Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining the Binding Ability between PBDEs and Degrading Enzymes of Plants and Microorganisms—Molecular Docking
2.2. Construction of the Indices of Synergistic Degradation of PBDEs—Queuing Scoring Method
2.3. Molecular Modification to Facilitate the Synergistic Degradation of PBDEs in Soil—D-QSAR Model-Assisted Method
2.4. Regulatory Measures to Facilitate the SYNERGISTIC Degradation of PBDEs in Soil
2.4.1. Preliminary Screening of Regulatory Factors That Facilitate the Synergistic Degradation of PBDEs in Soil—Taguchi Orthogonal Experimental Design
2.4.2. Verification of Regulatory Schemes to Facilitate the Synergistic Degradation of PBDEs in Soil—Full Factorial Experimental Design
2.4.3. Verification of Regulatory Schemes to Facilitate the Synergistic Degradation of PBDEs in Soil—Molecular Dynamics
3. Results and Discussion
3.1. Determination of Evaluation Indices for the Synergistic Degradation of PBDEs in the Soil Based on the Molecular Docking Method and the Queuing Scoring Method
3.2. Molecular Modification and Evaluation Based on the 3D-QSAR Model to Facilitate the Synergistic Degradation of PBDEs in the Soil
3.2.1. Construction of the 3D-QSAR Model to Facilitate the Synergistic Degradation of PBDEs in the Soil
3.2.2. Molecular Modifications to Facilitate the Synergistic Degradation of PBDEs in Soil
3.2.3. Evaluation of the Functionality and the Environmental Impact of PBDE Derivatives to Facilitate the Synergistic Degradation of PBDEs in Soil
3.3. Screening of Regulatory Factors and Regulatory Schemes to Facilitate the Synergistic Degradation of PBDEs in Soil
3.3.1. The Preliminary Screening of Regulatory Factors to Facilitate the Synergistic Degradation of PBDEs in Soil Based on Taguchi Orthogonal Experiment and Molecular Dynamics Simulation
3.3.2. Screening of Regulatory Schemes to Facilitate the Synergistic Degradation of PBDEs in Soil Based on Molecular Dynamics Simulation
3.4. Horizontal Comparative Analysis of the Mechanism of Degradation by Plants and Microorganisms before and after Molecular Modification of PBDEs Based on Molecular Docking Technology and Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- La Guardia, M.J.; Hale, R.C.; Harvey, E. Detailed Polybrominated Diphenyl Ether (PBDE) Congener Composition of the Widely Used Penta-, Octa-, and Deca-PBDE Technical Flame-retardant Mixtures. Environ. Sci. Technol. 2006, 40, 6247–6254. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Liu, L.; Zhao, N. Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels, human exposure and regulation. J. Environ. Manag. 2012, 113, 22–30. [Google Scholar] [CrossRef]
- Schmidt, C. Unfair Trade E-Waste in Africa. Environ. Health Perspect. 2006, 114, A232–A235. [Google Scholar] [CrossRef] [Green Version]
- Eneh, D.; Agunwamba, J. Managing Hazardous Wastes in Africa: Recyclability of Lead from E-waste Materials. J. Appl. Sci. 2011, 11, 3215–3220. [Google Scholar] [CrossRef]
- Acquah, A.A.; D’Souza, C.; Martin, B.J.; Arko-Mensah, J.; Botwe, P.K.; Tettey, P.; Dwomoh, D.; Nti, A.A.; Kwarteng, L.; Takyi, S.; et al. A preliminary assessment of physical work exposures among electronic waste workers at Agbogbloshie, Accra Ghana. Int. J. Ind. Ergon. 2021, 82, 103096. [Google Scholar] [CrossRef] [PubMed]
- Maphosa, V.; Maphosa, M. E-waste management in Sub-Saharan Africa: A systematic literature review. Cogent Bus. Manag. 2020, 7, 1814503. [Google Scholar] [CrossRef]
- Hao, D.; Yi, R.; Wu, Y. Pollution characteristics and exposure risk assessment of polybrominated dipheny ethers in different types agricultural soils in Guiyu area. J. Agro-Environ. Science. 2015, 34, 882–890. (In Chinese) [Google Scholar]
- Yu, G.; Bu, Q.; Cao, G.; Du, X.; Xia, J.; Wu, M.; Huang, J. Brominated flame retardants (BFRS): A review on environmental contamination in China. Chemosphere 2016, 150, 479–490. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Zhang, S. Transportation and transformation of polybrominated diphenyl ethers (PBDEs) in the soil-plant system: A review. Environ. Chem. 2014, 33, 1645–1654. (In Chinese) [Google Scholar]
- Luis, D.; Mar, R.; Patricia, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [Green Version]
- Villaverde, J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.; Sandín-España, P. QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation. SAR QSAR Environ. Res. 2020, 31, 49–72. [Google Scholar] [CrossRef] [PubMed]
- Gbeddya, G.; Egodawattaa, P.; Goonetillekea, A.; Ayokoa, G.; Chen, L. Application of quantitative structure-activity relationship (QSAR) model in comprehensive human health risk assessment of PAHs, and alkyl-, nitro-, carbonyl-, and hydroxyl-PAHs laden in urban road dust. J. Hazard. Mater. 2020, 383, 121154. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.T.; Liu, J.; Yu, M.; Wang, C.; Sun, Y.Z.; Zhang, A.Q.; Wang, T.; Lei, Z.; Jiang, G.B. In Vivo Metabolism of 2,2,4,4-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. Environ. Sci. Technol. 2013, 47, 3701–3707. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.L.; Zhang, S.Z.; Christie, P.; Wang, S.; Xie, M. Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: Uptake, translocation, and metabolism in plants and dissipation in Sol. Environ. Sci. Technol. 2010, 44, 663–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokarz, J.A.; Ahn, M.; Leng, J.; Filley, R.T.; Nies, L. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environ. Sci. Technol. 2008, 42, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Huang, J.; Yu, G.; Wang, L. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane. Chemosphere 2008, 71, 258–267. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Nam, I.-H.; Murugesan, K.; Schmidt, S.; Crowley, D.; Chang, Y.-S. Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl. Microbiol. Biotechnol. 2007, 77, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhao, Y.; Li, Q.; Li, Y. Plant-microorganism combined remediation of polychlorinated naphthalenes contaminated soils based on molecular directed transformation and Taguchi experimental design-assisted dynamics simulation. J. Hazard. Mater. 2020, 396, 122753. [Google Scholar] [CrossRef]
- Gu, W.; Li, X.; Li, Q.; Li, Y. Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: An integrated method of genetic engineering and environmental remediation technology. J. Hazard. Mater. 2020, 405, 124139. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wang, C.K.; Shih, Y.H. Microbial degradation of 4-monobrominated diphenyl ether in an aerobic sludge and the DGGE analysis of diversity. J. Environ. Sci. Health B 2010, 45, 379–385. [Google Scholar] [CrossRef]
- Ling, M.O.; Zhang, Y.; Lin, Z. Absorption, Translocation and Metabolism of Halogenated Organic Pollutants (HOPs) in Plants: A Review. Ecol. Environ. Sci. 2015, 24, 1582–1590. (In Chinese) [Google Scholar]
- Tang, S.Y. Microbial Degradation Mechanisms of Polybrominated diphenyl Ethers and Toxicity of Its Metabolites; South China University of Technology: Guangzhou, China, 2018. [Google Scholar]
- Ren, Z.X.; Xu, H.H.; Li, Y.F.; Wang, Y.W.; Han, S.; Ren, J.B. Combined toxicity characteristics and regulation of residual quinolone antibiotics in water environment. Chemosphere 2021, 263, 128301. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H. Weighting method in comprehensive evaluation. Stat. Decision. 2004, 4, 118–119. (In Chinese) [Google Scholar]
- Errksson, J.; Green, N.; Marsh, G.; Bergman, A. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ. Sci. Technol. 2004, 38, 3119–3125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Li, Y. Design of environmentally friendly neonicotinoid insecticides with bioconcentration tuning and Bi-directional selective toxic effects. J. Clean. Prod. 2019, 221, 113–121. [Google Scholar] [CrossRef]
- Qu, R.; Liu, H.; Feng, M.; Yang, X.; Wang, Z. Investigation on Intramolecular Hydrogen Bond and Some Thermodynamic Properties of Polyhydroxylated Anthraquinones. J. Chem. Eng. Data 2012, 57, 2442–2455. [Google Scholar] [CrossRef]
- Zeng, X.L.; Qu, R.J.; Feng, M.B.; Chen, J.; Wang, L.S.; Wang, Z.Y. Photodegradation of Polyfluorinated Dibenzo-p-Dioxins (PFDDs) in Organic Solvents: Experimental and Theoretical Studies. Environ. Sci. Technol. 2016, 50, 8128–8134. [Google Scholar] [CrossRef]
- Hou, Y.L.; Zhao, Y.Y.; Li, Q.; Li, Y. Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis. Ecotoxicol. Environ. Saf. 2020, 191, 110186. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhao, Y.; Li, Q.; Li, Y. Environmentally friendly polychlorinated naphthalenes (PCNs) derivatives designed using 3D-QSAR and screened using molecular docking, density functional theory and health-based risk assessment. J. Hazard. Mater. 2019, 363, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Wang, Z.Y.; Takahashi, O.; Morihashi, K.; Kikuchi, O. Calculation of systematic set of bond dissociation enthalpies of polyhalogenated benzenes. J. Mol. Struct. 2004, 682, 63–72. [Google Scholar] [CrossRef]
- Xu, H.Y.; Zou, J.W.; Yu, Q.S.; Wang, Y.H.; Zhang, J.Y.; Jin, H.X. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere 2007, 66, 1998–2010. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Hou, Y.L.; Li, Y. Multi-directional selective toxicity effects on farmland ecosystems: A novel design of green substitutes for neonicotinoid insecticides. J. Clean. Prod. 2020, 272, 122715. [Google Scholar] [CrossRef]
- Ren, Z.X.; Wang, Y.W.; Xu, H.H.; Li, Y.F.; Han, S. Fuzzy Comprehensive Evaluation Assistant 3D-QSAR of Environmentally Friendly FQs to Reduce ADRs. Int. J. Environ. Res. Public Health 2019, 16, 3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.W.; Li, Q.; Li, Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. J. Hazard. Mater. 2020, 393, 122339. [Google Scholar] [CrossRef]
- Li, X.X.; Gu, W.W.; Chen, B.; Zhu, Z.W.; Zhang, B.Y. Functional Modification of HHCB: Strategy for Obtaining Environmentally Friendly Derivatives. J. Hazard. Mater. 2021, 416, 126116. [Google Scholar] [CrossRef]
- Chen, E.C.M.; Albyn, K.; Dussack, L.; Wentworth, W.E. Determination of bond dissociation energies from dissociative thermal electron attachment. J. Chem. Phys. 1989, 93, 6827–6832. [Google Scholar] [CrossRef]
- Alaee, M.; Arias, P.; Sjodin, A.; Bergman, A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003, 29, 683–689. [Google Scholar] [CrossRef]
- Ou, Y.X. Flame Retardant; National Defense Industry Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Wang, H.J.; Fu, Y.; Wang, C. Theoretical study of homolytic C-Cl bond dissociation enthalpies of environmental pollutants. ACTA Chim. Sin. 2008, 66, 362–370. (In Chinese) [Google Scholar]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L. Investigation on the Identification and Environmental Behavior Controlling of PBDEs through the Quantum Chemical Calculation and QSAR Model; North China Electric Power University: Beijing, China, 2016. [Google Scholar]
- Ying, Y.; Zhou, Q. A review on chemical remediation technology of contaminated soils. Tech. Equip. Environ. Pollut. Control. 2005, 6, 1–7. (In Chinese) [Google Scholar]
- Cheng, Y.; Cheng, G.U.; Wang, J. Recent advances in mechanism and processes of microbial degradation of polybrominated diphenyl ethers. Environ. Chem. 2015, 34, 637–648. (In Chinese) [Google Scholar]
- Chekol, T.; Vough, L.R.; Chaney, R.L. Phytoremediation of polyehlorinated biphenyl-eontaminated soils: The rhizosphere effect. Environ. Int. 2004, 30, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Greenfeld, E.G.; Wan, C.X. Effects of carbon dioxide on plant nutrition through roots. Plant. Physiol. Commun. 1956, 1, 65–67. (In Chinese) [Google Scholar]
- Zhang, Y.; Luo, X.-J.; Mo, L.; Wu, J.-P.; Mai, B.-X.; Peng, Y.-H. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China. Chemosphere 2015, 137, 25–32. [Google Scholar] [CrossRef]
No. b | PS | MS | CS | No. | PS | MS | CS | No. | PS | MS | CS | No. | PS | MS | CS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50.733 | 55.710 | 62.419 | 54 | 44.215 | 38.509 | 14.237 | 102 | 49.677 | 56.691 | 63.460 | 154 | 28.227 | 58.385 | 55.058 |
2 | 57.837 | 54.414 | 70.497 | 55 | 59.243 | 63.288 | 93.809 | 103 | 48.879 | 59.590 | 68.261 | 155 | 45.577 | 49.031 | 30.561 |
3 | 54.702 | 53.951 | 74.645 | 56 | 52.388 | 52.759 | 56.244 | 104 | 51.399 | 43.820 | 39.281 | 158 | 33.236 | 55.042 | 40.348 |
4 | 53.765 | 58.411 | 76.761 | 57 | 46.600 | 56.159 | 53.336 | 105 | 22.051 | 66.738 | 75.164 | 160 | 49.039 | 47.847 | 34.447 |
5 | 51.594 | 54.430 | 59.291 | 58 | 52.568 | 66.686 | 86.330 | 106 | 37.133 | 55.909 | 44.280 | 161 | 43.484 | 53.569 | 37.484 |
6 | 54.788 | 58.776 | 79.569 | 59 | 60.472 | 60.682 | 93.996 | 107 | 40.979 | 58.222 | 52.755 | 162 | 43.448 | 53.694 | 37.567 |
9 | 56.667 | 58.159 | 80.267 | 60 | 62.142 | 60.081 | 93.801 | 108 | 50.356 | 52.020 | 48.741 | 163 | 52.614 | 55.499 | 66.179 |
10 | 48.301 | 48.648 | 34.540 | 61 | 60.028 | 55.127 | 78.122 | 109 | 57.796 | 60.055 | 86.599 | 164 | 43.981 | 43.946 | 17.431 |
11 | 56.974 | 58.361 | 81.129 | 62 | 47.218 | 45.482 | 26.500 | 110 | 50.426 | 48.015 | 39.848 | 166 | 44.549 | 48.599 | 26.236 |
12 | 59.214 | 59.652 | 88.565 | 63 | 53.948 | 60.093 | 81.574 | 111 | 60.748 | 54.667 | 78.467 | 167 | 36.432 | 59.307 | 56.086 |
13 | 57.526 | 62.455 | 90.223 | 64 | 55.251 | 57.275 | 75.959 | 112 | 42.758 | 50.425 | 27.825 | 168 | 45.575 | 48.689 | 28.220 |
14 | 46.754 | 53.730 | 43.984 | 65 | 50.753 | 49.440 | 46.755 | 113 | 41.305 | 50.123 | 25.711 | 170 | 44.321 | 49.409 | 29.298 |
15 | 60.261 | 48.748 | 65.275 | 66 | 62.080 | 60.168 | 94.067 | 114 | 45.632 | 52.818 | 39.093 | 171 | 44.514 | 53.524 | 39.336 |
16 | 55.174 | 53.059 | 62.587 | 67 | 55.945 | 63.837 | 89.974 | 115 | 44.264 | 50.525 | 31.501 | 172 | 28.530 | 54.541 | 37.749 |
18 | 51.739 | 61.670 | 81.201 | 68 | 49.737 | 55.682 | 59.719 | 116 | 60.087 | 47.239 | 61.154 | 173 | 39.364 | 48.431 | 18.817 |
19 | 50.613 | 53.869 | 55.063 | 69 | 43.235 | 51.439 | 29.886 | 117 | 57.489 | 54.592 | 70.919 | 174 | 46.630 | 43.739 | 22.688 |
20 | 61.828 | 56.043 | 83.315 | 70 | 53.591 | 57.129 | 72.018 | 118 | 46.867 | 55.849 | 52.467 | 175 | 29.743 | 47.470 | 13.265 |
21 | 59.743 | 47.605 | 60.642 | 71 | 48.967 | 55.600 | 55.668 | 119 | 41.126 | 51.845 | 29.131 | 176 | 52.210 | 47.876 | 45.561 |
22 | 56.985 | 61.494 | 88.196 | 72 | 34.005 | 61.398 | 62.223 | 120 | 23.833 | 32.945 | 0.240 | 177 | 52.552 | 55.468 | 65.328 |
23 | 46.574 | 51.513 | 36.415 | 73 | 48.682 | 37.079 | 25.795 | 121 | 37.530 | 39.004 | 6.780 | 179 | 48.790 | 44.680 | 29.598 |
24 | 50.741 | 48.690 | 43.771 | 74 | 47.394 | 53.408 | 44.307 | 122 | 50.160 | 57.683 | 66.126 | 180 | 43.234 | 51.712 | 30.582 |
25 | 57.937 | 61.921 | 90.695 | 75 | 42.093 | 56.075 | 46.193 | 123 | 49.449 | 57.237 | 62.548 | 181 | 43.164 | 56.096 | 47.201 |
26 | 55.000 | 66.484 | 88.768 | 76 | 57.124 | 51.931 | 63.293 | 124 | 49.217 | 52.803 | 46.521 | 182 | 47.599 | 50.822 | 38.525 |
27 | 48.062 | 54.728 | 50.537 | 78 | 57.964 | 58.741 | 85.128 | 125 | 35.000 | 45.774 | 13.029 | 184 | 47.169 | 50.452 | 36.552 |
29 | 55.790 | 53.374 | 64.633 | 79 | 52.080 | 58.986 | 75.962 | 126 | 59.742 | 54.379 | 73.484 | 185 | 34.935 | 46.142 | 13.124 |
31 | 55.890 | 52.077 | 62.105 | 80 | 55.455 | 59.350 | 82.678 | 128 | 44.885 | 49.017 | 29.168 | 186 | 46.193 | 42.368 | 21.388 |
33 | 57.809 | 54.456 | 70.747 | 81 | 63.311 | 60.652 | 94.955 | 131 | 37.731 | 52.188 | 30.241 | 187 | 28.077 | 46.347 | 11.322 |
34 | 54.998 | 62.107 | 86.001 | 82 | 40.683 | 55.810 | 43.790 | 132 | 48.683 | 54.837 | 52.710 | 188 | 42.491 | 45.731 | 16.529 |
35 | 59.593 | 57.332 | 83.023 | 83 | 53.855 | 54.972 | 66.221 | 133 | 52.406 | 57.826 | 73.068 | 189 | 43.676 | 53.130 | 36.085 |
36 | 52.978 | 56.362 | 70.563 | 84 | 47.792 | 46.413 | 29.600 | 136 | 55.272 | 43.873 | 48.766 | 190 | 45.756 | 52.131 | 37.782 |
37 | 63.410 | 58.137 | 89.614 | 86 | 47.246 | 54.512 | 47.469 | 138 | 37.551 | 55.567 | 42.118 | 191 | 42.498 | 53.366 | 34.827 |
38 | 55.095 | 58.726 | 79.796 | 87 | 44.090 | 63.495 | 67.402 | 139 | 34.033 | 56.214 | 46.441 | 192 | 49.392 | 39.556 | 29.639 |
39 | 58.382 | 64.565 | 93.673 | 88 | 31.567 | 56.544 | 47.519 | 140 | 49.381 | 51.854 | 44.752 | 193 | 40.695 | 44.963 | 13.686 |
40 | 53.988 | 54.565 | 65.097 | 89 | 50.567 | 45.006 | 36.692 | 141 | 54.419 | 48.726 | 52.452 | 195 | 48.284 | 48.900 | 35.669 |
41 | 59.806 | 48.917 | 64.348 | 90 | 51.033 | 57.709 | 70.135 | 142 | 49.549 | 47.546 | 36.330 | 196 | 51.013 | 49.047 | 46.589 |
42 | 50.645 | 53.764 | 55.049 | 91 | 58.794 | 52.697 | 67.806 | 143 | 44.001 | 39.951 | 15.026 | 197 | 31.670 | 47.313 | 13.816 |
43 | 58.173 | 63.262 | 92.168 | 92 | 51.110 | 57.428 | 69.475 | 144 | 30.790 | 59.308 | 57.608 | 198 | 30.236 | 41.261 | 5.979 |
44 | 60.472 | 60.682 | 93.996 | 93 | 38.732 | 50.418 | 25.175 | 145 | 44.858 | 45.424 | 21.100 | 200 | 45.785 | 40.797 | 20.186 |
45 | 50.950 | 48.487 | 43.310 | 94 | 49.677 | 56.691 | 63.460 | 146 | 47.708 | 48.258 | 31.664 | 201 | 45.450 | 38.554 | 17.126 |
48 | 59.166 | 61.223 | 90.877 | 95 | 51.612 | 39.231 | 38.738 | 147 | 51.697 | 54.749 | 62.187 | 202 | 47.098 | 34.293 | 21.403 |
49 | 50.075 | 59.706 | 72.572 | 96 | 50.716 | 44.696 | 37.174 | 148 | 43.867 | 43.268 | 16.047 | 203 | 31.091 | 48.457 | 16.630 |
50 | 49.330 | 55.678 | 56.752 | 97 | 51.033 | 57.709 | 70.135 | 149 | 26.750 | 40.848 | 4.596 | 207 | 45.193 | 49.078 | 30.333 |
51 | 49.461 | 52.917 | 48.494 | 98 | 49.576 | 51.478 | 45.294 | 150 | 49.542 | 50.205 | 42.800 | ||||
52 | 60.068 | 41.767 | 58.896 | 99 | 48.567 | 58.439 | 64.597 | 151 | 42.035 | 39.152 | 10.233 | ||||
53 | 48.198 | 57.865 | 61.615 | 101 | 54.120 | 49.688 | 54.593 | 152 | 47.398 | 40.260 | 23.944 |
Model | q2 | n | SEE | R2 | F | Q2 | CSDEP | dq2/r2yy | r2pred |
---|---|---|---|---|---|---|---|---|---|
CM | 0.910 | 4 | 0.063 | 0.988 | 312.127 | 0.732 | 0.053 | 1.039 | 0.998 |
PM | 0.904 | 10 | 0.001 | 1.000 | 30,581.376 | 0.356 | 0.148 | 1.051 | 0.999 |
MM | 0.882 | 3 | 0.016 | 0.984 | 210.388 | 0.870 | 0.060 | 1.025 | 0.998 |
Compounds | CM | PM | MM | |||
---|---|---|---|---|---|---|
Pred. | Relative Error (%) | Pred. | Relative Error (%) | Pred. | Relative Error (%) | |
BDEs-3 | 74.645 | - | 54.702 | - | 53.951 | - |
BDEs-3-1 | 90.157 | 20.78 | 60.395 | 10.41 | 59.704 | 10.66 |
BDEs-3-2 | 75.509 | 1.16 | 61.094 | 11.69 | 68.707 | 27.35 |
BDEs-3-3 | 95.499 | 27.94 | 51.523 | −5.81 | 70.958 | 31.52 |
BDEs-3-4 | 96.828 | 29.72 | 57.677 | 5.44 | 63.680 | 18.03 |
BDEs-3-5 | 95.060 | 27.35 | 57.280 | 4.71 | 62.087 | 15.08 |
BDEs-3-6 | 77.446 | 3.75 | 55.847 | 2.09 | 61.235 | 13.50 |
BDEs-3-7 | 104.713 | 40.28 | 63.826 | 16.68 | 72.277 | 33.97 |
BDEs-3-8 | 106.414 | 42.56 | 58.210 | 6.41 | 63.680 | 18.03 |
BDEs-3-9 | 81.846 | 9.65 | 59.429 | 8.64 | 72.444 | 34.28 |
BDEs-3-10 | 107.399 | 43.88 | 57.810 | 5.68 | 62.087 | 15.08 |
BDEs-3-11 | 65.464 | −12.30 | 65.013 | 18.85 | 73.961 | 37.09 |
BDEs-3-12 | 32.885 | −55.94 | 61.518 | 12.46 | 70.469 | 30.62 |
BDEs-3-13 | 100.231 | 34.28 | 60.395 | 10.41 | 63.096 | 16.95 |
BDEs-3-14 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-15 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-16 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-17 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-18 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-19 | 90.910 | 21.79 | 68.479 | 25.19 | 68.345 | 26.68 |
BDEs-3-20 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-21 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-22 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-23 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-24 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-25 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-26 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-27 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-28 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-29 | 30.409 | −59.26 | 45.082 | −17.59 | 51.880 | −3.84 |
BDEs-3-30 | 84.333 | 12.98% | 54.200 | −0.92 | 64.863 | 20.23 |
Compounds | C-Br BDE (kCal/mol) | Relative Error (%) | EC50 (mg/L) | Relative Error (%) | lgBCFs | Relative Error (%) | VP (Pa) | Relative Error (%) |
---|---|---|---|---|---|---|---|---|
BDEs-3 | 95.378 | - | 0.799 | - | 5.91 [42] | - | 0.109 | - |
BDEs-3-1 | 95.965 | 0.61 | 11.362 * | - | 0.50 | −91.54 | 1.68 × 10−5 | −99.98% |
BDEs-3-2 | 95.630 | 0.26 | 1620.691 * | - | 0.50 | −91.54 | 9.30 × 10−10 | −100.00% |
BDEs-3-4 | 96.191 | 0.85 | 0.353 | −55.82 | 3.29 | −44.33 | 1.07 × 10−2 | −90.18% |
BDEs-3-5 | 96.199 | 0.86 | 0.170 | −78.72 | 3.61 | −38.92 | 3.81 × 10−3 | −96.50% |
BDEs-3-6 | 96.215 | 0.88 | 0.092 | −88.49 | 3.89 | −34.18 | 2.74 × 10−3 | −97.49% |
BDEs-3-7 | 96.264 | 0.93 | 0.047 | −94.12 | 4.19 | −29.10 | 1.26 × 10−3 | −98.84% |
BDEs-3-8 | 96.258 | 0.92 | 0.992 | 24.16 | 2.32 | −60.74 | 6.34 × 10−4 | −99.42% |
BDEs-3-9 | 96.090 | 0.75 | 2.029 | 153.94 | 2.61 | −55.84 | 2.67 × 10−4 | −99.76% |
BDEs-3-10 | 96.357 | 1.03 | 1.609 | 101.38 | 2.68 | −54.65 | 1.48 × 10−3 | −98.64% |
BDEs-3-13 | 96.027 | 0.68 | 0.573 | −28.29 | 3.10 | −47.55 | 2.30 × 10−3 | −97.89% |
BDEs-3-19 | 95.785 | 0.43 | 0.417 | −47.81 | 2.82 | −52.28 | 3.52 × 10−4 | −99.68% |
Type Level | Plant Group | Type Level | Microorganism Group | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | Delta | SNR | 1 | 2 | Delta | SNR | ||
A | −13.34 | −0.73 | 12.61 | 3 | A | −31.08 | −16.88 | 14.2 | 3 |
B | −8.98 | −5.08 | 3.90 | 11 | B | −32.04 | −15.92 | 16.12 | 2 |
C | −11.95 | −2.11 | 9.83 | 5 | C | −28.02 | −19.94 | 8.08 | 8 |
D | −11.67 | −2.39 | 9.28 | 6 | D | −33.35 | −14.61 | 18.74 | 1 |
E | −10.96 | −3.10 | 7.86 | 9 | E | −28.8 | −19.17 | 9.63 | 7 |
F | 0.97 | −15.03 | 16.00 | 2 | F | −30.36 | −17.61 | 12.75 | 5 |
G | −1.99 | −12.07 | 10.08 | 4 | G | −27.77 | −20.2 | 7.57 | 4 |
H | −21.11 | 7.04 | 28.15 | 1 | H | −29.6 | −18.36 | 11.24 | 6 |
I | −2.99 | −11.07 | 8.08 | 8 | I | −26.73 | −21.23 | 5.49 | 10 |
J | −2.73 | −11.33 | 8.60 | 7 | J | −30.47 | −17.49 | 12.98 | 9 |
K | −4.27 | −9.79 | 5.52 | 10 | K | −25.07 | −22.9 | 2.17 | 11 |
Sequence | Factor | Plant | Sequence | Microorganism | |||||
---|---|---|---|---|---|---|---|---|---|
A | D | F | G | Binding Energy (kJ/mol) | Relative Error (%) | Binding Energy (kJ/mol) | Relative Error (%) | ||
0 b | 0 | 0 | 0 | 0 | −39.964 | - | 0b | −10.186 | - |
1 | 0 | 1 | 0 | 1 | - | - | 1 | −26.891 | 164.00 |
2 | 0 | 0 | 1 | 0 | - | - | 2 | - | - |
3 | 0 | 1 | 1 | 0 | - | - | 3 | −5.009 | −50.82 |
4 | 1 | 1 | 0 | 0 | −15.999 | −59.97 | 4 | - | - |
5 | 1 | 0 | 0 | 1 | −45.742 | 14.46 | 5 | - | - |
6 | 1 | 0 | 1 | 1 | −64.551 | 61.52 | 6 | −28.054 | 175.42 |
7 | 1 | 0 | 1 | 0 | −63.956 | 60.03 | 7 | - | - |
8 | 1 | 1 | 0 | 1 | −25.355 | −36.56 | 8 | −14.909 | 46.37 |
9 | 0 | 1 | 1 | 1 | −61.141 | 52.99 | 9 | - | - |
10 | 0 | 0 | 0 | 1 | −69.743 | 74.51 | 10 | −21.361 | 109.71 |
11 | 0 | 0 | 1 | 1 | −28.668 | −28.27 | 11 | - | - |
12 | 0 | 1 | 0 | 0 | −42.800 | 7.10 | 12 | - | - |
13 | 1 | 1 | 1 | 1 | −92.927 | 132.53 | 13 | −20.589 | 102.13 |
14 | 1 | 1 | 1 | 0 | - | - | 14 | −18.142 | 78.11 |
15 | 1 | 0 | 0 | 0 | −81.088 | 102.90 | 15 | −40.632 | 298.90 |
Evaluation Project | Plant (1CFN) | Microorganism (1L7V) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BDEs-3 | BDEs-3-19 | BDEs-3 | BDEs-3-19 | |||||||||
Amino Acid Residues | Bond Length | Bond Type | Amino Acid Residues | Bond Length | Bond Type | Amino Acid Residues | Bond Length | Bond Type | Amino Acid Residues | Bond Length | Bond Type | |
Force | LEU23 | 5.14 5.14 | Alkyl P-Alkyl | PHE91 | 5.32 | P-Alkyl | PRO84 | 3.77 5.17 | P-Alkyl P-Alkyl | PRO84 | 3.83 | P-Alkyl |
VAL27 | 4.07 4.56 | P-Alkyl P-Alkyl | CYS242 | 3.42 4.16 | Br Alkyl | LEU85 | 4.91 | P-Alkyl | LEU85 | 4.76 | Alkyl | |
LEU79 | 4.77 | Alkyl | PRO244 | 4.62 | P-Alkyl | PHE86 | 4.77 | P-P | ALA215 | 3.17 | Br | |
LYS81 | 4.94 | P-Alkyl | PRO245 | 4.55 | P-Alkyl | LEU147 | 4.54 | Alkyl | ||||
ASP180 | 3.39 | P-Anion | FAD271 | 3.76 4.13 3.58 | P-Alkyl P-Alkyl P-Donor | THR83 | 3.85 | P-Sigma | ||||
LEU182 | 4.79 | P-Alkyl | PRO85 | 3.27 4.14 | Br Alkyl | |||||||
LEU183 | 4.71 | Alkyl | ||||||||||
Average Bond length | - | 4.61 | - | - | 4.19 | - | - | 4.66 | - | - | 3.93 | - |
LibDock Score | 54.702 | 68.479 | 53.951 | 68.345 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Li, Y.; Xiao, H.; Fu, M. Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method. Molecules 2021, 26, 3911. https://doi.org/10.3390/molecules26133911
Wu T, Li Y, Xiao H, Fu M. Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method. Molecules. 2021; 26(13):3911. https://doi.org/10.3390/molecules26133911
Chicago/Turabian StyleWu, Tong, Yu Li, Hailin Xiao, and Mingli Fu. 2021. "Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method" Molecules 26, no. 13: 3911. https://doi.org/10.3390/molecules26133911
APA StyleWu, T., Li, Y., Xiao, H., & Fu, M. (2021). Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method. Molecules, 26(13), 3911. https://doi.org/10.3390/molecules26133911