The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Extracts Profiling by HPLC-ESI-QTOF-MS/MS
2.2. The GC-MS Identification of the Constituents of Diethyl Ether Extracts
2.3. The Determination of the Antimicrobial Activity of the Extracts
2.4. The Assessment of the Antioxidant Activity of A. galanthum and A. turkestanicum Extracts
2.5. Tyrosinase Inhibition by A. galanthum and A. turkestanicum Extracts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction
3.4. HPLC-ESI-QTOF-MS/MS Analysis of Extracts from Bulbs and Chives of A. galanthum and Bulbs of A. turkestanicum
3.5. The GC-MS Analysis of Diethyl Ether Extracts
3.6. The Antibacterial Assay In Vitro
3.7. The DPPH Scavenging Assay
3.8. ABTS Radical Scavenging Assay
3.9. Mushroom Tyrosinase Inhibitory Assay
3.10. Murine Tyrosinase Inhibitory Assay
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fritsch, R.M.; Blattner, F.R.; Gurushidze, M. New classification of Allium, L. subg. Melanocrommyum (Webb & Berthel) Rouy (Alliaceae) based on molecular and morphological characters. Phyton 2010, 49, 145–220. [Google Scholar]
- Li, Q.Q.; Zhou, S.D.; He, X.J.; Yu, Y.; Zhang, Y.C.; Wei, X.Q. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 2010, 106, 709–733. [Google Scholar] [CrossRef]
- De Wilde-Duyfjes, B.E.E. A revision of the genus Allium L. (Liliaceae) in Africa. Belmontia 1976, 7, 75–78. [Google Scholar]
- Rachkovskaya, E.I.; Volkova, E.A.; Khramtsov, V.N. Botanical Geography of Kazakhstan and Central Asia (within the Desert Region); Russian Academy of Sciences: St. Petersburg, Russia, 2003; 423p. [Google Scholar]
- Available online: http://www.agroatlas.ru/en/content/related/Allium_galanthum/ (accessed on 3 June 2021).
- Gurushidze, M.; Mashayekhi, S.; Blattner, F.R.; Friesen, N.; Fritsch, R.M. Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst. Evol. 2007, 269, 259–269. [Google Scholar] [CrossRef]
- Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200027481 (accessed on 2 July 2021).
- Available online: https://pfaf.org/user/Plant.aspx?LatinName=Allium+galanthum (accessed on 3 June 2021).
- Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:529068-1 (accessed on 2 June 2021).
- Plantarium, an Open Online Atlas of Plants and Lichens in Russia and Neighboring Countries. Available online: http://www.plantarium.ru (accessed on 3 June 2021).
- Block, E. Die Organoschwefelchemie der gattung Allium und ihre bedeutung für die organische chemie des schwefels. Angew. Chem. 1992, 104, 1158–1203. [Google Scholar] [CrossRef]
- Koch, H.P.; Lawson, L.D. Garlic. In The Science and Therapeutic Application of Allium sativum L. and Related Species; Williams &Wilkins: Baltimore, MD, USA, 1996. [Google Scholar]
- Keusgen, M. Biosensorische Methoden zur Quantitativen Bestimmung von Cysteinsulfoxiden, Berichte aus der Pharmazie; Wyd. Shaker-Verlag: Aachen, Germany, 1999. [Google Scholar]
- Fritsch, R.M.; Keusgen, M. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium, L. (Alliaceae). Phytochemistry 2006, 67, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Beniaich, G.; Salim, R.; Ech-Chihbi, E.; El-Hajjaji, F.; Rais, Z.; Abdellaoui, A.; Taleb, M. Ethnobotanical survey about medicinal plants used in traditional treatment of insomnia, asthenia, and oral and gum infections in the region Fez-Meknes, Morocco. Environ. Sci. Pollut. Res. Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.M.; Takezaki, T.; Ding, J.H.; Li, M.S.; Taijima, K. Protective effect of Allium vegetables against both esophageal and stomach cancer: A simultaneous case-referent study of high-epidemic area in Jiangsu province, China. Jpn. J. Cancer Res. 1999, 90, 614–621. [Google Scholar] [CrossRef]
- Perez-Gregorio, M.R.; Garcia-Falcon, M.S.; Simal-Gandara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Comp. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.-D.; Kim, S.-K. Allium flavonols: Health benefits, molecular targets, and bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Nikkhahi, M.; Souri, E.; Sarkhail, P.; Baeeri, M.; Mohammadhosseini, N. Evaluation of anti-tyrosinase activity of Allium ursinum extracts and their metal complexes. Acta Sci. Pol. Technol. Aliment. 2018, 17, 219–226. [Google Scholar]
- Rocchetti, G.; Zhang, L.; Bocchi, S.; Giuberti, G.; Ak, G.; Elbasan, F.; Yıldıztugay, E.; Ceylan, R.; Picot-Allain, M.C.N.; Mahomoodally, M.F.; et al. The functional potential of nine Allium species related to their untargeted phytochemical characterization, antioxidant capacity and enzyme inhibitory ability. Food Chem. 2021, 368, 130782. [Google Scholar] [CrossRef]
- Phetmanee, T.; Wunnakup, T.; Lukkunaprasit, T.; Madaka, F.; Settharaksa, S.; Kamkaen, N.; Vipunnqeun, N.; Charoenchai, L. Anti-tyrosinase and anti-melanogenic potential of shallots (Allium ascalonicum) from various cultivation sites in Thailand. J. Pharm. Sci. 2020, 44, 107–116. [Google Scholar]
- Abdykerimova, S.; Sakipova, Z.; Nakonieczna, S.; Koch, W.; Biernasiuk, A.; Grabarska, A.; Malm, A.; Kozhanova, K.; Kukula-Koch, W. Superior antioxidant capacity of berberis iliensis—HPLC-Q-TOF-MS based phytochemical studies and spectrophotometric determinations. Antioxidants 2020, 9, 504. [Google Scholar] [CrossRef]
- Niu, K.-M.; Kothari, D.; Lee, W.-D.; Cho, S.; Wu, X.; Kim, S.-K. Optimization of Chinese chive juice as a functional feed additive. Appl. Sci. 2020, 10, 6194. [Google Scholar] [CrossRef]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef] [PubMed]
- Jaitz, L.; Mueller, B.; Koellensperger, G.; Huber, D.; Oburger, E.; Puschenreiter, M.; Hann, S. LC-MS analysis of low molecular weight organic acids derived from root exudation. Anal. Bioanal. Chem. 2011, 400, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, G.; Raja, M.; Naik, M.; Lakshmipathi, M.; Carbone, V.; Russo, G.L.; Khan, P.S.V. Determination of antioxidant capacity and flavonoid composition of onion (Allium cepa L.) landrace ‘Krishnapuram’ bulb using HPLC-ESI-ITMS. J. Biosci. 2021, 46, 58. [Google Scholar] [CrossRef]
- Abad-García, B.; Garmón-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in Citrus juices. Rapid Commun. Mass Spectrom. 2009, 23, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D.; Baranowska-Wójcik, E.; Kukula-Koch, W.; Kowalik, K.; Polak-Berecka, E.; Waśko, A. Evolution of the anticholinesterase, antioxidant, and anti-inflammatory activity of Epilobium angustifolium L. infusion during in vitro digestion. J. Funct. Foods 2021, 85, 104645. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Kovinich, N.; Walsh, C.; Ventura Marra, M. Characterization and quantification of major flavonol glycosides in ramps (Allium tricoccum). Molecules 2019, 24, 3281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakane, R.; Iwashina, T. Flavonol glycosides from the leaves of Allium macrostemon. Nat. Prod. Commun. 2015, 10, 1381–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyre-Silva, C.; Mora, T.C.; Biavatti, M.W.; Santos, A.R.S.; Dal-Margo, J.; Yunes, R.A.; Cechinel-Filho, V. Preliminary phytochemical and pharmacological studies of Aleurites moluccana leaves (L.) Wild. Phytomedicine 1995, 5, 109–113. [Google Scholar] [CrossRef]
- Svečnjak, L.; Chesson, L.A.; Gallina, A.; Maia, M.; Martinello, M.; Mutinelli, F.; Necati Muz, M.; Nunes, F.M.; Saucy, F.; Tipple, B.J.; et al. Standard methods for Apis mellifera beeswax research. J. Apicult. Res. 2019, 58, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Behrman, E.J.; Gopalan, V. Cholesterol and plants. J. Chem. Educ. 2005, 82, 1791–1793. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L.; et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 2016, 3, 16205. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Inf. Dis. 2003, 9, 1–7. [Google Scholar]
- Shanker, K.S.; Kanjilal, S.; Rao, B.V.; Kishore, K.H.; Misra, S.; Prasad, R.B. Isolation and antimicrobial evaluation of isomeric hydroxy ketones in leaf cuticular waxes of Annona squamosa. Phytochem. Anal. 2007, 18, 7–12. [Google Scholar] [CrossRef]
- Chatterjee, S.; Karmakar, A.; Azmi, S.A.; Barik, A. Antibacterial activity of long-chain primary alcohols from solena amplexicaulis leaves. Proc. Zool. Soc. 2018, 71, 313–319. [Google Scholar] [CrossRef]
- Tomovic, M.T.; Krivokapic, M.Z.; Jakovljevic, V.L.; Sovrlic, M.M.; Bradic, J.V.; Petkovic, A.M.; Radojevic, I.D.; Brankovic, S.R.; Comic, L.R.; Andjic, M.M.; et al. Biological activities of different extracts from Allium ursinum leaves. Acta Pol. Pharm. 2020, 77, 121–129. [Google Scholar] [CrossRef]
- Santas, J.; Almajano, M.P.; Carbó, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int. J. Food Sci. Technol. 2010, 45, 403–409. [Google Scholar] [CrossRef]
- Bakht, J.; Khan, S.; Shafi, M. In vitro antimicrobial activity of Allium cepa (dry bulbs) against Gram positive and Gram negative bacteria and fungi. Pak. J. Pharm. Sci. 2014, 27, 139–145. [Google Scholar]
- Hughes, B.G.; Lawson, L.D. Antimicrobial effects of Allium sativam, Allium ampeloprasum and Allium cepa. Phytother. Res. 1991, 5, 154–158. [Google Scholar] [CrossRef]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and Garlic (Allium sativam). LWT-Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Chaithradhyuthi, G.S.; Sowmya, P.S.; Shwetha, B.R.; Gowri, S.; Bhat, P.R.; Nagasapige, H.M.; Rao, B.R. Evaluation of the antioxidant and antimicrobial properties of some members of Allium. Electr. J. Environ. Agric. Food Chem. 2009, 8, 345–350. [Google Scholar]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of Allium × cornutum clementi and two varieties of Allium cepa L. peel extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef]
- Fredotovic, Ž.; Puizina, J. Edible Allium species: Chemical composition, biological activity and health effects. Ital. J. Food Sci. 2019, 31, 19–39. [Google Scholar] [CrossRef]
- Nencini, C.; Cavallo, F.; Capasso, A.; Franchi, G.G.; Giorgio, G.; Micheli, L. Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother. Res. 2007, 21, 874–878. [Google Scholar] [CrossRef]
- Lachowicz, S.; Kolniak-Ostek, J.; Oszmianski, J.; Wiśniewski, R. Comparison of phenolic content and antioxidant capacity of bear garlic (Allium ursinum L.) in different maturity stages. J. Food Process. Preserv. 2017, 41, e12921. [Google Scholar] [CrossRef]
- Harrabi, S.; Ferchichi, A.; Bacheli, A.; Fellah, H. Policosanol composition, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil at different seed maturity stages. Lipids Health Dis. 2018, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Medeiros de Azevedo, W.; Ferreira Ribeiro de Oliveira, L.; Alves Alcântara, M.; Tribuzy de Magalhães Cordeiro, A.M.; Florentino da Silva Chaves Damasceno, K.S.; Kelly de Araújo, N.; Fernandes de Assis, C.; Sousa Junior, F.C. Physicochemical characterization, fatty acid profile, antioxidant activity and antibacterial potential of cacay oil, coconut oil and cacay butter. PLoS ONE 2020, 28, e0232224. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Angelis, A.; Antosiewicz, B.; Sakipova, Z.; Kozhanova, K.; Głowniak, K.; Kukula-Koch, W. Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea biebersteinii Afan. Extract. Molecules 2021, 26, 964. [Google Scholar] [CrossRef] [PubMed]
- Emir, A.; Emir, C.; Yıldırım, H. Characterization of phenolic profile by LC-ESI-MS/MS and enzyme inhibitory activities of two wild edible garlic: Allium nigrum L. and Allium subhirsutum L. J. Food Biochem. 2020, 44, e13165. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Zengin, G.; Locatelli, M.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: Phenolic components, in vitro biological, and in silico propensities. Food Res. Int. 2018, 108, 641–649. [Google Scholar] [PubMed]
- Arung, E.T.; Furuta, S.; Ishikawa, H.; Tanaka, H.; Shimizu, K.; Kondo, R. Melanin biosynthesis inhibitory and antioxidant activities of quercetin-3’-O-beta-D-glucoside isolated from Allium cepa. Z. Nat. C 2011, 66, 209–214. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z.R.; Chen, P.; Li, Y.; Deng, W.R.; Wang, Y.Q.; Li, H.Y. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells. Bioorgan. Med. Chem. Lett. 2015, 25, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Malm, A.; Grzegorczyk, A.; Biernasiuk, A.; Baj, T.; Rój, E.; Tyśkiewicz, K.; Dębczak, A.; Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E. Could supercritical extracts from the aerial parts of Helianthus salicifolius A. Dietr. and Helianthus tuberosus L. be regarded as potential raw materials for biocidal purposes? Agriculture 2021, 11, 10. [Google Scholar] [CrossRef]
- Matejic, J.S.; Dzamic, A.M.; Mihajilov-Krstev, T.; Randelovic, V.N.; Krivosej, Z.D.; Marin, P.D. Total phenolic content, flavonoid concentration, antioxidant and antimicrobial activity of methanol extracts from three Seseli, L. taxa. Cent. Eur. J. Biol. 2012, 7, 1116–1122. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, M.-M.; Sun, Y.; Wang, L.-F.; Wang, H.; Zhang, Y.-J.; Li, H.-Y.; Zhuang, P.-W.; Yang, Z. Synergistic Promotion on Tyrosinase Inhibition by Antioxidants. Molecules 2018, 23, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of tyrosinase activity and melanin pigmentation by 2-hydroxytyrosol. Acta Pharm. Sin. B 2014, 4, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Ion Species | Rt | Molecular Formula | m/z Calculated | m/z Experimental | Δppm | RDB | MS/MS Fragments | Proposed Compound | Ref. | AGb | AGc | ATb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | [M−H]− | 2.7 | C6H8O7 | 191.0197 | 191.0209 | −6.11 | 3 | 129, 111 | Citric acid | [22] | + | + | + |
2 | [M−H]− | 8.2 | C33H40O22 | 787.1938 | 787.1986 | −6.03 | 14 | 625, 463, 301 | Quercetin triglycoside | [23] | + | + | − |
3 | [M−H]− | 8.7 | C21H22O12 | 465.1038 | 465.1067 | −6.11 | 11 | 303, 285 | Taxifolin glucoside | [24] | ++ | + | Tr |
4 | [M−H]− | 9.15 | C7H12O5 | 175.0612 | 175.0623 | −6.26 | 2 | 157, 115 | Propylmalic acid | [25] | + | + | + |
5 | [M−H]− | 10.4 | C27H30O17 | 625.1410 | 625.1463 | −8.43 | 13 | 463, 301 | Quercetin dihexoside | [23] | ++ | ++ | + |
6 | [M−H]− | 10.5 | C27H30O16 | 609.1461 | 609.1515 | −8.84 | 13 | 446, 283 | Kaempferol diglucoside | [23] | + | ++ | + |
7 | [M−H]− | 11.6 | C27H30O16 | 609.1461 | 609.1495 | −5.56 | 13 | 446, 285 | Kaempferol diglucoside | [23] | + | ++ | + |
8 | [M−H]− | 13.1 | C21H21O11+ | 449.1089 | 449.1109 | −4.37 | 11 | 287 | Cyanidin glucoside | [26] | + | Tr | Tr |
9 | [M−H]− | 15.0 | C41H72O10+ | 723.5053 | 723.5097 | −6.11 | 6 | 677, 255 | Unknown 1 | ++ | + | ++ | |
10 | [M−H]− | 16.0 | C15H12O7 | 303.0510 | 303.0481 | 9.62 | 10 | 285 | Dihydroquercetin | [27] | + | + | Tr |
11 | [M−H]− | 16.9 | C28H32O17 | 639.1567 | 639.1573 | −0.98 | 13 | 315 | Isorhamnetin diglucoside | [26] | + | + | Tr |
12 | [M−H]− | 18.4 | C55H80O6 | 836.596 | 836.5945 | 1.84 | 15.5 | 790, 483 | Unknown 2 | ++ | + | ++ | |
13 | [M−H]− | 18.7 | C21H20O12 | 463.0882 | 463.0907 | −5.39 | 12 | 301, 151 | Isoquercetin | [22] | ++ | ++ | + |
14 | [M−H]− | 19.8 | C21H20O11 | 447.0933 | 447.0894 | 8.67 | 12 | 284, 174 | Kaempferol glucoside | [28] | + | + | − |
15 | [M−H]− | 20.8 | C22H22O12 | 477.1038 | 477.1041 | −0.52 | 12 | 314 | Isorhamnetin glucoside | [26] | ++ | ++ | Tr |
16 | [M−H]− | 29.6 | C15H10O7 | 301.0354 | 301.0381 | −9.02 | 11 | − | Quercetin | [22] | + | ++ | + |
17 | [M−H]− | 35.5 | C15H10O6 | 285.0405 | 285.0391 | 4.76 | 11 | − | Kaempferol | [29] | + | ++ | - |
No. | Compound Name | Molecular Formula | RI* | AGb | AGc | ATb |
---|---|---|---|---|---|---|
1 | Nonanal | C9H18O | 1106 | + | ||
2 | Neophytadiene (isomer II) | C20H38 | 1836 | + | ||
3 | Hexadecanoic acid | C16H32O2 | 1968 | + | + | + |
4 | Hexadecanoic acid ethyl ester | C18H36O2 | 1992 | + | ||
5 | 3,13-Octadecadien-1-ol | C18H34O | 2094 | + | + | |
6 | Linoleic acid | C18H32O2 | 2146 | ++ | ||
7 | Linoleic acid ethyl ester | C20H36O2 | 2162 | + | ||
8 | Oleic acid ethyl ester | C20H38O2 | 2168 | + | ||
9 | Tetracosane | C24H50 | 2402 | + | + | + |
10 | 1-Tetracosanol | C24H50O | 2475 | + | ||
11 | Pentacosane | C25H52 | 2502 | + | + | + |
12 | Hexacosane | C26H54 | 2603 | + | + | + |
13 | 1-Hexacosanol | C26H54O | 2681 | ++ | + | |
14 | Heptacosane | C27H56 | 2703 | + | + | + |
15 | Tetracosanoic acid ethyl ester | C26H52O2 | 2798 | + | ||
16 | Octacosane | C28H58 | 2801 | + | ||
17 | Squalene | C30H50 | 2815 | + | + | + |
18 | 1-Octacosanol | C28H58O | 2882 | +++ | + | + |
19 | Nonacosane | C29H60 | 2904 | + | + | + |
20 | Triacontane | C30H62 | 3003 | + | + | + |
21 | 1-Triacontanol | C30H62O | 3084 | +++ | ++ | + |
22 | Hentriacontane | C31H64 | 3105 | +++ | +++ | +++ |
23 | Cholesterol | C27H46O | 3147 | + | + | |
24 | Dotriacontane | C32H66 | 3204 | + | + | |
25 | Lathosterol | C27H46O | 3210 | + | + | |
26 | 14-Methylergost-8-en-3-ol | C29H50O | 3226 | + | + | + |
27 | 1,30-Triacontanediol | C30H62O2 | 3251 | + | ||
28 | 1-Dotriacontanol | C32H66O | 3285 | ++ | + | |
29 | 16-Hentriacontanone | C31H62O | 3293 | +++ | + | |
30 | Tritriacontane | C33H68 | 3305 | ++ | + | + |
31 | 1-Tritriacontanol | C33H68O | 3382 | +++ |
Microbial Strains | Extracts | |||||
---|---|---|---|---|---|---|
AGb | AGc | ATb | ||||
Gram-positive bacteria | MIC | MBC | MIC | MBC | MIC | MBC |
Staphylococcus aureus ATCC 25923 | 1 | 2 | 0.5 | 1 | 0.5 | 1 |
Staphylococcus aureus ATCC 29213 | 2 | 8 | 1 | 2 | 1 | 2 |
Staphylococcus aureus ATCC BAA1707 | 2 | 2 | 1 | 1 | 1 | 1 |
Staphylococcus epidermidis ATCC 12228 | 1 | 4 | 0.5 | 1 | 0.5 | 1 |
Bacillus subtilis ATCC 6633 | 0.25 | 1 | 0.125 | 0.5 | 0.125 | 0.5 |
Bacillus cereus ATCC 10876 | 0.25 | 2 | 0.25 | 2 | 0.25 | 2 |
Micrococcus luteus ATCC 10240 | 1 | 4 | 0.5 | 1 | 0.5 | 1 |
Gram-negative bacteria | MIC | MBC | MIC | MBC | MIC | MBC |
Salmonella typhimurium ATCC 14028 | 4 | 8 | 1 | 8 | 1 | 8 |
Bordetella bronchiseptica ATCC 4617 | 1 | 8 | 1 | 8 | 1 | 8 |
Klebsiella pneumoniae ATCC 13883 | 4 | 16 | 1 | 8 | 1 | 8 |
Proteus mirabilis ATCC 12453 | 4 | 16 | 1 | 8 | 1 | 8 |
Escherichia coli ATCC 25922 | 2 | 8 | 1 | 4 | 1 | 4 |
Yeasts | MIC | MFC | MIC | MFC | MIC | MFC |
Candida parapsilosis ATCC 22019 | 1 | 2 | 0.5 | 0.5 | 0.5 | 0.5 |
Candida albicans ATCC 2091 | 1 | 1 | 0.25 | 0.25 | 0.25 | 0.25 |
Candida albicans ATCC 10231 | 0.125 | 0.5 | 0.125 | 0.5 | 0.125 | 0.5 |
Candida glabrata ATCC 90030 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Candida krusei ATCC 14243 | 0.25 | 1 | 0.125 | 0.25 | 0.125 | 0.25 |
Microbial Strains | Extracts | |||||||
---|---|---|---|---|---|---|---|---|
AGb_H2O | AGb_Et50% | AGb_Et70% | AGb_Et96% | |||||
Gram-positive bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Staphylococcus aureus ATCC 25923 | 16 | 32 | 16 | 32 | 16 | 32 | 16 | 32 |
Staphylococcus aureus ATCC 29213 | 32 | 32 | 32 | 32 | 16 | 32 | 16 | 32 |
Staphylococcus aureus ATCC AA1707 | 32 | 32 | 32 | 32 | 16 | 32 | 16 | 32 |
Staphylococcus epidermidis ATCC 12228 | 32 | 32 | 32 | 32 | 16 | 32 | 16 | 32 |
Bacillus subtilis ATCC 6633 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Bacillus cereus ATCC 10876 | 16 | 32 | 16 | 32 | 16 | 32 | 16 | 32 |
Micrococcus luteus ATCC 10240 | 32 | 32 | 32 | 32 | 16 | 32 | 16 | 32 |
Gram-negative bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Salmonella typhimurium ATCC 14028 | 16 | 32 | 16 | 32 | 16 | 32 | 16 | 32 |
Bordetella bronchiseptica ATCC 4617 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Klebsiella pneumoniae ATCC 13883 | 16 | 32 | 16 | 32 | 16 | 32 | 16 | 32 |
Proteus mirabilis ATCC 12453 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Escherichia coli ATCC 25922 | 16 | 32 | 16 | 32 | 16 | 32 | 16 | 32 |
Yeasts | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC |
Candida parapsilosis ATCC 22019 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Candida albicans ATCC 2091 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Candida albicans ATCC 10231 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Candida glabrata ATCC 90030 | 8 | 16 | 8 | 16 | 8 | 16 | 8 | 16 |
Candida krusei ATCC 14243 | 8 | 16 | 8 | 16 | 8 | 16 | 8 | 16 |
Microbial Strains | Extracts | |||||||
---|---|---|---|---|---|---|---|---|
ATb_H2O | ATb_Et50% | ATb_Et70% | ATb_Et96% | |||||
Gram-positive bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Staphylococcus aureus ATCC 25923 | 4 | 16 | 2 | 16 | 2 | 16 | 2 | 16 |
Staphylococcus aureus ATCC 29213 | 16 | 16 | 8 | 16 | 4 | 8 | 4 | 8 |
Staphylococcus aureus ATCC AA1707 | 8 | 8 | 4 | 16 | 4 | 8 | 2 | 4 |
Staphylococcus epidermidis ATCC 12228 | 8 | 8 | 4 | 8 | 4 | 8 | 2 | 4 |
Bacillus subtilis ATCC 6633 | 8 | 16 | 4 | 8 | 4 | 8 | 4 | 4 |
Bacillus cereus ATCC 10876 | 8 | 16 | 4 | 16 | 4 | 16 | 4 | 16 |
Micrococcus luteus ATCC 10240 | 8 | 8 | 4 | 8 | 4 | 8 | 2 | 4 |
Gram-negative bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Salmonella typhimurium ATCC 14028 | 8 | 8 | 8 | 8 | 4 | 8 | 4 | 4 |
Bordetella bronchiseptica ATCC 4617 | 8 | 8 | 4 | 4 | 4 | 4 | 2 | 4 |
Klebsiella pneumoniae ATCC 13883 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 |
Proteus mirabilis ATCC 12453 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 |
Escherichia coli ATCC 25922 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 |
Yeasts | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC |
Candida parapsilosis ATCC 22019 | 1 | 2 | 1 | 1 | 0.5 | 1 | 0.5 | 1 |
Candida albicans ATCC 2091 | 1 | 2 | 0.5 | 1 | 0.5 | 1 | 0.5 | 1 |
Candida albicans ATCC 10231 | 1 | 2 | 0.5 | 1 | 0.5 | 1 | 0.5 | 1 |
Candida glabrata ATCC 90030 | 2 | 4 | 1 | 2 | 1 | 2 | 1 | 2 |
Candida krusei ATCC 14243 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Sample | DPPH Assay | ABTS Assay | Sample | DPPH Assay | ABTS Assay |
---|---|---|---|---|---|
AGc_H2O | 1256.72 ± 19.28 | 5.08 ± 0.07 | AGb_H2O | 1132.60 ± 23.01 | 2.23 ± 0.03 |
AGc_Et96% | 1172.78 ± 10.15 | 3.70 ± 0.07 | AGb_Et96% | 1208.48 ± 21.39 | 4.76 ± 0.06 |
AGc_Et50% | 1243.51 ± 24.49 | 4.87 ± 0.16 | AGb_Et50% | 1130.14 ± 17.27 | 2.54 ± 0.03 |
AGc_Et70% | 1280.78 ± 14.72 | 4.53 ± 0.23 | AGb_Et70% | 1081.01 ± 46.66 | 2.16 ± 0.03 |
Sample | DPPH Assay | ABTS Assay | Sample | DPPH Assay | ABTS Assay |
ATb_H2O | 1020.35 ± 40.30 | 0.61 ± 0.03 | ATb_Eth | 1501.14 ± 10.95 | 50.85 ± 2.90 |
AGc_Eth | 975.92 ± 35.94 | 35.68 ± 0.58 | |||
ATb_Et96% | 1071.04 ± 17.82 | 1.81 ± 0.04 | AGb_Eth | 19,274.78 ± 92.11 | 37.51 ± 2.31 |
ATb_Et70% | 1151.29 ± 12.85 | 2.65 ± 0.01 | Vit C | 1535.46 ± 8.88 | 1252.80 ± 8.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyrbayeva, G.; Zagórska, J.; Grzegorczyk, A.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Ludwiczuk, A.; Czech, K.; Kumar, M.; Koch, W.; Malm, A.; et al. The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum. Molecules 2021, 26, 5491. https://doi.org/10.3390/molecules26185491
Kadyrbayeva G, Zagórska J, Grzegorczyk A, Gaweł-Bęben K, Strzępek-Gomółka M, Ludwiczuk A, Czech K, Kumar M, Koch W, Malm A, et al. The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum. Molecules. 2021; 26(18):5491. https://doi.org/10.3390/molecules26185491
Chicago/Turabian StyleKadyrbayeva, Gulnara, Justyna Zagórska, Agnieszka Grzegorczyk, Katarzyna Gaweł-Bęben, Marcelina Strzępek-Gomółka, Agnieszka Ludwiczuk, Karolina Czech, Manoj Kumar, Wojciech Koch, Anna Malm, and et al. 2021. "The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum" Molecules 26, no. 18: 5491. https://doi.org/10.3390/molecules26185491
APA StyleKadyrbayeva, G., Zagórska, J., Grzegorczyk, A., Gaweł-Bęben, K., Strzępek-Gomółka, M., Ludwiczuk, A., Czech, K., Kumar, M., Koch, W., Malm, A., Głowniak, K., Sakipova, Z., & Kukula-Koch, W. (2021). The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum. Molecules, 26(18), 5491. https://doi.org/10.3390/molecules26185491