A Comparative Study of the Lipophilicity of Metformin and Phenformin
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.1.1. Reference Standards
3.1.2. Solvents
3.1.3. Chromatographic Plates
3.2. Chromatographic Procedure
3.3. Chromatographic Lipophilicity Parameter (RMW)
3.4. Computed Lipophilicity Parameter (logP)
3.5. Topological Indices
3.6. New Calculation Procedures of logP Based on Topological Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jozwiak, K.; Szumilo, H.; Soczewinski, E. Lipophilicity, methods of determination and its role in biological effect of chemical substances. Wiad. Chem. 2001, 55, 1047–1074. [Google Scholar]
- Rutkowska, E.; Pajak, K.; Jóźwiak, K. Lipophilicity—Methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. Drug Res. 2013, 70, 3–18. [Google Scholar]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Kempińska, D.; Chmiel, T.; Kot-Wasik, A.; Mróz, A.; Mazerska, Z.; Namieśnik, J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends Anal. Chem. 2019, 113, 54–73. [Google Scholar] [CrossRef]
- Segan, S.; Opsenica, D.; Milojkovic-Opsenica, D. Thin-layer chromatography in medicinal chemistry. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 238–248. [Google Scholar] [CrossRef]
- Kosmalski, T.; Studzińska, R.; Redka, M.; Pluskota, R.; Modzelewska, B. Lipophilicity study of 1-(benzofuran-2-yl)ethan-1-one oxime and its substituted O-benzyl ethers. J. Braz. Chem. Soc. 2017, 28, 2100–2105. [Google Scholar] [CrossRef]
- Studzinska, R.; Kolodziejska, R.; Redka, M.; Modzelewska-Banachiewicz, B.; Augustynska, B. Lipophilicity study of thiazolo[3,2-a]pyrimidine derivatives as potential bioactive agents. J. Braz. Chem. Soc. 2016, 27, 1587–1593. [Google Scholar] [CrossRef]
- Wanat, K.; Żydek, G.; Hekner, A.; Brzezińska, E. In silico plasma protein binding studies of selected group of drugs using TLC and HPLC retention data. Pharmaceuticals 2021, 14, 202. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Pluta, K.; Jeleń, M. Evaluation of the lipophilicity of new anticancer 1,2,3-triazole-dipyridothiazine hybrids using RP-TLC and different computational methods. Processes 2020, 8, 858. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Gawrońska-Grzywacz, M.; Berecka-Rycerz, A.; Paruch, K.; Piątkowska-Chmiel, I.; Natorska-Chomicka, D.; Herbet, M.; Gumieniczek, A.; Dudka, J.; Wujec, M. New benzenesulphonohydrazide derivatives as potential antitumour agents. Oncol. Lett. 2020, 20, 1. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Chrobak, E.; Bębenek, E.; Boryczka, S. Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1,4-quinone hybrids. Processes 2021, 9, 376. [Google Scholar] [CrossRef]
- Bębenek, E.; Bober-Majnusz, K.; Siudak, S.; Chrobak, E.; Kadela-Tomanek, M.; Wietrzyk, J.; Boryczka, S. Application of TLC to evaluate the lipophilicity of newly synthesized betulin derivatives. J. Chromatogr. Sci. 2020, 58, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, M.; Starek, M.; Chłoń-Rzepa, G.; Zagórska, A.; Komsta, Ł.; Jankowska, A.; Ślusarczyk, M.; Pawłowski, M. Estimation of the lipophilicity of purine-2,6-dione-based TRPA1 antagonists and PDE4/7 inhibitors with analgesic activity. Bioorganic Med. Chem. Lett. 2021, 49, 128318. [Google Scholar] [CrossRef]
- Apostolov, S.; Vastag, G.; Matijević, B.; Đaković-Sekulić, T.; Marinković, A. Thin-layer chromatography on reversed ohase in the characterization of retention behaviour, lipophilicity, and pharmacokinetics of cyanoacetamide derivatives. J. Chil. Chem. Soc. 2020, 65, 4654–4660. [Google Scholar] [CrossRef]
- Dąbrowska, M.; Starek, M.; Komsta, Ł.; Szafrański, P.; Stasiewicz-Urban, A.; Opoka, W. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases. Eur. J. Pharm. Sci. 2017, 101, 115–124. [Google Scholar] [CrossRef]
- Elmansi, H.; Nasr, J.J.; Rageh, A.H.; El-Awady, M.; Hassan, G.S.; Abdel-Aziz, H.; Belal, F. Assessment of lipophilicity of newly synthesized celecoxib analogues using reversed-phase HPLC. BMC Chem. 2019, 13, 84. [Google Scholar] [CrossRef]
- Hawrył, A.M.; Popiołek, Ł.P.; Hawrył, M.A.; Swieboda, R.S.; Niejedli, M.A. Chromatographic and calculation methods for analysis of the lipophilicity of newly synthesized thiosemicarbazides and their cyclic analogues 1,2,4-triazol-3-thiones. J. Braz. Chem. Soc. 2015, 26, 1617–1624. [Google Scholar] [CrossRef]
- Marciniec, K.; Bafeltowska, J.; Maślankiewicz, M.; Buszman, E.; Boryczka, S. Determination of the lipophilicity of quinoline sulfonamides by reversed-phase HPLC and theoretical calculations. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 702–709. [Google Scholar] [CrossRef]
- Jevrić, L.R.; Karadžić, M.Ž.; Mandić, A.I.; Podunavac Kuzmanović, S.O.; Kovačević, S.Z.; Nikolić, A.R.; Oklješa, A.M.; Sakač, M.N.; Penov Gaši, K.M.; Stojanović, S.Z. Lipophilicity estimation and characterization of selected steroid derivatives of biomedical importance applying RP HPLC. J. Pharm Biomed. Anal. 2017, 134, 27–35. [Google Scholar] [CrossRef]
- Constantinescu, T.; Lungu, C.N.; Lung, I. Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 2019, 24, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearden, J.C. The use of topological indices in QSAR and QSPR modeling. In Advances in QSAR Modeling; Springer: Cham, Switzerland, 2017; pp. 57–88. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanni, R.; Galvez-Llompart, M.; Garcia-Domenech, R.; Gálvez, J. Latest advances in molecular topology applications for drug discovery. Expert Opin. Drug Discov. 2015, 10, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, F.J. Lipophilicity in drug design: An overview of lipophilicity descriptors in 3D-QSAR studies. Futur. Med. Chem. 2019, 11, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Markuszewski, M.J.; Nowakowska, J. Combined computational-experimental approach to predict blood–brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors. J. Pharm. Biomed. Anal. 2017, 143, 214–221. [Google Scholar] [CrossRef]
- Pyka, A.; Kazimierczak, A.; Gurak, D. Utilization of reversed-phase TLC and topological indices to the lipophilicity investigations of naproxen. Pharm. Methods 2013, 4, 16–20. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Jain, S.; Piplode, S.; Pandey, S. QSPR modeling of the lipophilicity of aziridine derivatives. Der Pharm. Chem. 2014, 6, 380–387. [Google Scholar]
- Gao, W.; Wang, W.; Farahani, M. Topological indices study of molecular structure in anticancer drugs. J. Chem. 2016, 2016, 3216327. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; De, N.; Pal, A. topological indices of some chemical structures applied for the treatment of COVID-19 patients. Polycycl. Aromat. Compd. 2020, 1–15. [Google Scholar] [CrossRef]
- Wei, J.; Cancan, M.; Rehman, A.U.; Siddiqui, M.K.; Nasir, M.; Younas, M.T.; Hanif, M.F. On topological indices of remdesivir compound used in treatment of Corona virus (COVID 19). Polycycl. Aromat. Compd. 2021, 1–19. [Google Scholar] [CrossRef]
- Zhong, J.-F.; Rauf, A.; Naeem, M.; Rahman, J.; Aslam, A. Quantitative structure-property relationships (QSPR) of valency based topological indices with COVID-19 drugs and application. Arab. J. Chem. 2021, 14, 103240. [Google Scholar] [CrossRef]
- Liu, J.; Arockiaraj, M.; Arulperumjothi, M.; Prabhu, S. Distance based and bond additive topological indices of certain repurposed antiviral drug compounds tested for treating COVID-19. Int. J. Quantum Chem. 2021, 121, e26617. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; De, N.; Pal, A.; Gao, W. Molecular descriptors of some chemicals that prevent COVID-19. Curr. Org. Synth. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Gao, W.; Siddiqui, M.K.; Imran, M.; Jamil, M.K.; Farahani, M.R. Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 2016, 24, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirmani, S.A.K.; Ali, P.; Azam, F.; Alvi, P.A. On ve-degree and ev-degree topological properties of hyaluronic acid-anticancer drug conjugates with QSPR. J. Chem. 2021, 2021, 3860856. [Google Scholar] [CrossRef]
- Dołowy, M.; Pyka, A. Lipophilicity assessment of spironolactone by means of reversed phase liquid chromatography and by newly developed calculation procedures. Acta Pol. Pharm. Drug Res. 2015, 72, 235–244. [Google Scholar]
- Dołowy, M.; Pyka, A. Lipophilicity study of salicylic and acetylsalicylic acids using both experimental and calculations methods. J. Liq. Chromatogr. Relat. Technol. 2014, 38, 485–491. [Google Scholar] [CrossRef]
- Dołowy, M.; Bober, K.; Pyka-Pajak, A. Topological indices in modeling of chromatographic retention. In Chemometrics in Chromatography; Komsta, L., Vander Heyden, Y., Sherma, J., Eds.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 319–350. [Google Scholar]
- Yendapally, R.; Sikazwe, D.; Kim, S.S.; Ramsinghani, S.; Fraser-Spears, R.; Witte, A.P.; La-Viola, B. A review of phenformin, metformin, and imeglimin. Drug Dev. Res. 2020, 81, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, B.J.; Kitagawa, H.; Memmott, R.M.; Gills, J.J.; Dennis, P.A. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 2013, 24, 469–480. [Google Scholar] [CrossRef]
- Anisimov, V.N. Metformin for aging and cancer prevention. Aging 2010, 2, 760–774. [Google Scholar] [CrossRef] [Green Version]
- Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res. 2019, 11, 3295–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Luo, J.; Yu, T.; Zhou, L.; Lv, H.; Shang, P. Anticancer mechanisms of metformin: A review of the current evidence. Life Sci. 2020, 254, 117717. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, H.P.; Thapa, P.; Van Schepdael, A. Simple HPLC-UV method for the quantification of metformin in human plasma with one step protein precipitation. Saudi Pharm. J. 2013, 22, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Hansch, C.; Leo, A.; Hoekman, D.; Livingstone, D. Exploring QSAR: Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org/lab/alogps (accessed on 20 August 2021).
- Tetko, I.V.; Poda, G.I. Application of AlOGPS 2.1 to predict logP distribution coefficient for Pfizer proprietary compounds. J. Med. Chem. 2004, 47, 5601–5604. [Google Scholar] [CrossRef]
- Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 2002, 42, 1136–1145. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem. A 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Moriguci, I.; Hirono, S.; Liu, Q. Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 1992, 40, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, A.Y.; Wang, R.; Lai, L. Computation of octanol−water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Pyka, A. Indeksy topologiczne i ich znaczenie w badaniach chromatograficznych. Cz. I. Indeksy topologiczne. Wiad. Chem. 1997, 51, 783–802. [Google Scholar]
- Balaban, A.T.; Motoc, I.; Bonchev, D.; Mekenyan, O. Topological indices for structure-activity correlations. Top. Curr. Chem. 2007, 21–55. [Google Scholar] [CrossRef]
- Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
Chromatographic Plates | Metformin | Phenformin | ||
---|---|---|---|---|
Equation | R | Equation | R | |
RP-TLC system | ||||
methanol-water | ||||
RP2 | −0.073 − 1.400⋅φ | 0.999 | 0.407 − 2.000⋅φ | 0.999 |
RP18 | 0.093 − 3.200⋅φ | 0.999 | 0.247 − 0.689⋅φ | 0.992 |
RP18W | 0.183 − 1.300⋅φ | 0.999 | 0.362 − 1.266⋅φ | 0.995 |
propan-1-ol | ||||
RP2 | 0.122 − 1.530⋅φ | 0.986 | 0.440 − 2.000⋅φ | 0.996 |
RP18 | 0.580 − 1.520⋅φ | 0.996 | 0.715 − 1.770⋅φ | 0.982 |
RP18W | 0.639 − 1.930⋅φ | 0.980 | 0.142 − 0.815⋅φ | 0.997 |
acetonitrile-water | ||||
RP2 | 0.960 − 2.700⋅φ | 0.998 | 0.656 − 2.160⋅φ | 0.905 |
RP18 | 0.389 − 1.560⋅φ | 0.999 | 0.728 − 2.285⋅φ | 0.958 |
RP18W | −4.877 + 0.580⋅φ | 0.992 | 0.276 − 1.328⋅φ | 0.999 |
NP-TLC system | ||||
methanol-water-acetic acid | ||||
Silica gel 60F254 | −6.657 + 8.057⋅φ | 0.999 | 6.170 + 7.700⋅φ | 0.999 |
Silica gel 60/Kieselguhr F254 | −0.913 + 0.400⋅φ | 0.990 | 0.637 + 2.150⋅φ | 0.998 |
Silica gel 60F254 with concentrating zone | −1.000 + 0.093⋅φ | 0.992 | −1.983 + 1.700⋅φ | 0.999 |
CN | 0.833 − 1.900⋅φ | 0.989 | 0.883 − 1.850⋅φ | 0.999 |
acetone-water | ||||
Silica gel 60F254 | −4.127 + 5.000⋅φ | 0.992 | −4.383 + 4.700⋅φ | 0.992 |
Silica gel 60/Kieselguhr F254 | 1.242 − 0.707⋅φ | 0.999 | 0.693 + 2.600⋅φ | 0.999 |
Silica gel 60F254 with concentrating zone | −0.046 + 0.371⋅φ | 0.998 | 0.727 − 2.300⋅φ | 0.999 |
CN | 0.931 − 2.343⋅φ | 0.996 | 0.790 − 2.500⋅φ | 0.990 |
Chromatographic Plates | Metformin | Phenformin |
---|---|---|
Chromatographic Parameters (RMW) | ||
RP-TLC system | ||
methanol-water | ||
RP2 | −0.073 | 0.407 |
RP18 | 0.093 | 0.247 |
RP18W | 0.183 | 0.362 |
propan-1-ol | ||
RP2 | 0.122 | 0.440 |
RP18 | 0.580 | 0.715 |
RP18W | 0.639 | 0.142 |
acetonitrile-water | ||
RP2 | 0.960 | 0.656 |
RP18 | 0.389 | 0.728 |
RP18W | −4.877 | 0.276 |
NP-TLC system | ||
methanol-water-acetic acid | ||
Silica gel 60F254 | −6.657 | 6.170 |
Silica gel 60/Kieselguhr F254 | −0.913 | 0.637 |
Silica gel 60F254 with concentrating zone | −1.000 | −1.983 |
CN | 0.833 | 0.883 |
acetone-water | ||
Silica gel 60F254 | −4.127 | −4.383 |
Silica gel 60/Kieselguhr F254 | 1.242 | 0.693 |
Silica gel 60F254 with concentrating zone | −0.046 | 0.727 |
CN | 0.931 | 0.790 |
Theoretical values of logP | ||
AlogPs | −1.83 | −0.72 |
AClogP | −1.89 | −0.40 |
AlogP | −0.05 | 1.32 |
MlogP | −0.33 | 1.49 |
XlogP2 | 0.56 | 1.86 |
XlogP3 | −1.06 | 0.71 |
logPA | 0.74 | 0.79 |
logPB | 0.68 | 2.30 |
Topological Index | Metformin | Phenformin | |
---|---|---|---|
Gutman index | M | 36 | 86 |
Mν | 125 | 174 | |
Randić index | oχ | 7.4393 | 10.5773 |
oχν | 5.4718 | 8.3786 | |
1χ | 4.0367 | 6.6781 | |
1χν | 2.3539 | 4.6565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dołowy, M.; Jampilek, J.; Bober-Majnusz, K. A Comparative Study of the Lipophilicity of Metformin and Phenformin. Molecules 2021, 26, 6613. https://doi.org/10.3390/molecules26216613
Dołowy M, Jampilek J, Bober-Majnusz K. A Comparative Study of the Lipophilicity of Metformin and Phenformin. Molecules. 2021; 26(21):6613. https://doi.org/10.3390/molecules26216613
Chicago/Turabian StyleDołowy, Małgorzata, Josef Jampilek, and Katarzyna Bober-Majnusz. 2021. "A Comparative Study of the Lipophilicity of Metformin and Phenformin" Molecules 26, no. 21: 6613. https://doi.org/10.3390/molecules26216613
APA StyleDołowy, M., Jampilek, J., & Bober-Majnusz, K. (2021). A Comparative Study of the Lipophilicity of Metformin and Phenformin. Molecules, 26(21), 6613. https://doi.org/10.3390/molecules26216613