Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species
Abstract
:1. Introduction
2. Results
2.1. Estimation of the Phenolic Contents of the Samples
2.2. Estimation of Antioxidant Activity of the Samples
2.3. Diabetes-Related Enzyme Inhibition Activity
2.4. AGEs Inhibitory Activity
3. Discussion
4. Material and Methods
4.1. Chemicals
4.2. Plant Samples
4.3. Extraction Procedure
4.4. In Vitro Human Digestion Simulation Method
4.5. In Vitro Estimation of Phenolic Profile
4.5.1. Total Phenolic Content Assay
4.5.2. Total Flavonoid Content Assay
4.5.3. Total Phenolic Acid Content Assay
4.5.4. Total Proanthocyanidin Content Assay
4.6. Free Radical Scavenging Activity Assays
4.6.1. DPPH Radical Scavenging Activity Assay
4.6.2. DMPD Radical Scavenging Activity Assay
4.7. Metal Reducing Activity Assays
4.7.1. Ferric Reducing Antioxidant Power Assay (FRAP)
4.7.2. Cupric Reducing Antioxidant Capacity Assay (CUPRAC)
4.8. Total Antioxidant Activity Assay (TOAC)
4.9. Estimation of Bioavailability Index
4.10. Quantification of Marker Flavonoids by HPTLC
4.11. Inhibitory Activity on Diabetes-Related Enzymes
4.11.1. α-Glucosidase Inhibitory Activity
4.11.2. α-Amylase Inhibitory Activity
4.11.3. AGE Inhibitory Activity
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Küpeli, E.; Yesilada, E. Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. J. Ethnopharmacol. 2007, 112, 524–530. [Google Scholar] [CrossRef]
- Kalus, U.; Grigorov, A.; Kadecki, O.; Jansen, J.P.; Kiesewetter, H.; Radtke, H. Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract. A prospective, randomised, placebo-controlled clinical study. Antivir. Res. 2009, 84, 267–271. [Google Scholar] [CrossRef]
- Akkol, E.K.; Orhan, I.E.; Yesilada, E. Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus laurifolius L. leaves. Food Chem. 2012, 131, 626–631. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Fernández-Arroyo, S.; Saura, D.; Guillén, E.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem. Toxicol. 2010, 48, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Menor, L.; Morales-Soto, A.; Barrajón-Catalán, E.; Roldán-Segura, C.; Segura-Carretero, A.; Micol, V. Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem. Toxicol. 2013, 55, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Coode, M. Flora of Turkey and the Aegean Islands; Davis PH, Ed.; Edinburgh University Press: Edinburgh, UK, 1965; pp. 506–507. [Google Scholar]
- Polat, R.; Satil, F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balikesir - Turkey). J. Ethnopharmacol. 2012, 139, 626–641. [Google Scholar] [CrossRef]
- Gürdal, B.; Kültür, Ş. An ethnobotanical study of medicinal plants in Marmaris (Muǧla, Turkey). J. Ethnopharmacol. 2013, 146, 113–126. [Google Scholar] [CrossRef]
- Honda, G.; Yeşilada, E.; Tabata, M.; Sezik, E.; Fujita, T.; Takeda, Y.; Takaishi, Y.; Tanaka, T. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J. Ethnopharmacol. 1996, 53, 75–87. [Google Scholar] [PubMed]
- Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, E.; İnan, Y.; Yesilada, E. Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Ind. Crops Prod. 2019, 131, 62–69. [Google Scholar] [CrossRef]
- Lee, O.N.; Ak, G.; Zengin, G.; Cziáky, Z.; Jekő, J.; Rengasamy, K.R.R.; Park, H.Y.; Kim, D.H.; Sivanesan, I. Phytochemical composition, antioxidant capacity, and enzyme inhibitory activity in callus, somaclonal variant, and normal green shoot tissues of Catharanthus roseus (L) G. Don. Molecules 2020, 25, 4945. [Google Scholar] [CrossRef]
- İnan, Y.; Kurt-Celep, I.; Akyüz, S.; Barak, T.H.; Celep, E.; Yesilada, E. An investigation on the enzyme inhibitory activities, phenolic pro fi le and antioxidant potentials of Salvia virgata Jacq. S. Afr. J. Bot. 2020, in press. [Google Scholar] [CrossRef]
- Zengin, G.; Sieniawska, E.; Senkardes, I.; Picot-Allain, M.C.N.; Ibrahime Sinan, K.; Fawzi Mahomoodally, M. Antioxidant abilities, key enzyme inhibitory potential and phytochemical profile of Tanacetum poteriifolium Grierson. Ind. Crops Prod. 2019, 140, 111629. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2021, 344, 128581. [Google Scholar] [CrossRef]
- Guzelmeric, E.; İnan, Y.; Yüksel, P.I.; Yesilada, E. Laden bitkisinin (Cistus creticus L.) topraküstü kısımlarının standardizasyonunda kullanılan farmakognozik yöntemler. Türk Farmakop. Derg. 2020, 5, 38–57. [Google Scholar]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Pathogenesis of type 2 diabetes. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Warren, F.J.; Fukuma, N.M.; Mikkelsen, D.; Flanagan, B.M.; Williams, B.A.; Lisle, A.T.; Ó Cuív, P.; Morrison, M.; Gidley, M.J. Food starch structure impacts gut microbiome composition. mSphere 2018, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef]
- Xiong, Y.; Ng, K.; Zhang, P.; Warner, R.D.; Shen, S.; Tang, H.; Liang, Z.; Fang, Z. In vitro α-glucosidase and α-amylase inhibitory activities of free and bound phenolic extracts from the bran and kernel fractions of five sorghum grain genotypes. Foods 2020, 9, 1301. [Google Scholar] [CrossRef]
- Wenzel, U. Flavonoids as drugs at the small intestinal level. Curr. Opin. Pharmacol. 2013, 13, 864–868. [Google Scholar] [CrossRef]
- da Costa Pinaffi, A.C.; Sampaio, G.R.; Soares, M.J.; Shahidi, F.; de Camargo, A.C.; Torres, E.A.F.S. Insoluble-bound polyphenols released from guarana powder: Inhibition of alpha-glucosidase and proanthocyanidin profile. Molecules 2020, 25, 679. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Virk, M.S.; Chen, F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures. Int. J. Food Sci. Nutr. 2016, 67, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Martineau, L.C.; Cuerrier, A.; Johns, T.; Haddad, P.S.; Bennett, S.A.L. Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity. Diabetes Metab. Syndr. Clin. Res. Rev. 2011, 196–204. [Google Scholar]
- Asgharpour, F.; Ranjkesh, Z.; Taghi, M. A systematic review of antiglycation medicinal plants. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1225–1229. [Google Scholar] [CrossRef]
- Funke, I.; Melzig, M. Effect of different phenolic compounds on α-amylase activity: Screening by microplate-reader based kinetic assay. Pharmazie 2005, 60, 796–797. [Google Scholar]
- Lu, Y.; Franziska, M.; Song, L. Oligomeric proanthocyanidins are the active compounds in Abelmoschus esculentus Moench for its α-amylase and α -glucosidase inhibition. J. Funct. Foods 2016, 20, 463–471. [Google Scholar] [CrossRef]
- Wu, C.H.; Yen, G.C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation end products. J. Agric. Food Chem. 2005, 53, 3167–3173. [Google Scholar] [CrossRef]
- Li, J.K.; Liu, X.D.; Shen, L.; Zeng, W.M.; Qiu, G.Z. Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives. Trop. J. Pharm. Res. 2016, 15, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celep, E.; Aydin, A.; Kirmizibekmez, H.; Yesilada, E. Appraisal of in vitro and in vivo antioxidant activity potential of cornelian cherry leaves. Food Chem. Toxicol. 2013, 62, 448–455. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, E.; İnan, Y.; Yeşilada, E. In vitro human digestion simulation of the bioavailability and antioxidant activity of phenolics from Sambucus ebulus L. fruit extracts. Food Biosci. 2020, 37, 100711. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and bioavailability of bioactive phytochemicals. Int. J. Food Sci. Technol. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Celep, E.; İnan, Y.; Akyüz, S.; Yesilada, E. The bioaccessible phenolic profile and antioxidant potential of Hypericum perfoliatum L. after simulated human digestion. Ind. Crops Prod. 2017, 109, 717–723. [Google Scholar] [CrossRef]
- Serra, A.; MacI, A.; Romero, M.P.; Anglés, N.; Morelló, J.R.; Motilva, M.J. Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chem. 2011, 126, 1127–1137. [Google Scholar] [CrossRef]
- Ketnawa, S.; Reginio, F.C.; Sukanya, T.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2021, 0, 1–22. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci. Technol. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit. Rev. Food Sci. Nutr. 2020, 60, 695–708. [Google Scholar] [CrossRef]
- Sayah, K.; Marmouzi, I.; Naceiri Mrabti, H.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant activity and inhibitory potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aerial parts extracts against key enzymes linked to hyperglycemia. Biomed. Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef] [Green Version]
- Orhan, N.; Aslan, M.; Şüküroǧlu, M.; Deliorman Orhan, D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J. Ethnopharmacol. 2013, 146, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Inhibition of alpha-glucosidase and amylase by Luteolin, a Flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef] [PubMed]
- Yuan, E.; Liu, B.; Wei, Q.; Yang, J.; Chen, L.; Li, Q. Structure activity relationships of flavonoids as potent α-amylase Inhibitors. Nat. Prod. Commun. 2014, 9, 1173–1176. [Google Scholar] [CrossRef] [Green Version]
- Grzegorczyk-Karolak, I.; Golab, K.; Gburek, J.; Wysokinska, H.; Matkowski, A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016, 21, 739. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 206, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Sari, S. Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem. Rev. 2020, 19, 1081–1092. [Google Scholar] [CrossRef]
- Lee, I.S.; Kim, Y.J.; Jung, S.H.; Kim, J.H.; Kim, J.S. Flavonoids from Litsea japonica inhibit AGEs formation and rat lense aldose reductase in vitro and vessel dilation in zebrafish. Planta Med. 2017, 83, 318–325. [Google Scholar] [CrossRef]
- Zhang, Z.; Sethiel, M.S.; Shen, W.; Liao, S.; Zou, Y. Hyperoside downregulates the receptor for advanced glycation end products (RAGE) and promotes proliferation in ECV304 cells via the c-Jun N-terminal Kinases (JNK) pathway following stimulation by advanced glycation end-products in vitro. Int. J. Mol. Sci. 2013, 14, 22697–22707. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.R.; Shim, S.M. Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT—Food Sci. Technol. 2015, 61, 158–163. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Cervantes-Laurean, D.; Schramm, D.D.; Jacobson, E.L.; Halaweish, I.; Bruckner, G.G.; Boissonneault, G.A. Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J. Nutr. Biochem. 2006, 17, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Bardakci, H.; Celep, E.; Gözet, T.; Kurt-Celep, I.; Deniz, I.; Şen-Utsukarci, B.; Akaydin, G. A comparative investigation on phenolic composition, antioxidant and antimicrobial potentials of Salvia heldreichiana Boiss. ex Bentham extracts. S. Afr. J. Bot. 2019, 125, 72–80. [Google Scholar] [CrossRef]
- Celep, E.; Akyüz, S.; İnan, Y.; Yesilada, E. Assessment of potential bioavailability of major phenolic compounds in Lavandula stoechas L. ssp. stoechas. Ind. Crops Prod. 2018, 118, 111–117. [Google Scholar] [CrossRef]
- Celep, E.; Charehsaz, M.; Akyüz, S.; Acar, E.T.; Yesilada, E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Res. Int. 2015, 78, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bardakci, H.; Celep, E.; Gözet, T.; Kan, Y.; Kırmızıbekmez, H. Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. S. Afr. J. Bot. 2019, 124, 5–13. [Google Scholar] [CrossRef]
- Celep, E.; Aydın, A.; Yesilada, E. A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem. Toxicol. 2012, 50, 3329–3335. [Google Scholar] [CrossRef] [PubMed]
- Balan, K.; Ratha, P.; Prakash, G.; Viswanathamurthi, P.; Adisakwattana, S.; Palvannan, T. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential of N2O2 schiff base Zn complex. Arab. J. Chem. 2017, 10, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Starowicz, M.; Zieliński, H. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assays | Samples * | ND A | PG | IN | BAvI (%) |
---|---|---|---|---|---|
Total phenolic content B | CCA | 275.47 a ± 6.86 | 149.59 b ± 4.95 | 23.77 c ± 0.68 | 8.6% |
CLA | 289.15 a ± 4.99 | 145.23 b ± 3.99 | 21.59 c ± 0.74 | 6.4% | |
CMA | 257.91 a ± 5.01 | 142.24 b ± 5.19 | 21.36 c ± 0.94 | 8.3% | |
CPA | 330.18 a ± 1.87 | 161.51 b ± 4.86 | 26.46 c ± 0.74 | 8.01% | |
CSA | 430.47 a ± 6.45 | 257.53 b ± 0.63 | 29.59 c ± 0.74 | 6.87% | |
Total flavonoid content C | CCA | 24.15 a ± 1.98 | 22.86 a ± 1.12 | 4.92 b ± 0.48 | 20.37% |
CLA | 22.98 a ± 1.38 | 21.87 a ± 1.17 | 4.1 b ± 0.77 | 17.84% | |
CMA | 19.21 a ± 1.23 | 17.78 a ± 0.96 | 2.97 b ± 0.57 | 15.46% | |
CPA | 32.17 a ± 1.96 | 33.75 a ± 1.45 | 5.9 b ± 0.43 | 18.34% | |
CSA | 60.25 a ± 2.19 | 54.73 a ± 1.89 | 14.2 b ± 0.92 | 23.5% | |
Total phenolic acid content D | CCA | 46.18 a ± 0.61 | 47.07 a ± 0.25 | 16.03 b ± 0.54 | 34.71% |
CLA | 44.39 a ± 0.58 | 42.46 a ± 1.01 | 15.29 b ± 1.26 | 34.45% | |
CMA | 44.75 a ± 1.01 | 42.96 a ± 1.02 | 13.25 b ± 0.72 | 38.55% | |
CPA | 50.64 a ± 0.76 | 47.54 a ± 1.52 | 19.01 b ± 1.26 | 37.53% | |
CSA | 52.93 a ± 1.07 | 50.29 a ± 0.76 | 20.28 b ± 0.81 | 38.29% | |
Total proanthocyanidin content E | CCA | 61.08 a ± 2.81 | 17.79 b ± 0.72 | N.D. | - |
CLA | 59.67 a ± 4.38 | 18.71 b ± 5.91 | N.D. | - | |
CMA | 29.33 a ± 3.08 | 9.12 b ± 4.38 | N.D. | - | |
CPA | 38.91 a ± 3.13 | 13.21 b ± 1.81 | N.D. | - | |
CSA | 45.74 a ± 0.72 | 16.83 b ± 1.57 | N.D. | - |
Assays | Samples * | ND A | PG | IN | BAvI (%) |
---|---|---|---|---|---|
Tiliroside B | CCA | 2.2 a ± 0.22 | 1.9 b ± 0.11 | 0.35 c ± 0.04 | 15.9% |
CLA | 1.71 a ± 0.17 | 1.35 b ± 0.15 | 0.43 c ± 0.08 | 25.15% | |
CMA | 1.05 a ± 0.19 | 0.93 a ± 0.11 | ND | - | |
CPA | 2.84 a ± 0.21 | 2.82 a ± 0.23 | 0.66 b ± 0.06 | 23.24% | |
CSA | 3.76 a ± 0.24 | 3.17 b ± 0.21 | 1.01 c ± 0.11 | 26.86% | |
Hyperoside | CCA | 1.64 a ± 0.14 | 1.45 a ± 0.13 | 0.41 b ± 0.04 | 25% |
CLA | 2.05 a ± 0.24 | 1.96 a ± 0.19 | 0.51 b ± 0.07 | 24.88% | |
CMA | 0.71 a ± 0.1 | 0.66 a ± 0.08 | ND | - | |
CPA | 1.67 a ± 0.15 | 1.54 a ± 0.12 | 0.43 b ± 0.03 | 25.75% | |
CSA | 4.59 a ± 0.31 | 4.25 a ± 0.26 | 1.16 b ± 0.16 | 25.27% | |
Quercitrin | CCA | 3.05 a ± 0.26 | 2.72 b ± 0.21 | 0.74 c ± 0.11 | 24.26% |
CLA | 0.97 a ± 0.12 | 0.76 b ± 0.11 | ND | - | |
CMA | 0.98 a ± 0.14 | 0.86 a ± 0.12 | 0.21 b ± 0.03 | 21.43% | |
CPA | 2.73 a ± 0.24 | 2.38 a ± 0.23 | 0.71 b ± 0.08 | 26% | |
CSA | ND | ND | ND | - |
Assays | Samples * | ND A | PG | IN |
---|---|---|---|---|
DPPH scavenging act. B | CCA | 5.63 a ± 0.53 | 5.55 a ± 0.53 | 10.83 b ± 0.46 |
CLA | 5.55 a ± 1.42 | 5.52 a ± 0.53 | 11.05 b ± 0.27 | |
CMA | 5.57 a ± 0.94 | 5.53 a ± 0.44 | 13.75 b ± 0.31 | |
CPA | 5.55 a ± 0.41 | 5.51 a ± 0.52 | 9.93 b ± 0.83 | |
CSA | 5.55 a ± 0.58 | 5.74 a ± 0.02 | 8.73 b ± 0.58 | |
DMPD scavenging act. C | CCA | 11.82 a ± 0.86 | 10.11 a ± 0.46 | 22.06 b ± 0.74 |
CLA | 10.43 a ± 0.97 | 9.42 a ± 0.67 | 26.08 b ± 0.12 | |
CMA | 10.98 a ± 0.74 | 9.77 a ± 0.99 | 22.88 b ± 0.41 | |
CPA | 10.22 a ± 0.25 | 9.41 a ± 0.23 | 18.48 b ± 0.45 | |
CSA | 10.69 a ± 0.89 | 11.05 a ± 0.68 | 25.14 b ± 0.99 | |
FRAP activity D | CCA | 5.99 a ± 0.13 | 2.92 b ± 0.06 | 0.90 c ± 0.01 |
CLA | 4.27 a ± 0.17 | 2.77 b ± 0.05 | 0.68 c ± 0.01 | |
CMA | 4.60 a ± 0.07 | 2.97 b ± 0.15 | 0.52 c ± 0.03 | |
CPA | 5.23 a ± 0.28 | 3.15 b ± 0.20 | 0.71 c ± 0.03 | |
CSA | 7.52 a ± 0.69 | 4.44 b ± 0.16 | 0.69 c ± 0.02 | |
CUPRAC activity E | CCA | 687.34 a ± 8.86 | 616.33 a ± 5.05 | 188.61 b ± 5.35 |
CLA | 627.39 a ± 5.89 | 608.98 a ± 6.53 | 121.03 b ± 2.24 | |
CMA | 667.41 a ± 9.33 | 643.91 a ± 6.11 | 146.94 b ± 2.81 | |
CPA | 688.76 a ± 4.31 | 625.16 a ± 5.30 | 147.62 b ± 5.97 | |
CSA | 691.48 a ± 5.18 | 674.43 a ± 2.53 | 153.15 b ± 2.61 | |
Total antioxidant capacity F | CCA | 208.38 a ± 3.48 | 117.96 b ± 5.31 | 41.88 c ± 1.77 |
CLA | 272.13 a ± 5.63 | 131.50 b ± 5.01 | 31.25 c ± 1.65 | |
CMA | 236.18 a ± 6.63 | 195.88 b ± 2.65 | 30.18 c ± 1.33 | |
CPA | 225.25 a ± 5.34 | 153.80 b ± 4.61 | 45.63 c ± 2.72 | |
CSA | 222.55 a ± 3.77 | 167.54 b ± 5.01 | 49.29 c ± 2.37 |
Assays | Samples * | ND 0.5 mg/mL A | ND 1mg/mL | IN 0.5 mg/mL | IN 1mg/mL |
---|---|---|---|---|---|
α-amylase inhibitory act. B | CCA | 65.05 a ± 1.18 | 73.94 b ± 0.22 | 49.73 c ± 0.29 | 54.90 d ± 0.87 |
CLA | 63.25 a ± 0.18 | 75.20 b ± 0.11 | 45.49 c ± 0.42 | 51.02 d ± 0.14 | |
CMA | 66.58 a ± 0.64 | 71.31 b ± 3.31 | 42.69 c ± 0.38 | 48.08 d ± 0.41 | |
CPA | 67.66 a ± 0.70 | 75.89 b ± 0.62 | 50.78 c ± 2.54 | 56.24 d ± 0.85 | |
CSA | 72.21 a ± 0.47 | 80.34 b ± 0.19 | 54.71 c ± 0.30 | 61.83 d ± 0.20 | |
α-glucosidase inhibitory act. C | CCA | 64.11 a ± 1.03 | 71.62 b ± 1.48 | 47.83 c ± 0.23 | 56.33 d ± 0.55 |
CLA | 66.29 a ± 0.80 | 69.79 a ± 0.60 | 52.75 b ± 1.16 | 61.75 c ± 0.23 | |
CMA | 58.48 a ± 0.85 | 62.37 b ± 1.74 | 41.72 c ± 1.88 | 45.14 d ± 0.57 | |
CPA | 71.26 a ± 0.46 | 79.13 b ± 0.82 | 52.13 c ± 1.87 | 61.27 d ± 1.44 | |
CSA | 76.25 a ± 1.95 | 87.12 b ± 0.73 | 63.66 c ± 1.63 | 67.60 d ± 0.96 | |
AGEs inhibitory act. D | CCA | 85.38 a ± 1.57 | 93.03 b ± 2.26 | 68.01 c ± 5.63 | 73.11 d ± 2.38 |
CLA | 83.24 a ± 1.03 | 87.96 b ± 2.58 | 64.96 c ± 1.96 | 72.07 d ± 4.78 | |
CMA | 77.02 a ± 3.56 | 82.62 b ± 3.05 | 56.60 c ± 4.15 | 69.60 d ± 3.36 | |
CPA | 85.04 a ± 2.95 | 92.65 b ± 1.41 | 71.54 c ± 2.27 | 81.10 d ± 3.76 | |
CSA | 90.19 a ± 2.62 | 98.39 b ± 1.25 | 76.71 c ± 4.15 | 84.26 d ± 3.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İnan, Y.; Akyüz, S.; Kurt-Celep, I.; Celep, E.; Yesilada, E. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules 2021, 26, 5322. https://doi.org/10.3390/molecules26175322
İnan Y, Akyüz S, Kurt-Celep I, Celep E, Yesilada E. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules. 2021; 26(17):5322. https://doi.org/10.3390/molecules26175322
Chicago/Turabian Styleİnan, Yiğit, Selin Akyüz, Inci Kurt-Celep, Engin Celep, and Erdem Yesilada. 2021. "Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species" Molecules 26, no. 17: 5322. https://doi.org/10.3390/molecules26175322