Photocatalytic Activity of Fibrous Ti/Ce Oxides Obtained by Hydrothermal Impregnation of Short Flax Fibers
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Photocatalyst Samples by the Biotemplate Method
3.2. Study of the Structure and Properties of the Photocatalyst Samples
3.3. Evaluation of the Photocatalytic Activity of the Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Green, M.; Just, M.; Li, Y.Y.; Chen, X. Titanium dioxide nanomaterials for photocatalysis. J. Phys. D Appl. Phys. 2017, 50, 193003. [Google Scholar] [CrossRef]
- Sakar, M.; Mithun Prakash, R.; Do, T.-O. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiu, F.; Xu, W.; Cao, S.; Zhu, H. Recent progress in enhancing photocatalyticefficiency of TiO2-based materials. Appl. Catal. A Gen. 2015, 495, 131–140. [Google Scholar] [CrossRef]
- Zollfrank, C.; Cromme, P.; Rauch, M.; Scheel, H.; Kostova, M.H.; Gutbrod, K.; Van Opdenbosch, D. Biotemplating of inorganic functional materials from polysaccharides. Bioinspired Biomim. Nanobiomater. 2012, 1, 13–25. [Google Scholar] [CrossRef]
- Cao, J.; Rusina, O.; Sieber, H. Manufacturing of microcellular, biomorphous oxide ceramics from native pine wood. Ceram. Int. 2004, 30, 1971–1974. [Google Scholar] [CrossRef]
- Hou, H.; Shang, M.; Wang, L.; Li, W.; Tang, B.; Yang, W. Efficient photocatalytic activities of TiO2 hollow fibers with mixed phases and mesoporous walls. Sci Rep. 2015, 5, 15228. [Google Scholar] [CrossRef] [Green Version]
- Bellardita, M.; Addamo, M.; Di Paola, A.; Palmisano, L. Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chem. Phys. 2007, 339, 94–103. [Google Scholar] [CrossRef]
- Cheng, C.; Amini, A.; Zhu, C.; Hu, Z.; Song, H.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci Rep. 2014, 4, 4181. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xue, G.; Zhang, X.; Su, J.; Wang, L. Synthesis of a TiO2–Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene. New J. Chem. 2018, 42, 9252–9259. [Google Scholar] [CrossRef]
- Kambur, A.; Pozan, G.S.; Boz, I. Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles. Appl. Catal. B. 2012, 115–116, 149–158. [Google Scholar]
- Scarisoreanu, M.; Fleaca, C.; Morjan, I.; Niculescu, A.; Luculescu, C.; Dutu, E.; Ilie, A.; Florescu, L.G.; Vasile, E.; Fort, C.I. High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl. Surf. Sci. 2017, 418, 491–498. [Google Scholar] [CrossRef]
- Paula, L.F.; Hofer, M.; Lacerda, V.P.B.; Bahnemann, D.W.; Patrocinio, A.O.T. Unraveling the photocatalytic properties of TiO2/WO3 mixed oxides. Photochem. Photobiol. Sci. 2019, 18, 2469–2483. [Google Scholar]
- Zhang, W.; Yang, J.; Li, C. Role of thermal treatment on sol-gel preparation of porous cerium titanate: Characterization and photocatalytic degradation of ofloxacin. Mater. Sci. Semicond. Proces. 2018, 85, 33–39. [Google Scholar] [CrossRef]
- Gionco, C.; Paganini, M.C.; Agnoli, S.; Reeder, A.E.; Giamello, E. Structural and spectroscopic characterization of CeO2-TiO2 mixed oxides. J. Mater. Chem. A 2013, 1, 10918–10926. [Google Scholar] [CrossRef]
- Verma, R.; Samdarshi, S.K.; Singh, J. Hexagonal ceria located at the interface of anatase/rutile TiO2 superstructure optimized for high activity under combined UV and visible-light irradiation. J. Phys. Chem. C. 2015, 119, 23899–23909. [Google Scholar] [CrossRef]
- Galindo, F.; Gómez, R.; Aguilar, M. Photodegradation of the herbicide 2,4-dichlorophenoxyacetic acid on nanocrystalline TiO2–CeO2 sol–gel catalysts. J. Mol. Catal. A Chem. 2008, 281, 119–125. [Google Scholar] [CrossRef]
- Watanabe, S.; Ma, X.; Song, C. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J. Phys. Chem. C 2009, 113, 14249–14257. [Google Scholar] [CrossRef]
- Hao, C.; Li, J.; Zhang, Z.; Ji, Y.; Zhan, H.; Xiao, F.; Wang, D.; Liu, B.; Su, F. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Appl. Surf. Sci. 2015, 331, 17–26. [Google Scholar] [CrossRef]
- Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 2016, 6, 3806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Liu, C.; Liu, Y. Different effects of cerium ions doping on properties of anatase and rutile TiO2. Appl. Surf. Sci. 2006, 253, 2481–2486. [Google Scholar] [CrossRef]
- Ma, T.Y.; Cao, J.L.; Shao, G.S.; Zhang, X.J.; Yuan, Z.Y. Hierarchically structured squama-like cerium-doped titania: Synthesis, photoactivity, and catalytic CO oxidation. J. Phys. Chem. C 2009, 113, 16658–16667. [Google Scholar] [CrossRef]
- Shi, Z.-L.; Du, C.; Yao, S.H. Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite. J. Taiwan Inst. Chem. Eng. 2011, 42, 652–657. [Google Scholar] [CrossRef]
- Xiao, G.; Huang, X.; Liao, X.; Shi, B. One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis. J. Phys. Chem. C 2013, 117, 9739–9746. [Google Scholar] [CrossRef]
- Wang, C.; Jing, L.; Chen, M.; Meng, Z.; Chen, Z.; Chen, F.; Oh, W.C. Biotemplate Synthesis of micron braid structure CeO2-TiO2 composite and analysis of its catalytic behavior for CO oxidation. J. Korean Ceram. Soc. 2017, 54, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Balaji, S.; Mandal, B.K.; Vinod Kumar Reddy, L.; Sen, D. Biogenic ceria nanoparticles (CeO2 NPs) for effective photocatalytic and cytotoxic activity. Bioengineering 2020, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Butman, M.F.; Kochkina, N.E.; Ovchinnikov, N.L.; Zinenko, N.V.; Sergeev, D.N.; Müller, M. Biomorphic fibrous TiO2 photocatalyst obtained by hydrothermal impregnation of short flax fibers with titanium polyhydroxocomplexes. Catalysts 2020, 10, 541. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Sahouli, B.; Blacher, S.; Brouers, F. Applicability of the fractal FHH equation. Langmuir 1997, 13, 4391–4394. [Google Scholar] [CrossRef]
- Booij, E.; Kloprogge, J.T.; van Veen, J.A.R. Large pore REE/Al pillared bentonites: Preparation, structural aspects and catalytic properties. Applied Clay Science 1996, 11, 155–162. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.H.; Bian, Z.F.; Cai, C.-L.; Li, H.-X. A facile synthesis of hierarchical flower-like TiO2 with enhanced photocatalytic activity. Res. Chem. Intermed. 2009, 35, 769–777. [Google Scholar] [CrossRef]
- Dolgonos, A.; Mason, T.O.; Poeppelmeier, K.R. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. J. Solid State Chem. 2016, 240, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Otsuka-Yao-Matsuo, S.; Omata, T.; Yoshimura, M. Photocatalytic behavior of cerium titanates, CeTiO4 and CeTi2O6 and their composite powders with SrTiO3. J. Alloys Compd. 2004, 376, 262–267. [Google Scholar] [CrossRef]
- Mishra, P.K.; Kumar, R.; Kumar, P. Surfactant-free one-pot synthesis of CeO2, TiO2 and Ti@Ce oxide nanoparticles for the ultrafast removal of Cr(VI) from aqueous media. Nanoscale 2018, 10, 7257–7269. [Google Scholar] [CrossRef] [PubMed]
- Eskandarloo, H.; Badiei, A.; Behnajady, M.A. TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables. Ind. Eng. Chem. Res. 2006, 53, 7847–7855. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
Sample | SBET (Mesopores) (m2/g) | VBJH (cm3/g) | VTotal (cm3/g) | Dp (nm) | DF |
---|---|---|---|---|---|
TiO2 | 27.1 ± 1.4 | 0.088 ± 0.001 | 0.086 ± 0.001 | 7.7 ± 0.9 | 2.483 ± 0.006 |
TiO2–3% Ce | 42.9 ± 2.1 | 0.122 ± 0.001 | 0.128 ± 0.001 | 9.3 ± 1.1 | 2.515 ± 0.008 |
TiO2–5% Ce | 46.0 ± 2.3 | 0.127 ± 0.001 | 0.133 ± 0.001 | 9.4 ± 1.1 | 2.534 ± 0.009 |
Sample | Average Crystallite Size, nm | Phase Composition, % | ||
---|---|---|---|---|
A | R | A | R | |
TiO2 | 21.0 ± 1.6 | 26.4 ± 2.0 | 51.3 ± 1.0 | 48.7 ± 0.9 |
TiO2–3% Ce | 17.5 ± 1.5 | 20.8 ± 1.6 | 47.3 ± 0.9 | 52.7 ± 1.0 |
TiO2–5% Ce | 17.4 ± 1.5 | 22.8 ± 1.8 | 46.6 ± 0.9 | 53.4 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butman, M.F.; Kochkina, N.E.; Ovchinnikov, N.L.; Krämer, K.W. Photocatalytic Activity of Fibrous Ti/Ce Oxides Obtained by Hydrothermal Impregnation of Short Flax Fibers. Molecules 2021, 26, 3399. https://doi.org/10.3390/molecules26113399
Butman MF, Kochkina NE, Ovchinnikov NL, Krämer KW. Photocatalytic Activity of Fibrous Ti/Ce Oxides Obtained by Hydrothermal Impregnation of Short Flax Fibers. Molecules. 2021; 26(11):3399. https://doi.org/10.3390/molecules26113399
Chicago/Turabian StyleButman, Mikhail F., Nataliya E. Kochkina, Nikolay L. Ovchinnikov, and Karl W. Krämer. 2021. "Photocatalytic Activity of Fibrous Ti/Ce Oxides Obtained by Hydrothermal Impregnation of Short Flax Fibers" Molecules 26, no. 11: 3399. https://doi.org/10.3390/molecules26113399
APA StyleButman, M. F., Kochkina, N. E., Ovchinnikov, N. L., & Krämer, K. W. (2021). Photocatalytic Activity of Fibrous Ti/Ce Oxides Obtained by Hydrothermal Impregnation of Short Flax Fibers. Molecules, 26(11), 3399. https://doi.org/10.3390/molecules26113399