrease expression of serum Ang II | Felodipine combined with puerarin * | Bai, Huang, Chen, Wang and Ding [68] | |
Ibuprofen # | Qiao, Wang, Chen, Zhang, Liu, Lu, Guo, Yan, Sun and Hu [69] | ||
Increase expression of ACE 2 | Candesartan CILEXETIL # | Arumugam, et al. [70] | |
Felodipine combined with puerarin * | Bai, Huang, Chen, Wang and Ding [68] | ||
Ibuprofen # | Qiao, Wang, Chen, Zhang, Liu, Lu, Guo, Yan, Sun and Hu [69] | ||
Propofol * | Cao, et al. [71] | ||
Telmisartan # | Sukumaran, et al. [72] | ||
Xanthenone and resorcinolnaphthalein * | Hernández Prada, et al. [73] | ||
Increase expression of Ang-(1-7) | Candesartan CILEXETIL # | Arumugam, Thandavarayan, Palaniyandi, Giridharan, Arozal, Sari, Soetikno, Harima, Suzuki and Kodama [70] | |
Felodipine combined with puerarin * | Bai, Huang, Chen, Wang and Ding [68] | ||
Ibuprofen # | Qiao, Wang, Chen, Zhang, Liu, Lu, Guo, Yan, Sun and Hu [69] | ||
TBTIF (4-tert-butyl-2,6-bis(thiomorpholin-4-ylmethyl)phenol) # | Flores-Monroy, et al. [74] | ||
Increase expression of Mas receptor | Candesartan CILEXETIL # | Arumugam, Thandavarayan, Palaniyandi, Giridharan, Arozal, Sari, Soetikno, Harima, Suzuki and Kodama [70] | |
Felodipine combined with puerarin * | Bai, Huang, Chen, Wang and Ding [68] | ||
Ibuprofen # | Qiao, Wang, Chen, Zhang, Liu, Lu, Guo, Yan, Sun and Hu [69] | ||
Telmisartan # | Sukumaran, Veeraveedu, Gurusamy, Lakshmanan, Yamaguchi, Ma, Suzuki, Kodama and Watanabe [72] | ||
2. Ang-(1-7) Mas receptor agonist | Increase activation of Mas receptor | AVE 0991 # | Santos, Ferreira and e Silva [22] |
Species | Mechanism | Bioactive Phytochemicals | Geographical Distribution | Reference |
---|---|---|---|---|
Qishenyiqi (Radix Astragali Mongolici, salvia miltiorrhiza bunge, Flos Lonicerae, scrophularia, Radix Aconiti Lateralis Preparata, Radix Glycyrrhizae) | Blocks effect of Ang II by acting on AT1R and AT2 RIncreases ACE2 | Not known | East Asia | Wang, et al. [75] |
Rosmarinus officinalis Linn. | Decreases ACE expression and increases ACE2 expression, decreases expression of AT1R | Rosmarinic acid | Mediterranean region, but widely cultivated | Liu, et al. [76] |
Scutellaria baicalensis | Enhances ACE2 protein expression | Flavonoids (Baicalin) | North America | Zhang, et al. [77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lange-Jacobs, P.; Shaikh-Kader, A.; Thomas, B.; Nyakudya, T.T. An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension. Molecules 2020, 25, 2114. https://doi.org/10.3390/molecules25092114
De Lange-Jacobs P, Shaikh-Kader A, Thomas B, Nyakudya TT. An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension. Molecules. 2020; 25(9):2114. https://doi.org/10.3390/molecules25092114
Chicago/Turabian StyleDe Lange-Jacobs, Pietro, Asma Shaikh-Kader, Bianca Thomas, and Trevor T. Nyakudya. 2020. "An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension" Molecules 25, no. 9: 2114. https://doi.org/10.3390/molecules25092114
APA StyleDe Lange-Jacobs, P., Shaikh-Kader, A., Thomas, B., & Nyakudya, T. T. (2020). An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension. Molecules, 25(9), 2114. https://doi.org/10.3390/molecules25092114