Advanced Materials in Cultural Heritage Conservation
Abstract
:1. Introduction
2. Advanced Materials for Cleaning
2.1. Cleaning—Definition and Traditional Approaches
2.2. Nanostructured Fluids
2.3. Gels and Polymer Networks
2.4. Biocleaning
3. Advanced Materials for Consolidation
3.1. Consolidation of Carbonate-Based Works of Art
3.2. Consolidation of Earthen Materials
3.3. Concrete Consolidation
3.4. Strengthening and Deacidification of Fibrous Materials
4. Advanced Materials for Surface Protection
4.1. Surface Protection of Stones and Buildings
4.2. Surface Protection of Metal Artifacts
5. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borg, B.; Dunn, M.; Ang, A.; Villis, C. The Application of State-of-the-Art Technologies to Support Artwork Conservation: Literature Review. J. Cult. Herit. 2020, 44, 239–259. [Google Scholar] [CrossRef]
- Daffara, C.; Marchioro, G.; Ambrosini, D. Smartphone Diagnostics for Cultural Heritage. In Proceedings of the Optics for Arts, Architecture, and Archaeology VII; Targowski, P., Groves, R., Liang, H., Eds.; SPIE: Munich, Germany, 2019; p. 56. [Google Scholar]
- Lucchi, E. Review of Preventive Conservation in Museum Buildings. J. Cult. Herit. 2018, 29, 180–193. [Google Scholar] [CrossRef]
- Bülow, A.E.; Stitt, J.; Brokerhof, A.W. I Can See Further Now: Preventive Conservation in a Changing Heritage World. Stud. Conserv. 2018, 63, 35–42. [Google Scholar] [CrossRef]
- Stoner, J.H.; Rushfield, R. (Eds.) Vv. Aa., Conservation of Easel Paintings, 2nd ed.; Routledge: London, UK, 2020; ISBN 978-0-429-39991-6. [Google Scholar]
- Baglioni, P.; Chelazzi, D. Nanoscience for the Conservation of Works of Art; Royal Society of Chemistry: London, UK, 2013; ISBN 978-1-84973-566-7. [Google Scholar]
- Mollet, H.; Grubenmann, A. Formulation Technology: Emulsions, Suspensions, Solid Forms; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-3-527-61292-5. [Google Scholar]
- Hildebrand, J.H.; Scott, R.L. The Solubility of Nonelectrolytes; Dover Publications: New York, NY, USA, 1964. [Google Scholar]
- Baij, L.; Hermans, J.; Ormsby, B.; Noble, P.; Iedema, P.; Keune, K. A Review of Solvent Action on Oil Paint. Herit. Sci. 2020, 8, 43. [Google Scholar] [CrossRef]
- Teas, J.P. Graphic Analysis of Resin Solubilities. J. Paint Technol. 1968, 40, 19–25. [Google Scholar]
- Zumbühl, S. Parametrization of the Solvent Action on Modern Artists’ Paint Systems. Stud. Conserv. 2014, 59, 24–37. [Google Scholar] [CrossRef]
- Stulik, D.; Miller, D.; Khandekar, N.; Wolbers, R.; Carlson, J.; Petersen, W.C. Solvent Gels for the Cleaning of Works of Art: The Residue Question; Getty Publications: Los Angeles, CA, USA, 2004; ISBN 978-0-89236-759-7. [Google Scholar]
- Wolbers, R. Cleaning Painted Surfaces: Aqueous Methods; Archetype Publications: London, UK, 2000; ISBN 978-1-873132-36-4. [Google Scholar]
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, Micelles, and Functional Gels: How Colloids and Soft Matter Preserve Works of Art. Angew. Chem. Int. Ed. Engl. 2018, 57, 7296–7303. [Google Scholar] [CrossRef]
- Chelazzi, D.; Bordes, R.; Giorgi, R.; Holmberg, K.; Baglioni, P. The Use of Surfactants in the Cleaning of Works of Art. Curr. Opin. Colloid Interface Sci. 2020, 45, 108–123. [Google Scholar] [CrossRef]
- Carretti, E.; Dei, L.; Baglioni, P. Solubilization of Acrylic and Vinyl Polymers in Nanocontainer Solutions. Application of Microemulsions and Micelles to Cultural Heritage Conservation. Langmuir 2003, 19, 7867–7872. [Google Scholar] [CrossRef]
- Carretti, E.; Giorgi, R.; Berti, D.; Baglioni, P. Oil-in-Water Nanocontainers as Low Environmental Impact Cleaning Tools for Works of Art: Two Case Studies. Langmuir 2007, 23, 6396–6403. [Google Scholar] [CrossRef]
- Baglioni, M.; Jàidar-Benavides, Y.; Berti, D.; Giorgi, R.; Keiderling, U.; Baglioni, P. An Amine-Oxide Surfactant-Based Microemulsion for the Cleaning of Works of Art. J. Colloid Interface Sci. 2015, 440, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, M.; Poggi, G.; Jaidar-Benavides, Y.; Martínez Camacho, F.; Giorgi, R.; Baglioni, P. Nanostructured Fluids for the Removal of Graffiti—A Survey on 17 Commercial Spray-Can Paints. J. Cult. Herit. 2018, 34, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Borgioli, L.; Caminati, G.; Gabrielli, G.; Ferroni, E. Removal of Hydrophobic Impurities from Pictorial Surfaces by Means of Heterogeneous Systems. Sci. Technol. Cult. Herit. J. 1995, 4, 67–74. [Google Scholar]
- Baglioni, M.; Berti, D.; Teixeira, J.; Giorgi, R.; Baglioni, P. Nanostructured Surfactant-Based Systems for the Removal of Polymers from Wall Paintings: A Small-Angle Neutron Scattering Study. Langmuir 2012, 28, 15193–15202. [Google Scholar] [CrossRef]
- Baglioni, M.; Raudino, M.; Berti, D.; Keiderling, U.; Bordes, R.; Holmberg, K.; Baglioni, P. Nanostructured Fluids from Degradable Nonionic Surfactants for the Cleaning of Works of Art from Polymer Contaminants. Soft Matter 2014, 10, 6798–6809. [Google Scholar] [CrossRef]
- Raudino, M.; Selvolini, G.; Montis, C.; Baglioni, M.; Bonini, M.; Berti, D.; Baglioni, P. Polymer Films Removed from Solid Surfaces by Nanostructured Fluids: Microscopic Mechanism and Implications for the Conservation of Cultural Heritage. ACS Appl. Mater. Interfaces 2015, 7, 6244–6253. [Google Scholar] [CrossRef]
- Baglioni, M.; Montis, C.; Brandi, F.; Guaragnone, T.; Meazzini, I.; Baglioni, P.; Berti, D. Dewetting Acrylic Polymer Films with Water/Propylene Carbonate/Surfactant Mixtures—Implications for Cultural Heritage Conservation. Phys. Chem. Chem. Phys. 2017, 19, 23723–23732. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, M.; Montis, C.; Chelazzi, D.; Giorgi, R.; Berti, D.; Baglioni, P. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage. Angew. Chem. Int. Ed. 2018, 57, 7355–7359. [Google Scholar] [CrossRef]
- Raudino, M.; Giamblanco, N.; Montis, C.; Berti, D.; Marletta, G.; Baglioni, P. Probing the Cleaning of Polymeric Coatings by Nanostructured Fluids: A QCM-D Study. Langmuir 2017, 33, 5675–5684. [Google Scholar] [CrossRef]
- Montis, C.; Koynov, K.; Best, A.; Baglioni, M.; Butt, H.-J.; Berti, D.; Baglioni, P. Surfactants Mediate the Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Appl. Mater. Interfaces 2019, 11, 27288–27296. [Google Scholar] [CrossRef]
- Baglioni, M.; Alterini, M.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Removing Polymeric Coatings with Nanostructured Fluids: Influence of Substrate, Nature of the Film, and Application Methodology. Front. Mater. 2019, 6, 311. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, M.; Rengstl, D.; Berti, D.; Bonini, M.; Giorgi, R.; Baglioni, P. Removal of Acrylic Coatings from Works of Art by Means of Nanofluids: Understanding the Mechanism at the Nanoscale. Nanoscale 2010, 2, 1723. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Ciolli, G.; Fratini, E.; Giorgi, R.; Baglioni, P. A Triton X-100-Based Microemulsion for the Removal of Hydrophobic Materials from Works of Art: SAXS Characterization and Application. Materials 2018, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, M.; Guaragnone, T.; Mastrangelo, R.; Sekine, F.H.; Ogura, T.; Baglioni, P. Nonionic Surfactants for the Cleaning of Works of Art: Insights on Acrylic Polymer Films Dewetting and Artificial Soil Removal. ACS Appl. Mater. Interfaces 2020, 12, 26704–26716. [Google Scholar] [CrossRef]
- Baglioni, M.; Giorgi, R.; Berti, D.; Baglioni, P. Smart Cleaning of Cultural Heritage: A New Challenge for Soft Nanoscience. Nanoscale 2012, 4, 42. [Google Scholar] [CrossRef]
- Carretti, E.; Dei, L. Physicochemical Characterization of Acrylic Polymeric Resins Coating Porous Materials of Artistic Interest. Prog. Org. Coat. 2004, 49, 282–289. [Google Scholar] [CrossRef]
- Mizia, F.; Notari, M.; Rivetti, F.; Romano, U.; Zecchini, C. Carbonati Alchilici: Solventi Della Nuova Generazione. Chim. Ind. 2001, 83, 47–54. [Google Scholar]
- Baglioni, M.; Poggi, G.; Giorgi, R.; Rivella, P.; Ogura, T.; Baglioni, P. Selective Removal of Over-Paintings from “Street Art” Using an Environmentally Friendly Nanostructured Fluid Loaded in Highly Retentive Hydrogels. J. Colloid Interface Sci. 2021, 595, 187–201. [Google Scholar] [CrossRef]
- Chauhan, V.; Holmberg, K.; Bordes, R. A Reverse Degradation vs. Temperature Relationship for a Carbonate-Containing Gemini Surfactant. J. Colloid Interface Sci. 2018, 531, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Ormsby, B.; Keefe, M.; Phenix, A.; von Aderkas, E.; Learner, T.; Tucker, C.; Kozak, C. Mineral Spirits-Based Microemulsions: A Novel Cleaning System for Painted Surfaces. J. Am. Inst. Conserv. 2016, 55, 12–31. [Google Scholar] [CrossRef]
- Bartoletti, A.; Maor, T.; Chelazzi, D.; Bonelli, N.; Baglioni, P.; Angelova, L.V.; Ormsby, B.A. Facilitating the Conservation Treatment of Eva Hesse’s Addendum through Practice-Based Research, Including a Comparative Evaluation of Novel Cleaning Systems. Herit. Sci. 2020, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Ormsby, B.; Learner, T. The Effects of Wet Surface Cleaning Treatments on Acrylic Emulsion Artists’ Paints—A Review of Recent Scientific Research. Rev. Conserv. 2009, 10, 29–41. [Google Scholar] [CrossRef]
- van den Berg, K.J.; Bonaduce, I.; Burnstock, A.; Ormsby, B.; Scharff, M.; Carlyle, L.; Heydenreich, G.; Keune, K. (Eds.) Conservation of Modern Oil Paintings; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-19253-2. [Google Scholar]
- Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. [Google Scholar] [CrossRef]
- Lo Dico, G.; Semilia, F.; Milioto, S.; Parisi, F.; Cavallaro, G.; Inguì, G.; Makaremi, M.; Pasbakhsh, P.; Lazzara, G. Microemulsion Encapsulated into Halloysite Nanotubes and Their Applications for Cleaning of a Marble Surface. Appl. Sci. 2018, 8, 1455. [Google Scholar] [CrossRef] [Green Version]
- Casoli, A.; Di Diego, Z.; Isca, C. Cleaning Painted Surfaces: Evaluation of Leaching Phenomenon Induced by Solvents Applied for the Removal of Gel Residues. Environ. Sci. Pollut. Res. Int. 2014, 21, 13252–13263. [Google Scholar] [CrossRef] [PubMed]
- Domingues, J.A.L.; Bonelli, N.; Giorgi, R.; Fratini, E.; Gorel, F.; Baglioni, P. Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir 2013, 29, 2746–2755. [Google Scholar] [CrossRef]
- Mastrangelo, R.; Chelazzi, D.; Poggi, G.; Fratini, E.; Pensabene Buemi, L.; Petruzzellis, M.L.; Baglioni, P. Twin-Chain Polymer Hydrogels Based on Poly(Vinyl Alcohol) as New Advanced Tool for the Cleaning of Modern and Contemporary Art. Proc. Natl. Acad. Sci. USA 2020, 117, 7011–7020. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, N.; Montis, C.; Mirabile, A.; Berti, D.; Baglioni, P. Restoration of Paper Artworks with Microemulsions Confined in Hydrogels for Safe and Efficient Removal of Adhesive Tapes. Proc. Natl. Acad. Sci. USA 2018, 115, 5932–5937. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, R.; Baglioni, M.; Baglioni, P. Nanofluids and Chemical Highly Retentive Hydrogels for Controlled and Selective Removal of Overpaintings and Undesired Graffiti from Street Art. Anal. Bioanal. Chem. 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, M.; Domingues, J.A.L.; Carretti, E.; Fratini, E.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Complex Fluids Confined into Semi-Interpenetrated Chemical Hydrogels for the Cleaning of Classic Art: A Rheological and SAXS Study. ACS Appl. Mater. Interfaces 2018. [Google Scholar] [CrossRef]
- Carretti, E.; Grassi, S.; Cossalter, M.; Natali, I.; Caminati, G.; Weiss, R.G.; Baglioni, P.; Dei, L. Poly(Vinyl Alcohol)−Borate Hydro/Cosolvent Gels: Viscoelastic Properties, Solubilizing Power, and Application to Art Conservation. Langmuir 2009, 25, 8656–8662. [Google Scholar] [CrossRef]
- Bonelli, N.; Poggi, G.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) Hydrogels for the Cleaning of Art. J. Colloid Interface Sci. 2019, 536, 339–348. [Google Scholar] [CrossRef]
- Mazzuca, C.; Severini, L.; Missori, M.; Tumiati, M.; Domenici, F.; Micheli, L.; Titubante, M.; Bragaglia, M.; Nanni, F.; Paradossi, G.; et al. Evaluating the Influence of Paper Characteristics on the Efficacy of New Poly(Vinyl Alcohol) Based Hydrogels for Cleaning Modern and Ancient Paper. Microchem. J. 2020, 155, 104716. [Google Scholar] [CrossRef]
- Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R. Micelle, Microemulsions, and Gels for the Conservation of Cultural Heritage. Adv. Colloid Interface Sci. 2014, 205, 361–371. [Google Scholar] [CrossRef]
- Angelova, L.V.; Terech, P.; Natali, I.; Dei, L.; Carretti, E.; Weiss, R.G. Cosolvent Gel-like Materials from Partially Hydrolyzed Poly(Vinyl Acetate)s and Borax. Langmuir ACS J. Surf. Colloids 2011, 27, 11671–11682. [Google Scholar] [CrossRef] [PubMed]
- Berlangieri, C.; Andrina, E.; Matarrese, C.; Carretti, E.; Traversi, R.; Severi, M.; Chelazzi, D.; Dei, L.; Baglioni, P. Chelators Confined into 80pvac-Borax Highly Viscous Dispersions for the Removal of Gypsum Degradation Layers. Pure Appl. Chem. 2017, 89, 97–109. [Google Scholar] [CrossRef]
- Pensabene-Buemi, L.; Petruzzellis, M.L.; Chelazzi, D.; Baglioni, M.; Mastrangelo, R.; Giorgi, R.; Baglioni, P. Twin-Chain Polymer Networks Loaded with Nanostructured Fluids for the Selective Removal of a Non-Original Varnish from Picasso’s “L’Atelier” at the Peggy Guggenheim Collection, Venice. Herit. Sci. 2020, 8. [Google Scholar] [CrossRef]
- Bartoletti, A.; Barker, R.; Chelazzi, D.; Bonelli, N.; Baglioni, P.; Lee, J.; Angelova, L.V.; Ormsby, B. Reviving WHAAM! A Comparative Evaluation of Cleaning Systems for the Conservation Treatment of Roy Lichtenstein’s Iconic Painting. Herit. Sci. 2020, 8, 9. [Google Scholar] [CrossRef]
- Guaragnone, T.; Casini, A.; Chelazzi, D.; Giorgi, R. PVA-Based Peelable Films Loaded with Tetraethylenepentamine for the Removal of Corrosion Products from Bronze. Appl. Mater. Today 2020, 19, 100549. [Google Scholar] [CrossRef]
- Ranalli, G.; Zanardini, E. Biocleaning on Cultural Heritage: New Frontiers of Microbial Biotechnologies. J. Appl. Microbiol. 2021, jam.14993. [Google Scholar] [CrossRef]
- Ranalli, G.; Alfano, G.; Belli, C.; Lustrato, G.; Colombini, M.P.; Bonaduce, I.; Zanardini, E.; Abbruscato, P.; Cappitelli, F.; Sorlini, C. Biotechnology Applied to Cultural Heritage: Biorestoration of Frescoes Using Viable Bacterial Cells and Enzymes. J. Appl. Microbiol. 2005, 98, 73–83. [Google Scholar] [CrossRef]
- Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, M.P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite Advanced Biocleaning System for Historical Wall Paintings Using New Agar-Gauze Bacteria Gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [Google Scholar] [CrossRef]
- Cappitelli, F.; Zanardini, E.; Ranalli, G.; Mello, E.; Daffonchio, D.; Sorlini, C. Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria. Appl. Environ. Microbiol. 2006, 72, 3733–3737. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, P.; Chelazzi, D.; Giorgi, R.; Poggi, G. Colloid and Materials Science for the Conservation of Cultural Heritage: Cleaning, Consolidation, and Deacidification. Langmuir 2013, 29, 5110–5122. [Google Scholar] [CrossRef]
- Ambrosi, M.; Dei, L.; Giorgi, R.; Neto, C.; Baglioni, P. Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir 2001, 17, 4251–4255. [Google Scholar] [CrossRef]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ruiz-Agudo, E. Nanolimes: From Synthesis to Application. Pure Appl. Chem. 2018, 90, 523–550. [Google Scholar] [CrossRef]
- Poggi, G.; Toccafondi, N.; Chelazzi, D.; Canton, P.; Giorgi, R.; Baglioni, P. Calcium Hydroxide Nanoparticles from Solvothermal Reaction for the Deacidification of Degraded Waterlogged Wood. J. Colloid Interface Sci. 2016, 473, 1–8. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R.; Carretti, E.; Toccafondi, N.; Jaidar, Y. Commercial Ca(OH)2 Nanoparticles for the Consolidation of Immovable Works of Art. Appl. Phys. A 2014, 114, 723–732. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Elert, K.; Ševčík, R. Amorphous and Crystalline Calcium Carbonate Phases during Carbonation of Nanolimes: Implications in Heritage Conservation. CrystEngComm 2016, 18, 6594–6607. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Vettori, I.; Ruiz-Agudo, E. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. Langmuir 2016, 32, 5183–5194. [Google Scholar] [CrossRef]
- López-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernández-Valle, M.E.; de Buergo, M.Á.; Fort, R. Influence of Porosity and Relative Humidity on Consolidation of Dolostone with Calcium Hydroxide Nanoparticles: Effectiveness Assessment with Non-Destructive Techniques. Mater. Charact. 2010, 61, 168–184. [Google Scholar] [CrossRef] [Green Version]
- Camerini, R.; Poggi, G.; Chelazzi, D.; Ridi, F.; Giorgi, R.; Baglioni, P. The Carbonation Kinetics of Calcium Hydroxide Nanoparticles: A Boundary Nucleation and Growth Description. J. Colloid Interface Sci. 2019, 547, 370–381. [Google Scholar] [CrossRef]
- Elert, K.; Pardo, E.S.; Rodriguez-Navarro, C. Alkaline Activation as an Alternative Method for the Consolidation of Earthen Architecture. J. Cult. Herit. 2015, 16, 461–469. [Google Scholar] [CrossRef]
- Camerini, R.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Hybrid Nano-Composites for the Consolidation of Earthen Masonry. J. Colloid Interface Sci. 2019, 539, 504–515. [Google Scholar] [CrossRef]
- Tonelli, M.; Gelli, R.; Giorgi, R.; Pierigè, M.I.; Ridi, F.; Baglioni, P. Cementitious Materials Containing Nano-Carriers and Silica for the Restoration of Damaged Concrete-Based Monuments. J. Cult. Herit. 2021, S1296207421000534. [Google Scholar] [CrossRef]
- Zarzuela, R.; Luna, M.; Carrascosa, L.M.; Yeste, M.P.; Garcia-Lodeiro, I.; Blanco-Varela, M.T.; Cauqui, M.A.; Rodríguez-Izquierdo, J.M.; Mosquera, M.J. Producing C-S-H Gel by Reaction between Silica Oligomers and Portlandite: A Promising Approach to Repair Cementitious Materials. Cem. Concr. Res. 2020, 130, 106008. [Google Scholar] [CrossRef]
- Baty, J.W.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the Conservation and Preservation of Paper-Based Works: A Review. BioResources 2010, 5, 1955–2023. [Google Scholar] [CrossRef]
- Zervos, S.; Alexopoulou, I. Paper Conservation Methods: A Literature Review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Baglioni, M.; Bartoletti, A.; Bozec, L.; Chelazzi, D.; Giorgi, R.; Odlyha, M.; Pianorsi, D.; Poggi, G.; Baglioni, P. Nanomaterials for the Cleaning and PH Adjustment of Vegetable-Tanned Leather. Appl. Phys. A 2016, 122, 114. [Google Scholar] [CrossRef] [Green Version]
- Poggi, G.; Giorgi, R.; Mirabile, A.; Xing, H.; Baglioni, P. A Stabilizer-Free Non-Polar Dispersion for the Deacidification of Contemporary Art on Paper. J. Cult. Herit. 2017, 26, 44–52. [Google Scholar] [CrossRef]
- Schofield, E.J.; Sarangi, R.; Mehta, A.; Jones, A.M.; Mosselmans, F.J.W.; Chadwick, A.V. Nanoparticle De-Acidification of the Mary Rose. Mater. Today 2011, 14, 354–358. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Conservation of Acid Waterlogged Shipwrecks: Nanotechnologies for de-Acidification. Appl. Phys. A 2006, 83, 567–571. [Google Scholar] [CrossRef]
- Nourinaeini, S.; Poggi, G.; Parmentier, A.; Rogati, G.; Baglioni, P.; De Luca, F. Reconditioning Acidic and Artificially Aged Cellulose with Alkaline Nanoparticles: An NMR Diffusometry Study. Cellulose 2020, 27, 7361–7370. [Google Scholar] [CrossRef]
- Poggi, G.; Parmentier, A.; Nourinaeini, S.; De Luca, F. Detection of Acidic Paper Recovery after Alkaline Nanoparticle Treatment by 2D NMR Relaxometry. Magn. Reson. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Amornkitbamrung, L.; Mohan, T.; Hribernik, S.; Reichel, V.; Faivre, D.; Gregorova, A.; Engel, P.; Kargl, R.; Ribitsch, V. Polysaccharide Stabilized Nanoparticles for Deacidification and Strengthening of Paper. RSC Adv. 2015, 5, 32950–32961. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Poggi, G.; Resta, C.; Baglioni, M.; Baglioni, P. Grafted Nanocellulose and Alkaline Nanoparticles for the Strengthening and Deacidification of Cellulosic Artworks. J. Colloid Interface Sci. 2020, 576, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Makaremi, M.; Pasbakhsh, P.; Cavallaro, G.; Lazzara, G.; Aw, Y.K.; Lee, S.M.; Milioto, S. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Appl. Mater. Interfaces 2017, 9, 17476–17488. [Google Scholar] [CrossRef]
- Hamed, S.A.A.K.M.; Hassan, M.L. A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. J. Cult. Herit. 2019, 35, 140–144. [Google Scholar] [CrossRef]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Preparation of Silica/Polyelectrolyte Complexes for Textile Strengthening Applied to Painting Canvas Restoration. Colloids Surf. Physicochem. Eng. Asp. 2017, 532, 420–427. [Google Scholar] [CrossRef]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Combined Nanocellulose/Nanosilica Approach for Multiscale Consolidation of Painting Canvases. ACS Appl. Nano Mater. 2018, 1, 2036–2040. [Google Scholar] [CrossRef] [Green Version]
- Oriola-Folch, M.; Campo-Francés, G.; Nualart-Torroja, A.; Ruiz-Recasens, C.; Bautista-Morenilla, I. Novel Nanomaterials to Stabilise the Canvas Support of Paintings Assessed from a Conservator’s Point of View. Herit. Sci. 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Palladino, N.; Hacke, M.; Poggi, G.; Nechyporchuk, O.; Kolman, K.; Xu, Q.; Persson, M.; Giorgi, R.; Holmberg, K.; Baglioni, P.; et al. Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton. Nanomaterials 2020, 10, 900. [Google Scholar] [CrossRef]
- Chelazzi, D.; Badillo-Sanchez, D.; Giorgi, R.; Cincinelli, A.; Baglioni, P. Self-Regenerated Silk Fibroin with Controlled Crystallinity for the Reinforcement of Silk. J. Colloid Interface Sci. 2020, 576, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Parisi, F.; Riela, S.; Milioto, S. Nanoclays for Conservation. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–170. ISBN 978-0-12-813910-3. [Google Scholar]
- Franco-Castillo, I.; Hierro, L.; de la Fuente, J.M.; Seral-Ascaso, A.; Mitchell, S.G. Perspectives for Antimicrobial Nanomaterials in Cultural Heritage Conservation. Chem 2021, 7, 629–669. [Google Scholar] [CrossRef]
- Bellissima, F.; Bonini, M.; Giorgi, R.; Baglioni, P.; Barresi, G.; Mastromei, G.; Perito, B. Antibacterial Activity of Silver Nanoparticles Grafted on Stone Surface. Environ. Sci. Pollut. Res. 2014, 21, 13278–13286. [Google Scholar] [CrossRef] [PubMed]
- Roveri, M.; Gherardi, F.; Goidanich, S.; Gulotta, D.; Castelvetro, V.; Fischer, R.; Winandy, L.; Weber, J.; Toniolo, L. Self-Cleaning and Antifouling Nanocomposites for Stone Protection: Properties and Performances of Stone-Nanomaterial Systems. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012070. [Google Scholar] [CrossRef]
- Presentato, A.; Armetta, F.; Spinella, A.; Chillura Martino, D.F.; Alduina, R.; Saladino, M.L. Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Front. Chem. 2020, 8, 699. [Google Scholar] [CrossRef]
- Domínguez, M.; Zarzuela, R.; Moreno-Garrido, I.; Carbú, M.; Cantoral, J.M.; Mosquera, M.J.; Gil, M.L.A. Anti-Fouling Nano-Ag/SiO2 Ormosil Treatments for Building Materials: The Role of Cell-Surface Interactions on Toxicity and Bioreceptivity. Prog. Org. Coat. 2021, 153, 106120. [Google Scholar] [CrossRef]
- Zarzuela, R.; Carbú, M.; Gil, M.L.A.; Cantoral, J.M.; Mosquera, M.J. Ormosils Loaded with SiO2 Nanoparticles Functionalized with Ag as Multifunctional Superhydrophobic/Biocidal/Consolidant Treatments for Buildings Conservation. Nanotechnology 2019, 30, 345701. [Google Scholar] [CrossRef]
- Eyssautier-Chuine, S.; Calandra, I.; Vaillant-Gaveau, N.; Fronteau, G.; Thomachot-Schneider, C.; Hubert, J.; Pleck, J.; Gommeaux, M. A New Preventive Coating for Building Stones Mixing a Water Repellent and an Eco-Friendly Biocide. Prog. Org. Coat. 2018, 120, 132–142. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Ingrosso, C.; Petronella, F.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Frigione, M.; Curri, M.L. A Designed UV–Vis Light Curable Coating Nanocomposite Based on Colloidal TiO2 NRs in a Hybrid Resin for Stone Protection. Prog. Org. Coat. 2018, 122, 290–301. [Google Scholar] [CrossRef]
- Gómez-Laserna, O.; Lando, G.; Kortazar, L.; Martinez-Arkarazo, I.; Monterrubio, I.; Sevillano, E.; Cardiano, P.; Olazabal, M.Á. Eco-Friendly Nanocomposite Products Based on BPA-Free Epoxy–Silica Hybrid Materials for Stone Conservation. Archaeol. Anthropol. Sci. 2019, 11, 5799–5812. [Google Scholar] [CrossRef]
- Luna, M.; Delgado, J.; Gil, M.; Mosquera, M. TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials. Nanomaterials 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, V.; Dionísio, A.; Pozo-Antonio, J.S. Conservation Strategies against Graffiti Vandalism on Cultural Heritage Stones: Protective Coatings and Cleaning Methods. Prog. Org. Coat. 2017, 113, 90–109. [Google Scholar] [CrossRef]
- Licchelli, M.; Malagodi, M.; Weththimuni, M.; Zanchi, C. Anti-Graffiti Nanocomposite Materials for Surface Protection of a Very Porous Stone. Appl. Phys. A 2014, 116, 1525–1539. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Pipoli, M.; Morelli, A.; Frigione, M. Anti-Graffiti Behavior of Oleo/Hydrophobic Nano-Filled Coatings Applied on Natural Stone Materials. Coatings 2019, 9, 740. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Li, B.; Wei, J.; Tian, N.; Liang, W.; Zhang, J. Environmentally Friendly, Durable and Transparent Anti-Fouling Coatings Applicable onto Various Substrates. J. Colloid Interface Sci. 2021, 591, 429–439. [Google Scholar] [CrossRef]
- Silva da Conceição, D.K.; Nunes de Almeida, K.; Nhuch, E.; Raucci, M.G.; Santillo, C.; Salzano de Luna, M.; Ambrosio, L.; Lavorgna, M.; Giuliani, C.; Di Carlo, G.; et al. The Synergistic Effect of an Imidazolium Salt and Benzotriazole on the Protection of Bronze Surfaces with Chitosan-Based Coatings. Herit. Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Giuliani, C.; Pascucci, M.; Riccucci, C.; Messina, E.; Salzano de Luna, M.; Lavorgna, M.; Ingo, G.M.; Di Carlo, G. Chitosan-Based Coatings for Corrosion Protection of Copper-Based Alloys: A Promising More Sustainable Approach for Cultural Heritage Applications. Prog. Org. Coat. 2018, 122, 138–146. [Google Scholar] [CrossRef]
- Dermaj, A.; Chebabe, D.; Doubi, M.; Erramli, H.; Hajjaji, N.; Casaletto, M.P.; Ingo, G.M.; Riccucci, C.; de Caro, T. Inhibition of Bronze Corrosion in 3%NaCl Media by Novel Non-Toxic 3-Phenyl-1,2,4-Triazole Thione Formulation. Corros. Eng. Sci. Technol. 2015, 50, 128–136. [Google Scholar] [CrossRef]
- Giuliani, C.; Messina, E.; Staccioli, M.P.; Pascucci, M.; Riccucci, C.; Liotta, L.F.; Tortora, L.; Ingo, G.M.; Di Carlo, G. On-Demand Release of Protective Agents Triggered by Environmental Stimuli. Front. Chem. 2020, 8, 304. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Buonocore, G.G.; Giuliani, C.; Messina, E.; Di Carlo, G.; Lavorgna, M.; Ambrosio, L.; Ingo, G.M. Long-Lasting Efficacy of Coatings for Bronze Artwork Conservation: The Key Role of Layered Double Hydroxide Nanocarriers in Protecting Corrosion Inhibitors from Photodegradation. Angew. Chem. Int. Ed. 2018, 57, 7380–7384. [Google Scholar] [CrossRef]
- Mihelčič, M.; Gaberšček, M.; Salzano de Luna, M.; Lavorgna, M.; Giuliani, C.; Di Carlo, G.; Surca, A.K. Effect of Silsesquioxane Addition on the Protective Performance of Fluoropolymer Coatings for Bronze Surfaces. Mater. Des. 2019, 178, 107860. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Häckl, K.; Kunz, W. Some Aspects of Green Solvents. Comptes Rendus Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Ionic Liquids as Green Solvents: Progress and Prospects. In Green Solvents II; Mohammad, A., Inamuddin, D., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 1–32. ISBN 978-94-007-2890-5. [Google Scholar]
- Rogers, R.D.; Seddon, K.R. (Eds.) Vv., Aa., Ionic Liquids as Green Solvents: Progress and Prospects; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2003; Volume 856, ISBN 978-0-8412-3856-5. [Google Scholar]
- Huang, W.; Wu, X.; Qi, J.; Zhu, Q.; Wu, W.; Lu, Y.; Chen, Z. Ionic Liquids: Green and Tailor-Made Solvents in Drug Delivery. Drug Discov. Today 2020, 25, 901–908. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. https://doi.org/10.3390/molecules26133967
Baglioni M, Poggi G, Chelazzi D, Baglioni P. Advanced Materials in Cultural Heritage Conservation. Molecules. 2021; 26(13):3967. https://doi.org/10.3390/molecules26133967
Chicago/Turabian StyleBaglioni, Michele, Giovanna Poggi, David Chelazzi, and Piero Baglioni. 2021. "Advanced Materials in Cultural Heritage Conservation" Molecules 26, no. 13: 3967. https://doi.org/10.3390/molecules26133967
APA StyleBaglioni, M., Poggi, G., Chelazzi, D., & Baglioni, P. (2021). Advanced Materials in Cultural Heritage Conservation. Molecules, 26(13), 3967. https://doi.org/10.3390/molecules26133967