Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Chemical Constituents of EO
2.2. Biological Assays
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Essential Oil Isolation and Analysis
3.4. Isolation and Identification of the Major Constituent
3.5. Synthesis of Safrole Derivatives
3.6. Oomycete Strain
3.7. Minimum Inhibitory Concentration Evaluation
3.8. Spores Germination Inhibition Assay
3.9. Cell Membrane Damage Measurement (Cellular Leakage Assay)
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Banfield, M.J.; Kamoun, S. Hooked and Cooked: A Fish Killer Genome Exposed. PLoS Genet. 2013, 9, e1003590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, J.; Donnelly, T.M. Saprolegniasis. In Clinical Veterinary Advisor. Birds and Exotic Pets; Elsevier Saunders: St. Louis, MO, USA, 2013; pp. 65–66. [Google Scholar]
- Lamour, K.; Kamoun, S. Oomycete Genetics and Genomics: Diversity, Interactions, and Research Tools; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–24. [Google Scholar]
- Torto-Alalibo, T.; Tian, M.; Gajendran, K.; Waugh, M.E.; van West, P.; Kamoun, S. Expressed Sequence Tags from the Oomycete Fish Pathogen Saprolegnia parasitica Reveal Putative Virulence Factors. BMC Microb. 2005, 5, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval-Gío, J.J.; Rodríguez-Canul, R.P.; Vidal-Martínez, V.M.; Fájer-Ávila, E.J.; Améndola-Pimenta, M. Formalin Toxicity to Oreochromis niloticus; its Effectiveness against Cichlidogyrus spp. and Host Stress Response. Lat. Am. J. Aquat. Res. 2019, 47, 34–41. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Wada, S.; Hatai, K.; Yamamoto, A. Antimycotic Activity of Eugenol against Selected Water Molds. J. Aquat. Anim. Health 2000, 12, 224–229. [Google Scholar] [CrossRef]
- Caruana, S.; Yoon, G.H.; Freeman, M.A.; Mackie, J.A.; Shinn, A.P. The Efficacy of Selected Plant Extracts and Bioflavonoids in Controlling Infections of Saprolegnia australis (Saprolegniales; Oomycetes). Aquaculture 2012, 358, 146–154. [Google Scholar] [CrossRef]
- Earle, G.; Hintz, W. New Approaches for Controlling Saprolegnia parasitica, the Causal Agent of a Devastating Fish Disease. Trop Life Sci. Res. 2014, 25, 101–109. [Google Scholar] [PubMed]
- Fregeneda-Grandes, J.M.; Rodríguez-Cadenas, F.; Aller-Gancedo, J.M. Fungi Isolated from Cultured Eggs, Alevins and Broodfish of Brown Trout in a Hatchery Affected by Saprolegniosis. J. Fish. Biol. 2007, 71, 510–518. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Berry, E.W. The Monimiaceae and a new Laurelia. Bot. Gaz. 1935, 96, 751–754. [Google Scholar]
- Cassels, B.K.; Urzüa, A. Bisbenzylisoquinoline Alkaloids of Laurelia sempervirens. J. Nat. Prod. 1985, 48, 671. [Google Scholar] [CrossRef]
- Rodriguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.L.; Kiessling, A.; Mihoc, M.; Pauchard, A.; Ruiz, E.; et al. Catálogo de las Plantas Vasculares de Chile. Gayana Bot. 2018, 75, 1–430. [Google Scholar] [CrossRef] [Green Version]
- Bittner, M.; Aguilera, M.A.; Hernández, V.; Arbert, C.; Becerra, J.; Casanueva, M.E. Fungistatic activity of essential oils Extracted from Peumus boldus Mol., Laureliopsis philippiana (Looser) Schodde and Laurelia sempervirens (Ruiz & Pav.) Tul. (Chilean Monimiaceae). Chil. J. Agric. Res. 2009, 69, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, I.; Madrid, A.; Zaror, L.; Martínez, R.; Werner, E.; Carrasco-Altamirano, H.; Cuellar, M.; Palma, H. Antimicrobial Activity of Ethyl Acetate Extract and Essential Oil from Bark of Laurelia sempervirens against Multiresistant Bacteria. Bol. Latinoam. Caribe Plant. Med. Aromat. 2012, 11, 306–315. [Google Scholar]
- Torres, C.; Silva, G.; Tapia, M.; Rodríguez, J.C.; Urbina, A.; Figueroa, I.; Santillan, C.; Aguilar, S.; Robles, A.; Lagunes, A. Propiedades Insecticidas del Laurelia sempervirens Polvo a Motschulsky Sitophilus zeamais: Control (Coleoptera Curculionidae). Bol. Latinoam. Caribe Plant. Med. Aromat. 2015, 14, 48–59. [Google Scholar]
- Touma, J.; Navarro, M.; Sepúlveda, B.; Pavon, A.; Corsini, G.; Fernández, K.; Quezada, C.; Torres, A.; Larrazabal-Fuentes, M.J.; Paredes, A.; et al. The Chemical Compositions of Essential Oils Derived from Cryptocarya alba and Laurelia sempervirens Possess Antioxidant, Antibacterial and Antitumoral Activity Potential. Molecules 2020, 25, 5600. [Google Scholar] [CrossRef]
- Montes, M.; Valenzuela, L.; Wilkomirsky, T. Safrole: Main Component of Essential Oil of Laurelia sempervirens (R. et P.) Tul. from the Bio-Bio Area (Chile). An. Real Acad. Farm. 1990, 56, 49–54. [Google Scholar]
- Tisserand, R.; Young, R. Essential oil composition. In Essential Oil Safety. A Guide for Health Care Professionals, 2nd ed.; Tisserand, R., Young, R., Eds.; Churchill Livingstone Elsevier: St. Louis, MO, USA, 2014; pp. 5–22. [Google Scholar]
- Eid, A.M.; Hawash, M. Biological Evaluation of Safrole Oil and Safrole Oil Nanoemulgel as Antioxidant, Antidiabetic, Antibacterial, Antifungal and Anticancer. BMC Complement. Med. Ther. 2021, 21, 159. [Google Scholar] [CrossRef]
- Adams, P.R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectromety, 4.1th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2017; pp. 20–45. [Google Scholar]
- Zapata, N.; Vargas, M.; Latorre, E.; Roudergue, X.; Ceballos, R. The Essential Oil of Laurelia sempervirens is Toxic to Trialeurodes vaporariorum and Encarsia formosa. Ind. Crop. Prod. 2016, 84, 418–422. [Google Scholar] [CrossRef]
- Madrid, A.; Godoy, P.; González, S.; Zaror, L.; Moller, A.; Werner, E.; Cuellar, M.; Villena, J.; Montenegro, I. Chemical Characterization and Anti-Oomycete Activity of Laureliopsis philippianna Essential Oils against Saprolegnia parasitica and S. australis. Molecules 2015, 20, 8033–8047. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, L.; Madrid, A.; Taborga, L.; Villena, J.; Cuellar, M.; Carrasco, H. Synthesis of Nine Safrole Derivatives and Their Antiproliferative Activity Towards Human Cancer Cells. J. Chil. Chem. Soc. 2010, 55, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Madrid Villegas, A.; Espinoza Catalán, L.; Montenegro Venegas, I.; Villena García, J.; Carrasco Altamirano, H. New Catechol Derivatives of Safrole and Their Antiproliferative Activity towards Breast Cancer Cells. Molecules 2011, 16, 4632–4641. [Google Scholar] [CrossRef]
- Nardoni, S.; Najar, B.; Fronte, B.; Pistelli, L.; Mancianti, F. In Vitro Activity of Essential Oils against Saprolegnia parasitica. Molecules 2019, 24, 1270. [Google Scholar] [CrossRef] [Green Version]
- Giordanetto, F.; Tyrchan, C.; Ulander, J. Intramolecular Hydrogen Bond Expectations in Medicinal Chemistry. ACS Med. Chem. Lett. 2017, 8, 139–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andres, T.; Eckmann, L.; Smith, D. Voltammetry of Nitrobenzene with Cysteine and other Acids in DMSO. Implications for the Biological Reactivity of Reduced Nitroaromatics with Thiols. Electrochim. Acta 2013, 92, 257–268. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Fu, H.; Qu, X.; Zhang, Z.; Kang, F.; Zhu, D. Spectroscopic and Molecular Modeling Investigation on Inhibition Effect of Nitroaromatic Compounds on Acetylcholinesterase Activity. Chemosphere 2019, 236, 124365. [Google Scholar] [CrossRef] [PubMed]
- Madrid, A.; Espinoza, L.; Pavéz, C.; Carrasco, H.; Hidalgo, M.E. Antioxidant and Toxicity Activity In Vitro of Twelve Safrole Derivatives. J. Chil. Chem. Soc. 2014, 59, 2598–2601. [Google Scholar] [CrossRef] [Green Version]
- Moller, A.C.; Parra, C.; Said, B.; Werner, E.; Flores, S.; Villena, J.; Russo, A.; Caro, N.; Montenegro, I.; Madrid, A. Antioxidant and Anti-Proliferative Activity of Essential Oil and Main Components from Leaves of Aloysia polystachya Harvested in Central Chile. Molecules 2021, 26, 131. [Google Scholar] [CrossRef] [PubMed]
- Escobar, B.; Montenegro, I.; Villena, J.; Werner, E.; Godoy, P.; Olguín, Y.; Madrid, A. Hemi-Synthesis and Anti-Oomycete Activity of Analogues of Isocordoin. Molecules 2017, 22, 968. [Google Scholar] [CrossRef] [Green Version]
- Flores, S.; Montenegro, I.; Villena, J.; Cuellar, M.; Werner, E.; Godoy, P.; Madrid, A. Synthesis and Evaluation of Novel Oxyalkylated Derivatives of 2′,4′-Dihydroxychalcone as Anti-Oomycete Agents against Bronopol Resistant Strains of Saprolegnia sp. Int. J. Mol. Sci. 2016, 17, 1366. [Google Scholar] [CrossRef] [Green Version]
N | RT (min) | Components | % Area a | RI b | RI c | Identification |
---|---|---|---|---|---|---|
1 | 10.22 | α-Pinene | 1.48 | 941 | 941 | RL, MS, Co |
2 | 10.24 | Camphene | 0.11 | 956 | 957 | RL, MS |
3 | 10.32 | α-Phellandrene | 0.33 | 1010 | 1009 | RL, MS |
4 | 10.60 | p-Cymene | 0.12 | 1032 | 1033 | RL, MS |
5 | 10.77 | β-Phellandrene | 1.08 | 1038 | 1035 | RL, MS, Co |
6 | 10.83 | 3-Carene | 0.42 | 1147 | 1148 | RL, MS |
7 | 10.88 | Isosafrole | 11.90 | 1227 | 1229 | RL, MS, Co |
8 | 11.04 | Safrole | 65.03 | 1293 | 1295 | RL, MS, Co |
9 | 11.13 | Piperonal | 0.37 | 1348 | 1347 | RL, MS, Co |
10 | 11.94 | 3-Allyl-6-methoxyphenol | 1.13 | 1360 | 1362 | RL, MS |
11 | 12.26 | β-Caryophyllene | 0.74 | 1395 | 1396 | RL, MS |
12 | 12.52 | α-Gurjunene | 0.24 | 1397 | 1399 | RL, MS |
13 | 15.83 | Humelene | 0.35 | 1441 | 1442 | RL, MS |
14 | 15.90 | Germacrene D | 2.33 | 1480 | 1480 | RL, MS |
15 | 16.05 | Spathulenol | 11.16 | 1560 | 1562 | RL, MS |
16 | 16.10 | α-Cadinol | 1.10 | 1615 | 1615 | RL, MS |
Total identified | 97.89 |
N Strains | MIC (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
EO | 1 | 4 | 5 | 6 | 7 | Bronopol | Azoxystrobin | DMSO | |
1 | 50 | 125 | 175 | 3.125 | 3.125 | 3.125 | 50 | 100 | i |
2 | 75 | 100 | 150 | 6.25 | 6.25 | 6.25 | 50 | 100 | i |
3 | 75 | 125 | 150 | 6.25 | 6.25 | 6.25 | 50 | 100 | i |
4 | 75 | 100 | 150 | 12.5 | 3.125 | 12.5 | 50 | 100 | i |
5 | 100 | 125 | 175 | 25 | 6.25 | 25 | 50 | 75 | i |
6 | 125 | 175 | 175 | 50 | 6.25 | 50 | 75 | 125 | i |
7 | 100 | 150 | 175 | 50 | 3.125 | 50 | 50 | 100 | i |
8 | 100 | 150 | 200 | 50 | 6.25 | 50 | 75 | 150 | i |
9 | 125 | 150 | 150 | 50 | 6.25 | 50 | 50 | 100 | i |
10 | 125 | 150 | >200 | 50 | 3.125 | 50 | 100 | 100 | i |
11 | 100 | 150 | >200 | 50 | 6.25 | 50 | 100 | 100 | i |
12 | 125 | 175 | >200 | 50 | 6.25 | 50 | 100 | 100 | i |
13 | 150 | 175 | >200 | 50 | 12.5 | 50 | 100 | 100 | i |
14 | 150 | 175 | 200 | 50 | 25 | 50 | 100 | 100 | i |
15 | 175 | 200 | >200 | 25 | 25 | 50 | 100 | 100 | i |
16 | 125 | 150 | >200 | 25 | 50 | 75 | 50 | 100 | i |
17 | 75 | 125 | 175 | 12.5 | 25 | 25 | 75 | 100 | i |
18 | 50 | 100 | 150 | 6.25 | 50 | 75 | 100 | 100 | i |
19 | 75 | 125 | 150 | 50 | 12.5 | 50 | 125 | 100 | i |
20 | 150 | 175 | >200 | 100 | 50 | 100 | 150 | 125 | i |
21 | 125 | 150 | >200 | 100 | 50 | 100 | 150 | 100 | i |
22 | 125 | 175 | >200 | 125 | 75 | 125 | 150 | 100 | i |
N Strains | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
8 | 9 | 10 | 11 | 12 | Bronopol | Azoxystrobin | DMSO | |
1 | 12.5 | 50 | 125 | 150 | 100 | 50 | 100 | i |
2 | 12.5 | 50 | 125 | 150 | 100 | 50 | 100 | i |
3 | 125 | 75 | 100 | 150 | 100 | 50 | 100 | i |
4 | 150 | 75 | 125 | 175 | 100 | 50 | 100 | i |
5 | 150 | 100 | 150 | 150 | 125 | 50 | 75 | i |
6 | 175 | 75 | 125 | 175 | 125 | 75 | 125 | i |
7 | 150 | 50 | 150 | 200 | 150 | 50 | 100 | i |
8 | >200 | 100 | 200 | 175 | 150 | 75 | 150 | i |
9 | 125 | 50 | 125 | 175 | 150 | 50 | 100 | i |
10 | 175 | 75 | 200 | 150 | 175 | 100 | 100 | i |
11 | 175 | 175 | 200 | >200 | 200 | 100 | 100 | i |
12 | 125 | 150 | 150 | 200 | >200 | 100 | 100 | i |
13 | 150 | 150 | 175 | >200 | 150 | 100 | 100 | i |
14 | 175 | 175 | 175 | >200 | 125 | 100 | 100 | i |
15 | 175 | 75 | 200 | >200 | 200 | 100 | 100 | i |
16 | >200 | 50 | >200 | 200 | >200 | 50 | 100 | i |
17 | 125 | 50 | 175 | 150 | 175 | 75 | 100 | i |
18 | 175 | 50 | 175 | >200 | 200 | 100 | 100 | i |
19 | 100 | 50 | 125 | 150 | 150 | 125 | 100 | i |
20 | 200 | 50 | 200 | 175 | 175 | 150 | 125 | i |
21 | 175 | 175 | 175 | 150 | 125 | 150 | 100 | i |
22 | 175 | 175 | 175 | 150 | 125 | 150 | 100 | i |
Compound | S. parasítica (Strain 23) | S. australis (Strain 24) | ||||
---|---|---|---|---|---|---|
MIC (µg·mL−1) a | MOC (µg·mL−1) a | Membrane Damage (%) b | MIC (µg·mL−1) a | MOC (µg·mL−1) a | Membrane Damage (%) b | |
EO | 50 | 75 | 86.3 ± 0.4 | 75 | 75 | 84.3 ± 0.9 |
1 | 125 | 150 | 75.4 ± 0.6 | 150 | 150 | 72.4 ± 1.1 |
4 | 150 | 175 | 6.3 ± 0.4 | 175 | 175 | 5.9 ± 0.4 |
5 | 150 | 175 | 80.3 ± 0.2 | 175 | 200 | 50.5 ± 0.6 |
6 | 25 | 75 | 96.3 ± 0.3 | 100 | 125 | 90.6 ± 0.9 |
7 | 100 | 125 | 77.4 ± 0.7 | 150 | 175 | 60.8 ± 0.4 |
8 | 125 | 150 | 33.4 ± 0.6 | 175 | 200 | 27.5 ± 0.7 |
9 | 100 | 150 | 55.8 ± 0.4 | 150 | 175 | 40.4 ± 0.8 |
10 | 150 | 175 | 17.4 ± 0.1 | 175 | 200 | 12.2 ± 0.4 |
11 | 200 | >200 | 0 | >200 | >200 | 0 |
12 | 150 | 175 | 25.6 ± 0.4 | >200 | >200 | 21.4 ± 0.3 |
Bronopol | 50 | 100 | 27.1 ± 0.3 | 100 | 150 | 26.0 ± 0.4 |
Azoxystrobin | 100 | 125 | Nd | 100 | 150 | Nd |
SDS | - | - | 100 | - | - | 100 |
DMSO | i | i | i | i | i | i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, A.; Morales, A.L.; Saffirio, V.; Cuellar, M.A.; Werner, E.; Said, B.; Godoy, P.; Caro, N.; Melo, M.; Montenegro, I. Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens. Molecules 2021, 26, 6551. https://doi.org/10.3390/molecules26216551
Madrid A, Morales AL, Saffirio V, Cuellar MA, Werner E, Said B, Godoy P, Caro N, Melo M, Montenegro I. Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens. Molecules. 2021; 26(21):6551. https://doi.org/10.3390/molecules26216551
Chicago/Turabian StyleMadrid, Alejandro, Ana Lizeth Morales, Valentina Saffirio, Mauricio A. Cuellar, Enrique Werner, Bastián Said, Patricio Godoy, Nelson Caro, Mirna Melo, and Iván Montenegro. 2021. "Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens" Molecules 26, no. 21: 6551. https://doi.org/10.3390/molecules26216551
APA StyleMadrid, A., Morales, A. L., Saffirio, V., Cuellar, M. A., Werner, E., Said, B., Godoy, P., Caro, N., Melo, M., & Montenegro, I. (2021). Chemical Analysis and In Vitro Bioactivity of Essential Oil of Laurelia sempervirens and Safrole Derivatives against Oomycete Fish Pathogens. Molecules, 26(21), 6551. https://doi.org/10.3390/molecules26216551