Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,990)

Search Parameters:
Keywords = advanced materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8597 KB  
Review
High-Thermal-Conductivity Graphene/Epoxy Resin Composites: A Review of Reinforcement Mechanisms, Structural Regulation and Application Challenges
by Hongwei Yang, Zongyi Deng, Minxian Shi and Zhixiong Huang
Polymers 2025, 17(17), 2342; https://doi.org/10.3390/polym17172342 (registering DOI) - 28 Aug 2025
Abstract
As electronic devices advance toward higher power density, heat dissipation has emerged as a critical bottleneck limiting their reliability. Graphene oxide (GO)/epoxy resin (EP) composites, combining high-thermal-conductivity potential with polymer-matrix advantages, have become a key focus for overcoming the limitations of traditional metal [...] Read more.
As electronic devices advance toward higher power density, heat dissipation has emerged as a critical bottleneck limiting their reliability. Graphene oxide (GO)/epoxy resin (EP) composites, combining high-thermal-conductivity potential with polymer-matrix advantages, have become a key focus for overcoming the limitations of traditional metal heat-dissipation materials. This review systematically examines these composites, analyzing their thermal conductivity enhancement mechanisms, structural regulation strategies, and application challenges. We first elaborate on how GO’s intrinsic properties influence its enhancement capability, then explore the roles of physical dispersion strategies and interfacial modification techniques in optimizing filler dispersion and reducing interfacial thermal resistance, revealing the effects of preparation processes on thermal conduction network construction. Their remarkable potential is demonstrated in applications such as electronic packaging and electromagnetic shielding. However, challenges including cross-scale structural design and multi-physics collaborative regulation remain. This review aims to provide theoretical foundations and technical guidance for transitioning these composites from lab research to industrial application and advancing thermal management in high-performance electronics. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

37 pages, 4765 KB  
Review
Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review
by Zhiming Qiang, Junjun Hu and Beibei Jiang
Polymers 2025, 17(17), 2340; https://doi.org/10.3390/polym17172340 - 28 Aug 2025
Abstract
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion [...] Read more.
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion (TSE), and resonant acoustic mixing (RAM), are introduced with the aim of providing a fundamental understanding of the subsequent material design. Subsequently, the discussion focuses on the application of mechanochemical methods in the construction of solid-state electrolytes, anode materials, and cathode materials, especially the research progress of mechanical energy-induced polymerization strategies in building flexible composite electrolytes and enhancing interfacial stability. Through the analysis of representative work, it is demonstrated that mechanochemical methods are gradually evolving from traditional physical processing tools to functional synthesis platforms with chemical reaction capabilities. This review systematically organizes its development and research trends in the field of all-solid-state battery materials and explores potential future breakthrough directions. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
34 pages, 9260 KB  
Review
Recent Advances in the Analysis of Functional and Structural Polymer Composites for Wind Turbines
by Francisco Lagos, Brahim Menacer, Alexis Salas, Sunny Narayan, Carlos Medina, Rodrigo Valle, César Garrido, Gonzalo Pincheira, Angelo Oñate, Renato Hunter-Alarcón and Víctor Tuninetti
Polymers 2025, 17(17), 2339; https://doi.org/10.3390/polym17172339 - 28 Aug 2025
Abstract
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application [...] Read more.
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application of high-fidelity computational methods—finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI)—to optimize structural integrity and aerodynamic performance. It also explores the transformative role of artificial intelligence (AI) in structural health monitoring (SHM) and the integration of Internet of Things (IoT) systems, which are becoming essential for predictive maintenance and lifecycle management. Special focus is given to harsh offshore environments, where polymer composites must withstand extreme wind and wave conditions. This review further addresses the growing importance of circular economy strategies for managing end-of-life composite blades. While innovations such as the geometric redesign of floating platforms and the aerodynamic refinement of blade components have yielded substantial gains—achieving up to a 30% mass reduction in PLA prototypes—more conservative optimizations of internal geometry configurations in GFRP blades provide only around 7% mass reduction. Nevertheless, persistent challenges related to polymer composite degradation and fatigue under severe weather conditions are driving the adoption of real-time hybrid predictive models. A bibliometric analysis of over 1000 publications confirms more than 25 percent annual growth in research across these interconnected areas. This review serves as a comprehensive reference for engineers and researchers, identifying three strategic frontiers that will shape the future of wind turbine blade technology: advanced composite materials, integrated computational modeling, and scalable recycling solutions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 2735 KB  
Review
AI-Enhanced Electrochemical Sensing Systems: A Paradigm Shift for Intelligent Food Safety Monitoring
by Yuliang Zhao, Tingting Sun, Huawei Zhang, Wenjing Li, Chao Lian, Yongqiang Jiang, Mingyue Qu, Zhongpeng Zhao, Yuhang Wang, Yang Sun, Huiqi Duan, Yuhao Ren, Peng Liu, Xulong Lang and Shaolong Chen
Biosensors 2025, 15(9), 565; https://doi.org/10.3390/bios15090565 - 28 Aug 2025
Abstract
Artificial intelligence (AI) is transforming electrochemical biosensing systems, offering novel solutions for foodborne pathogen detection. This review examines the integration of AI technologies, particularly machine learning and deep learning algorithms, in enhancing sensor design, material optimization, and signal processing for detecting key pathogens [...] Read more.
Artificial intelligence (AI) is transforming electrochemical biosensing systems, offering novel solutions for foodborne pathogen detection. This review examines the integration of AI technologies, particularly machine learning and deep learning algorithms, in enhancing sensor design, material optimization, and signal processing for detecting key pathogens such as Escherichia coli, Salmonella, and Staphylococcus aureus. Key advancements include improved sensitivity, multiplexed detection, and adaptability to complex environments. The application of AI to the design of recognition molecules (e.g., enzymes, antibodies, aptamers), as well as to electrochemical parameter tuning and multicomponent signal analysis, is systematically reviewed. Additionally, the convergence of AI with the Internet of Things (IoT) is discussed as a pathway to portable, real-time detection platforms. The review highlights the pivotal role of AI across multiple layers of biosensor development, emphasizing the opportunities and challenges that arise from interdisciplinary integration and the practical deployment of IoT-enabled technologies in electrochemical sensing systems. Despite significant progress, challenges remain in data quality, model generalization, and interpretability. The review concludes by outlining future research directions for building robust, intelligent biosensing systems capable of supporting scalable food safety monitoring. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
24 pages, 6011 KB  
Review
Recent Progress on the Development of Polyetheretherketone Membranes for Water Remediation
by Jingwen Zhou, Longjun Wang, Hong Liu, Xinhao Li, Dalong Li, Linlin Yan and Xiquan Cheng
Membranes 2025, 15(9), 256; https://doi.org/10.3390/membranes15090256 - 28 Aug 2025
Abstract
Industries containing excess acid or alkaline wastewater exacerbate water security. As a semi-crystalline engineering thermoplastic with superior chemical resistance, exceptional mechanical strength, and outstanding thermal stability, polyetheretherketone (PEEK) is a promising candidate for advanced functional membranes in water remediation. Herein, we present a [...] Read more.
Industries containing excess acid or alkaline wastewater exacerbate water security. As a semi-crystalline engineering thermoplastic with superior chemical resistance, exceptional mechanical strength, and outstanding thermal stability, polyetheretherketone (PEEK) is a promising candidate for advanced functional membranes in water remediation. Herein, we present a comprehensive overview of recent advances in PEEK materials, encompassing PEEK membrane fabrication, strategies for membrane hydrophilic modification, and applications in wastewater treatment. Specifically, research efforts have focused on membrane preparation methods such as nonsolvent-induced phase separation (NIPS), thermally induced phase separation (TIPS), and chemical-induced crystallization (CIC), which aim to address the critical challenge of forming solvent-resistant PEEK membranes while maintaining membrane performance. Additionally, various hydrophilic modification strategies (pretreatment, co-blending, and post-treatment) for PEEK membranes are discussed to alleviate membrane fouling problems, with in-depth discussions of diverse applications in wastewater treatment (such as the removal and purification of synthetic dyes, organic solvents, natural organic matter removal, and oil–water mixture). The review concludes with an emphasis on the current challenges and potential of PEEK membrane for wastewater treatment. Full article
Show Figures

Figure 1

28 pages, 1314 KB  
Review
A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions
by Ke Wang, Lian Ding, Farid Dailami and Jason Matthews
Machines 2025, 13(9), 772; https://doi.org/10.3390/machines13090772 - 28 Aug 2025
Abstract
The final phase of the manufacturing process for any artefact involves their surface finishing operations. This phase entails the precise removal of small volumes of material to achieve a specific surface roughness, which is essential for ensuring the artefact’s post-production performance and endurance. [...] Read more.
The final phase of the manufacturing process for any artefact involves their surface finishing operations. This phase entails the precise removal of small volumes of material to achieve a specific surface roughness, which is essential for ensuring the artefact’s post-production performance and endurance. For certain tooling, such as molds and dies, the finishing operation can be particularly significant, often equating to fifty percent of the total production time and a fifth of the overall manufacturing cost. In recent years, collaborative robotics has come to the fore. These advanced systems allow manufacturers to harness the positive attributes of robots, such as their repeatability, endurance, and strength, while simultaneously leveraging the unique benefits of human workers, including their process knowledge, problem-solving abilities, and adaptability. This co-operation between human and robotic capabilities has opened new avenues for efficiency and precision in the finishing process. This paper investigates the current advancements in collaborative robotic finishing, providing a comprehensive overview of the latest technologies and methodologies. It also highlights existing research gaps that need to be addressed to further enhance the effectiveness of these systems. Additionally, the paper suggests potential areas for future investigation, aiming to drive continued innovation and improvement in the field of collaborative robotic finishing operations. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 3325 KB  
Review
A Minireview on Multiscale Structural Inheritance and Mechanical Performance Regulation of SiC Wood-Derived Ceramics via Reactive Sintering and Hot-Pressing
by Shuying Ji, Yixuan Sun and Haiyang Zhang
Forests 2025, 16(9), 1383; https://doi.org/10.3390/f16091383 - 28 Aug 2025
Abstract
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant [...] Read more.
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant sintering routes—reactive infiltration sintering and hot-press sintering—and elucidates their effects on the resulting microstructure and mechanical properties. This review leverages the intrinsic anisotropic vascular network and multiscale porosity and mechanical strength, achieving ultralightweight yet mechanically robust ceramics with tunable anisotropy and dynamic energy dissipation capabilities. Critical process–structure–property relationships are highlighted, including the role of ceramic reinforcement phases, interfacial engineering, and multiscale toughening mechanisms. The review further explores emerging applications spanning extreme protection (e.g., ballistic armor and aerospace thermal shields), multifunctional devices (such as electromagnetic shielding and tribological components), and architectural innovations including seismic-resistant composites and energy-efficient building materials. Finally, key challenges such as sintering-induced deformation, interfacial bonding limitations, and scalability are discussed alongside future prospects involving low-temperature sintering, nanoscale interface reinforcement, and additive manufacturing. This mini overview provides essential insights into the design and optimization of wood-derived ceramics, advancing their transition from sustainable biomimetic materials to next-generation high-performance structural components. This review synthesizes data from over 50 recent studies (2011–2025) indexed in Scopus and Web of Science, highlighting three key advancements: (1) bio-templated anisotropy breaking the porosity–strength trade-off, (2) reactive vs. hot-press sintering mechanisms, and (3) multifunctional applications in extreme environments. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Graphical abstract

15 pages, 4033 KB  
Article
Microstructural and Chemical Analysis of PBT/Glass Fiber Composites: Influence of Fiber Content and Manufacturing on Composite Performance
by Oumayma Hamlaoui, Riadh Elleuch, Hakan Tozan, Imad Tawfiq and Olga Klinkova
Fibers 2025, 13(9), 117; https://doi.org/10.3390/fib13090117 - 28 Aug 2025
Abstract
This paper provides an in-depth analysis of the microstructural characteristics and the chemical content of Polybutylene Terephthalate (PBT) composites that have different contents of Glass Fiber (GF). Blending of VALOX 420 (30 wt% GF/PBT) with unreinforced VALOX 310 allowed the composites to be [...] Read more.
This paper provides an in-depth analysis of the microstructural characteristics and the chemical content of Polybutylene Terephthalate (PBT) composites that have different contents of Glass Fiber (GF). Blending of VALOX 420 (30 wt% GF/PBT) with unreinforced VALOX 310 allowed the composites to be prepared, with control of the concentration and distribution of the GF. The GF reinforcement and PBT matrix were characterized by an advanced microstructural spectrum and spatial analysis to show the influence of fiber density, dispersion, and chemical composition on performance. Findings indicate that GF content has a profound effect on microstructural properties and damage processes, especially traction effects in various regions of the specimen. These results highlight the significance of accurate control of GF during fabrication to maximize durability and performance, which can be used to inform the design of superior PBT/GF composites in challenging engineering applications. The implications of these results are relevant to a number of high-performance sectors, especially in automotive, electrical, and consumer electronic industries, where PBT/GF composites are found in extensive use because of their outstanding mechanical strength, dimensional stability, and thermal resistance. The main novelty of the current research is both the microstructural and chemical assessment of PBT/GF composites in different fiber contents, and this aspect is rather insufficiently studied in the literature. Although the mechanical performance or macro-level aging effects have been previously assessed, the Literature usually did not combine elemental spectroscopy or spatial microstructural mapping to correlate the fiber distribution with the damage mechanisms. Further, despite the importance of GF reinforcement in achieving the right balance between mechanical, thermal, and electrical performance, not much has been conducted in detail to describe the correlation between the microstructure and the evolution of damage in short-fiber composites. Conversely, this paper will use the superior spatial elemental analysis to bring out the effects of GF content and dispersion on micro-mechanisms like interfacial traction, cracking of the matrix, and fiber fracture. We, to the best of our knowledge, are the first to systematically combine chemical spectrum analysis with spatial mapping of PBT/GF systems with varied fiber contents—this allows us to give actionable information on material design and optimized manufacturing procedures. Full article
Show Figures

Figure 1

37 pages, 3142 KB  
Article
Functionalized Micellar Membranes from Medicinal Mushrooms as Promising Self-Growing Bioscaffolds
by Nika Kučuk, Mateja Primožič, Željko Knez and Maja Leitgeb
Polymers 2025, 17(17), 2334; https://doi.org/10.3390/polym17172334 - 28 Aug 2025
Abstract
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize [...] Read more.
Micellar or mycelial membranes from medicinal mushrooms are self-growing fibrous polymeric biocomposites that are biocompatible, biodegradable, cost-effective, and environmentally friendly. In this study, the cultivation process for the medicinal mushrooms Ganoderma lucidum and Pleurotus ostreatus has been optimized via submerged cultivation to maximize growth and promote the formation of micellar membranes with high water-absorption capacity. Optimal growth conditions were achieved at an alkaline pH in a medium containing malt extract for G. lucidum, while for P. ostreatus, these were in a glucose-enriched medium. The hydrophilic underside of the micellar membranes led to a high-water uptake capacity. These membranes exhibited a broad spectrum of functional groups, thermal stability with decomposition temperatures above 260 °C, and a fibrous and porous structure. The micellar membranes from both mushrooms were additionally functionalized with mango peel extract (MPE), resulting in a uniform and gradual release profile, which is an important novelty. They also showed successful antimicrobial activity against Escherichia coli and Staphylococcus aureus growth. MPE-functionalized micellar membranes are, therefore, innovative biocomposites suitable for various biomedical applications. As they mimic the extracellular matrix of the skin, they are a promising material for tissue engineering, wound healing, and advanced skin materials applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
49 pages, 4579 KB  
Review
Hydrogen and Japan’s Energy Transition: A Blueprint for Carbon Neutrality
by Dmytro Konovalov, Ignat Tolstorebrov, Yuhiro Iwamoto and Jacob Joseph Lamb
Hydrogen 2025, 6(3), 61; https://doi.org/10.3390/hydrogen6030061 - 28 Aug 2025
Abstract
This review presents a critical analysis of Japan’s hydrogen strategy, focusing on the broader context of its decarbonization efforts. Japan aims to achieve carbon neutrality by 2050, with intermediate targets including 3 million tons of hydrogen use by 2030 and 20 million tons [...] Read more.
This review presents a critical analysis of Japan’s hydrogen strategy, focusing on the broader context of its decarbonization efforts. Japan aims to achieve carbon neutrality by 2050, with intermediate targets including 3 million tons of hydrogen use by 2030 and 20 million tons by 2050. Unlike countries with abundant domestic renewables, Japan’s approach emphasizes hydrogen imports and advanced storage technologies, driven by limited local renewable capacity. This review not only synthesizes policy and project-level developments but also critically evaluates Japan’s hydrogen roadmap by examining its alignment with global trends, technology maturity, and infrastructure scalability. The review integrates recent policy updates, infrastructure developments, and pilot project results, providing insights into value chain modeling, cost reduction strategies, and demand forecasting. Three policy conclusions emerge. First, Japan’s geography justifies an import-reliant pathway, but it heightens exposure to price, standards, and supply-chain risk; diversification across LH2 and ammonia with robust certification and offtake mechanisms is essential. Second, near-term deployment is most credible in industrial feedstocks (steel, ammonia, methanol) and the maritime sector, while refueling rollout lags materially behind plan and should be recalibrated. Third, cost competitiveness hinges less on electrolyzer CAPEX than on electricity price, liquefaction, transport; policy should prioritize bankable offtake, grid-connected renewables and transmission, and targeted CAPEX support for import terminals, bunkering, and cracking. Japan’s experience offers a pathway in the global hydrogen transition, particularly for countries facing similar geographic and energy limitations. By analyzing both the progress and the limitations of Japan’s hydrogen roadmap, this study contributes to understanding diverse national strategies in the rapidly changing state of implementation of clean energy. Full article
Show Figures

Figure 1

45 pages, 5081 KB  
Systematic Review
A Systematic Review of Advances in Plant-Based Phospholipid Liposomes in Breast Cancer Therapy: Characterization, Innovations, Clinical Applications, and Future Directions
by Marwa Alawi, Najihah Mohd Hashim, Noraini Ahmad, Syed Mahmood and Yi Ge
Pharmaceuticals 2025, 18(9), 1288; https://doi.org/10.3390/ph18091288 - 28 Aug 2025
Abstract
Introduction: Plant-based phospholipid (PP) liposomes are sustainable, biocompatible, and biodegradable carriers with advantages over synthetic and animal-derived lipids, including lower immunogenic risk and abundant availability from sources such as soy, sunflower, and canola. This systematic review examines their characteristics, innovations, and applications in [...] Read more.
Introduction: Plant-based phospholipid (PP) liposomes are sustainable, biocompatible, and biodegradable carriers with advantages over synthetic and animal-derived lipids, including lower immunogenic risk and abundant availability from sources such as soy, sunflower, and canola. This systematic review examines their characteristics, innovations, and applications in breast cancer (BCA) therapy. Methods: A total of 43 studies published between 2010 and June 2025 were identified from MEDLINE, Scopus, and Web of Science, focusing on PP composition, drug delivery mechanisms, and therapeutic efficacy in in vitro, in vivo, and preclinical BCA models. Results: Advances include nanotechnology and ligand-targeted systems that improve stability, control drug release, and enhance tumor-specific uptake. PP liposomes co-loaded with chemotherapeutics showed synergistic anticancer effects, increased tumor accumulation, and reduced systemic toxicity. Personalized targeting strategies further improved therapeutic precision and minimized off-target effects. Conclusions: PP liposomes offer an innovative and environmentally sustainable approach for BCA treatment with demonstrated preclinical benefits in efficacy and safety. Translation to clinical practice requires standardized characterization, scalable production, and well-designed trials to confirm safety, dosing, and long-term effectiveness. Full article
56 pages, 37635 KB  
Review
Faraday Cups: Principles, Designs, and Applications Across Scientific Disciplines—A Review
by Bharat Singh Rawat, Narender Kumar, Debdeep Ghosal, Daliya Aflyatunova, Benjamin Rienäcker and Carsten. P. Welsch
Instruments 2025, 9(3), 20; https://doi.org/10.3390/instruments9030020 - 28 Aug 2025
Abstract
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, [...] Read more.
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, which require very specific instruments. Faraday Cups (FCs) have emerged as important beam diagnostic devices because of their ability to accurately measure the beam charge and, in some cases, the charge distribution, which can be subsequently used to reconstruct transverse beam profiles. This paper aims to provide a detailed review of FCs, their principles, and their design challenges. FCs have applications in various scientific disciplines that include the measurement of beam current/intensity in particle accelerators, in addition to those for mass spectrometry, beam profiles/total beam currents for broad ion beams, thermonuclear fusion, and antimatter experiments. This review also covers and discusses the versatility of FCs in various scientific disciplines, along with showcasing the technological advancements that include improved collector materials, novel designs, enhanced measurement techniques, and developments in electronics and data acquisition (D.A.Q). A summary of the challenges faced while working with the FCs, such as sensitivity, calibration, and potential errors, is included in this review. Full article
Show Figures

Figure 1

25 pages, 14188 KB  
Article
Assessment of Accuracy in Geometry Reconstruction, CAD Modeling, and MEX Additive Manufacturing for Models Characterized by Axisymmetry and Primitive Geometries
by Paweł Turek, Piotr Bielarski, Alicja Czapla, Hubert Futoma, Tomasz Hajder and Jacek Misiura
Designs 2025, 9(5), 101; https://doi.org/10.3390/designs9050101 - 28 Aug 2025
Abstract
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of [...] Read more.
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of the RE process—particularly at the measurement, reconstruction, and computer-aided design (CAD) modeling stages—poses significant challenges. Additionally, the assessment of dimensional and geometrical errors during the manufacturing stage using AM techniques limits the practical implementation of product replicas in the industry. This paper provides an estimation of the errors encountered in the RE process and the AM stage of various models. It includes examples of an electrical box, a lampshade for a standing lamp, a cover for a vacuum unit, and a battery cover. The geometry of these models was measured using a GOM Scan 1 (Carl Zeiss AG, Jena, Germany). Following the measurement process, data processing was performed, along with CAD modeling, which involved primitive detection, profile extraction, and auto-surface methods using Siemens NX 2406 software (Siemens Digital Industries, Plano, TX, USA). The models were produced using a Fortus 360-mc 3D printer (Stratasys, Eden Prairie, MN, USA) with ABS-M30 material. After fabrication, the models were scanned using a GOM Scan 1 scanner to identify any manufacturing errors. The research findings indicated that overall, 95% of the points representing reconstruction errors are within the maximum deviation range of ±0.6 mm to ±1 mm. The highest errors in CAD modeling were attributed to the auto-surfacing method, overall, 95% of the points are within the average range of ±0.9 mm. In contrast, the lowest errors occurred with the detect primitives method, averaging ±0.6 mm. Overall, 95% of the points representing the surface of a model made using the additive manufacturing technology fall within the deviation range ±0.2 mm on average. The findings provide crucial insights for designers utilizing RE and AM techniques in creating functional model replicas. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

23 pages, 535 KB  
Article
Feasibility Evaluation of Secure Offline Large Language Models with Retrieval-Augmented Generation for CPU-Only Inference
by Erick Tyndall, Torrey Wagner, Colleen Gayheart, Alexandre Some and Brent Langhals
Information 2025, 16(9), 744; https://doi.org/10.3390/info16090744 - 28 Aug 2025
Abstract
Recent advances in large language models and retrieval-augmented generation, a method that enhances language models by integrating retrieved external documents, have created opportunities to deploy AI in secure, offline environments. This study explores the feasibility of using locally hosted, open-weight large language models [...] Read more.
Recent advances in large language models and retrieval-augmented generation, a method that enhances language models by integrating retrieved external documents, have created opportunities to deploy AI in secure, offline environments. This study explores the feasibility of using locally hosted, open-weight large language models with integrated retrieval-augmented generation capabilities on CPU-only hardware for tasks such as question answering and summarization. The evaluation reflects typical constraints in environments like government offices, where internet access and GPU acceleration may be restricted. Four models were tested using LocalGPT, a privacy-focused retrieval-augmented generation framework, on two consumer-grade systems: a laptop and a workstation. A technical project management textbook served as the source material. Performance was assessed using BERTScore and METEOR metrics, along with latency and response timing. All models demonstrated strong performance in direct question answering, providing accurate responses despite limited computational resources. However, summarization tasks showed greater variability, with models sometimes producing vague or incomplete outputs. The analysis also showed that quantization and hardware differences affected response time more than output quality; this is a tradeoff that should be considered in potential use cases. This study does not aim to rank models but instead highlights practical considerations in deploying large language models locally. The findings suggest that secure, CPU-only deployments are viable for structured tasks like factual retrieval, although limitations remain for more generative applications such as summarization. This feasibility-focused evaluation provides guidance for organizations seeking to use local large language models under privacy and resource constraints and lays the groundwork for future research in secure, offline AI systems. Full article
Show Figures

Figure 1

21 pages, 1655 KB  
Article
Capacitive Biosensing of Skin Irritants Using a Lanolin-Based Artificial Stratum Corneum Model
by Chung-Ting Cheng, Yi Kung, Hung-Yu Chen, Kuang-Hua Chang, Richie L. C. Chen and Tzong-Jih Cheng
Biosensors 2025, 15(9), 564; https://doi.org/10.3390/bios15090564 - 28 Aug 2025
Abstract
Skin irritation testing is transitioning toward non-animal alternatives that can replicate the functional properties of the human stratum corneum (SC). To address this need, we report a capacitive biosensing platform that integrates a lanolin-based artificial SC (aSC) for rapid, indicator-free detection of chemical [...] Read more.
Skin irritation testing is transitioning toward non-animal alternatives that can replicate the functional properties of the human stratum corneum (SC). To address this need, we report a capacitive biosensing platform that integrates a lanolin-based artificial SC (aSC) for rapid, indicator-free detection of chemical irritants. The approach leverages a membrane-bound lipid matrix to detect changes in interfacial capacitance caused by chemical exposure. Among candidate materials, lanolin emerged as the most effective SC mimic, showing reproducible baseline stability and responsive dielectric shifts. The system quantifies barrier integrity through the capacitance change rate (ΔC/Δt), which serves as a real-time indicator of irritation potential. By positioning the biosensor as an analog of the SC and monitoring the dielectric environment during short exposures (7.5 min), we shift the paradigm from endpoint-based biochemical assays to rapid, physicochemical screening. This concept supports the advancement of ethical, scalable testing platforms that reduce reliance on animal or cellular models while maintaining sensitivity to barrier-compromising agents. Full article
Show Figures

Graphical abstract

Back to TopTop