The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases
Abstract
:1. Introduction
2. Therapeutic Drug Monitoring of Monoclonal Antibodies
3. Therapeutic Drug Monitoring of mAbs Utilizing a Patient-Centric Approach
3.1. Tumor Necrosis Factor Inhibitors
3.1.1. Adalimumab
3.1.2. Infliximab
3.1.3. Golimumab
3.2. Monoclonal Antibodies with Various Mechanism of Actions
3.2.1. Vedolizumab
3.2.2. Others
4. Strategies for Correcting the Limitations of DBS
4.1. Determination of Blood Volume in DBS Samples
4.1.1. Electrical Conductivity Measurement
4.1.2. Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection
4.1.3. Mathematical and Computational Approaches for the Correction of Hct Effect
4.2. Determination of Hct in DBS Samples
4.2.1. Image Analysis
4.2.2. UV-Visible Reflectance and Near Infrared Spectroscopy
4.2.3. Hemoglobin Quantification Using UV-Visible Spectrometry
5. Recent Developments in Microsampling
5.1. Volumetric Blood Sample Collection
5.1.1. hemaPEN
5.1.2. Hemaxis
5.1.3. VAMS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef]
- Dostalek, M.; Gardner, I.; Gurbaxani, B.M.; Rose, R.H.; Chetty, M. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin. Pharmacokinet. 2013, 52, 83–124. [Google Scholar] [CrossRef]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Imamura, C.K. Therapeutic drug monitoring of monoclonal antibodies: Applicability based on their pharmacokinetic properties. Drug Metab. Pharmacokinet. 2019, 34, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Battat, R.; Jairath, V.; Vande Casteele, N. Advances in Therapeutic Drug Monitoring for Small-Molecule and Biologic Therapies in Inflammatory Bowel Disease. Curr. Treat. Options Gastroenterol. 2019, 17, 127–145. [Google Scholar] [CrossRef]
- Capiau, S.; Veenhof, H.; Koster, R.A.; Bergqvist, Y.; Boettcher, M.; Halmingh, O.; Keevil, B.G.; Koch, B.C.; Linden, R.; Pistos, C.; et al. Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot-Based Methods for Therapeutic Drug Monitoring. Ther. Drug Monit. 2019, 41, 409–430. [Google Scholar] [CrossRef]
- Antunes, M.V.; Charao, M.F.; Linden, R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin. Biochem. 2016, 49, 1035–1046. [Google Scholar] [CrossRef]
- Wilhelm, A.J.; den Burger, J.C.; Swart, E.L. Therapeutic drug monitoring by dried blood spot: Progress to date and future directions. Clin. Pharmacokinet. 2014, 53, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, P.; White, S.; Cobb, Z.; De Vries, R.; Thomas, E.; Van Baar, B. Update of the EBF recommendation for the use of DBS in regulated bioanalysis integrating the conclusions from the EBF DBS-microsampling consortium. Bioanalysis 2013, 5, 2129–2136. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.D.; Rosman, L.M.; Ratcliff, J.D.; Strickland, P.T.; Graham, D.R.; Silbergeld, E.K. State of the Science in Dried Blood Spots. Clin. Chem. 2018, 64, 656–679. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.Q.; Khetarpal, R.; Zhang, Y.; Song, H.; Li, S.S. Combination of ELISA and dried blood spot technique for the quantification of large molecules using exenatide as a model. J. Pharmacol. Toxicol. Methods 2011, 64, 124–128. [Google Scholar] [CrossRef]
- Kaendler, K.; Warren, A.; Lloyd, P.; Sims, J.; Sickert, D. Evaluation of dried blood spots for the quantification of therapeutic monoclonal antibodies and detection of anti-drug antibodies. Bioanalysis 2013, 5, 613–622. [Google Scholar] [CrossRef]
- Karp, D.G.; Danh, K.; Espinoza, N.F.; Seftel, D.; Robinson, P.V.; Tsai, C.T. A serological assay to detect SARS-CoV-2 antibodies in at-home collected finger-prick dried blood spots. Sci. Rep. 2020, 10, 20188. [Google Scholar] [CrossRef] [PubMed]
- Leavy, O. Therapeutic antibodies: Past, present and future. Nat. Rev. Immunol. 2010, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Sedger, L.M.; Ranasinghe, C.; McDermott, M.F.; Asvadi, P. Therapeutic Antibody-Based Drugs in the Treatment of Human Inflammatory Disorders. In Immunotherapy—Myths, Reality, Ideas, Future; BoD—Books on Demand: Norderstedt, Germany, 2017. [Google Scholar] [CrossRef] [Green Version]
- Roda, G.; Jharap, B.; Neeraj, N.; Colombel, J.F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016, 7, e135. [Google Scholar] [CrossRef]
- Papamichael, K.; Vogelzang, E.H.; Lambert, J.; Wolbink, G.; Cheifetz, A.S. Therapeutic drug monitoring with biologic agents in immune mediated inflammatory diseases. Expert Rev. Clin. Immunol. 2019, 15, 837–848. [Google Scholar] [CrossRef]
- Buclin, T.; Thoma, Y.; Widmer, N.; André, P.; Guidi, M.; Csajka, C.; Decosterd, L.A. The Steps to Therapeutic Drug Monitoring: A Structured Approach Illustrated with Imatinib. Front. Pharmacol. 2020, 11, 177. [Google Scholar] [CrossRef]
- Dreesen, E.; Bossuyt, P.; Mulleman, D.; Gils, A.; Pascual-Salcedo, D. Practical recommendations for the use of therapeutic drug monitoring of biopharmaceuticals in inflammatory diseases. Clin. Pharmacol. 2017, 9, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, M.; Abdullah, A.; Frleta, M.; MacDonald, J.; McGucken, A. The potential value of blood monitoring of biologic drugs used in the treatment of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2020, 12. [Google Scholar] [CrossRef]
- Papamichael, K.; Cheifetz, A.S.; Melmed, G.Y.; Irving, P.M.; Casteele, N.V.; Kozuch, P.L.; Raffals, L.E.; Baidoo, L.; Bressler, B.; Devlin, S.M.; et al. Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 1655–1668 e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannahan, S.E.; Papamichael, K.; Cheifetz, A.S. Evidence Supporting High-Dose Use of Biologics in Clinical Practice. Curr. Treat. Options Gastroenterol. 2020, 18, 408–422. [Google Scholar] [CrossRef]
- Oude Munnink, T.H.; Henstra, M.J.; Segerink, L.I.; Movig, K.L.; Brummelhuis-Visser, P. Therapeutic drug monitoring of monoclonal antibodies in inflammatory and malignant disease: Translating TNF-alpha experience to oncology. Clin. Pharmacol. Ther. 2016, 99, 419–431. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Nguyen, G.C.; Kupfer, S.S.; Falck-Ytter, Y.; Singh, S. American Gastroenterological Association Institute Clinical Guidelines, C. American Gastroenterological Association Institute Guideline on Therapeutic Drug Monitoring in Inflammatory Bowel Disease. Gastroenterology 2017, 153, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vande Casteele, N.; Herfarth, H.; Katz, J.; Falck-Ytter, Y.; Singh, S. American Gastroenterological Association Institute Technical Review on the Role of Therapeutic Drug Monitoring in the Management of Inflammatory Bowel Diseases. Gastroenterology 2017, 153, 835–857 e6. [Google Scholar] [CrossRef] [Green Version]
- Bastida, C.; Ruiz, V.; Pascal, M.; Yague, J.; Sanmarti, R.; Soy, D. Is there potential for therapeutic drug monitoring of biologic agents in rheumatoid arthritis? Br. J. Clin. Pharmacol. 2017, 83, 962–975. [Google Scholar] [CrossRef] [Green Version]
- Medina, F.; Plasencia, C.; Goupille, P.; Ternant, D.; Balsa, A.; Mulleman, D. Current Practice for Therapeutic Drug Monitoring of Biopharmaceuticals in Rheumatoid Arthritis. Ther. Drug Monit. 2017, 39, 364–369. [Google Scholar] [CrossRef]
- Liau, M.M.; Oon, H.H. Therapeutic drug monitoring of biologics in psoriasis. Biologics 2019, 13, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, C.; Herranz, P.; Segaert, S.; Gils, A. Current Practice of Therapeutic Drug Monitoring of Biopharmaceuticals in Psoriasis Patients. Ther. Drug Monit. 2017, 39, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Schots, L.; Grine, L.; Soenen, R.; Lambert, J. Dermatologists on the medical need for therapeutic drug monitoring of biologics in psoriasis: Results of a structured survey. J. Dermatol. Treat. 2020, 1–9. [Google Scholar] [CrossRef]
- Menting, S.P.; Coussens, E.; Pouw, M.F.; van den Reek, J.M.P.A.; Temmerman, L.; Boonen, H.; De Jong, E.M.G.J.; Spuls, P.I.; Lambert, J. Developing a Therapeutic Range of Adalimumab Serum Concentrations in Management of Psoriasis: A Step Toward Personalized Treatment. JAMA Dermatol. 2015, 151, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Negoescu, D.M.; Enns, E.A.; Swanhorst, B.; Baumgartner, B.; Campbell, J.P.; Osterman, M.T.; Papamichael, K.; Cheifetz, A.S.; Vaughn, B.P. Proactive Vs Reactive Therapeutic Drug Monitoring of Infliximab in Crohn’s Disease: A Cost-Effectiveness Analysis in a Simulated Cohort. Inflamm. Bowel Dis. 2020, 26, 103–111. [Google Scholar] [CrossRef]
- Papamichael, K.; Chachu, K.A.; Vajravelu, R.K.; Vaughn, B.P.; Ni, J.; Osterman, M.T.; Cheifetz, A.S. Improved Long-term Outcomes of Patients with Inflammatory Bowel Disease Receiving Proactive Compared with Reactive Monitoring of Serum Concentrations of Infliximab. Clin. Gastroenterol. Hepatol. 2017, 15, 1580–1588 e3. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, A.; Luci, G. Personalized Medicine of Monoclonal Antibodies in Inflammatory Bowel Disease: Pharmacogenetics, Therapeutic Drug Monitoring, and Beyond. Front. Pharmacol. 2021, 11, 806. [Google Scholar] [CrossRef]
- Ordas, I.; Mould, D.R.; Feagan, B.G.; Sandborn, W.J. Anti-TNF monoclonal antibodies in inflammatory bowel disease: Pharmacokinetics-based dosing paradigms. Clin. Pharmacol. Ther. 2012, 91, 635–646. [Google Scholar] [CrossRef]
- Dirks, N.L.; Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 633–659. [Google Scholar] [CrossRef] [PubMed]
- Datta-Mannan, A. Mechanisms Influencing the Pharmacokinetics and Disposition of Monoclonal Antibodies and Peptides. Drug Metab. Dispos. 2019, 47, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Berends, S.E.; D’Haens, G.R.A.M.; Schaap, T.; De Vries, A.; Rispens, T.; Bloem, K.; Mathôt, R.A.A. Dried blood samples can support monitoring of infliximab concentrations in patients with inflammatory bowel disease: A clinical validation. Br. J. Clin. Pharmacol. 2019, 85, 1544–1551. [Google Scholar] [CrossRef]
- Reinink, A.R. A Pharmacokinetic Rationale for Proactive Therapeutic Drug Monitoring of Anti-TNF Drugs. Am. J. Gastroenterol. 2017, 112, 1892–1893. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Vajravelu, R.K.; Vaughn, B.P.; Osterman, M.T.; Cheifetz, A.S. Proactive Infliximab Monitoring Following Reactive Testing is Associated with Better Clinical Outcomes Than Reactive Testing Alone in Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spooner, N.; Anderson, K.D.; Siple, J.; Wickremsinhe, E.R.; Xu, Y.; Lee, M. Microsampling: Considerations for its use in pharmaceutical drug discovery and development. Bioanalysis 2019, 11, 1015–1038. [Google Scholar] [CrossRef]
- Koster, R.A. Have we got ‘patient-centric sampling’ right? Bioanalysis 2020, 12, 869–872. [Google Scholar] [CrossRef]
- Fuller, G.; Mouapi, K.N.; Joung, S.; Shufelt, C.; Broek, I.V.D.; Lopez, M.; Dhawan, S.; Mastali, M.; Spiegel, C.; Merz, N.B.; et al. Feasibility of Patient-Centric Remote Dried Blood Sampling: The Prediction, Risk, and Evaluation of Major Adverse Cardiac Events (PRE-MACE) Study. Biodemogr. Soc. Biol. 2019, 65, 313–322. [Google Scholar] [CrossRef]
- Li, C.C.; Dockendorf, M.; Kowalski, K.; Yang, B.; Xu, Y.; Xie, I.; Kleijn, H.J.; Bosch, R.; Jones, C.; Thornton, B.; et al. Population PK Analyses of Ubrogepant (MK-1602), a CGRP Receptor Antagonist: Enriching In-Clinic Plasma PK Sampling with Outpatient Dried Blood Spot Sampling. J. Clin. Pharmacol. 2018, 58, 294–303. [Google Scholar] [CrossRef]
- Roadcap, B.; Hussain, A.; Dreyer, D.; Carter, K.; Dube, N.; Xu, Y.; Anderson, M.; Berthier, E.; Vazvaei, F.; Bateman, K.; et al. Clinical application of volumetric absorptive microsampling to the gefapixant development program. Bioanalysis 2020, 12, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Denniff, P.; Spooner, N. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates. Bioanalysis 2010, 2, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, E.M.; Zhang, Y.S.; Kim, J.K.; Frochen, S.; Kang, H.; Shim, H.; Ailshire, J.; Potter, A.; Cofferen, J.; Faul, J. Dried blood spots: Effects of less than optimal collection, shipping time, heat, and humidity. Am. J. Hum. Biol. 2020, 32, e23390. [Google Scholar] [CrossRef] [Green Version]
- Bowen, C.L.; Dopson, W.; Kemp, D.C.; Lewis, M.; Lad, R.; Overvold, C. Investigations into the environmental conditions experienced during ambient sample transport: Impact to dried blood spot sample shipments. Bioanalysis 2011, 3, 1625–1633. [Google Scholar] [CrossRef]
- Kneepkens, E.L.; Pouw, M.F.; Wolbink, G.J.; Schaap, T.; Nurmohamed, M.T.; De Vries, A.; Rispens, T.; Bloem, K. Dried blood spots from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory diseases. Br. J. Clin. Pharmacol. 2017, 83, 2474–2484. [Google Scholar] [CrossRef] [Green Version]
- Berends, S.E.; Bloem, K.; De Vries, A.; Schaap, T.; Rispens, T.; Strik, A.S.; Talwar, R.; Löwenberg, M.; D’Haens, G.R.; Mathôt, R.A. Monitoring of Adalimumab Concentrations at Home in Patients with Inflammatory Bowel Disease Using Dried Blood Samples. Ther. Drug Monit. 2020, 42, 289–294. [Google Scholar] [CrossRef]
- Detrez, I.; Schops, G.; Lefrère, J.; Tops, S.; Van Assche, G.; Vermeire, S.; Van Moerkercke, W.; Ferrante, M.; Gils, A. Golimumab Dried Blood Spot Analysis (GOUDA): A Prospective Trial Showing Excellent Correlation with Venepuncture Samples and More Detailed Pharmacokinetic Information. AAPS J. 2018, 21, 10. [Google Scholar] [CrossRef]
- Bian, S.; Berghe, N.V.D.; Vandersmissen, L.; Tops, S.; Vermeire, S.; Ferrante, M.; Gils, A.; Thomas, D. Evaluating an easy sampling method using dried blood spots to determine vedolizumab concentrations. J. Pharm. Biomed. Anal. 2020, 185, 113224. [Google Scholar] [CrossRef]
- Dockendorf, M.F.; Hansen, B.J.; Bateman, K.P.; Moyer, M.; Shah, J.K.; Shipley, L.A. Digitally Enabled, Patient-Centric Clinical Trials: Shifting the Drug Development Paradigm. Clin. Transl. Sci. 2020. [Google Scholar] [CrossRef]
- Wickremsinhe, E.R.; Ji, Q.C.; Gleason, C.R.; Anderson, M.; Booth, B.P. Land O’Lakes Workshop on Microsampling: Enabling Broader Adoption. AAPS J. 2020, 22, 135. [Google Scholar] [CrossRef]
- Papamichael, K.; Lin, S.; Moore, M.; Papaioannou, G.; Sattler, L.; Cheifetz, A.S. Infliximab in inflammatory bowel disease. Ther. Adv. Chronic Dis. 2019, 10, 2040622319838443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, G.; Samaan, M.A.; Irving, P.M. Golimumab in the treatment of ulcerative colitis. Ther. Adv. Gastroenterol. 2019, 12, 1756284818821266. [Google Scholar] [CrossRef] [PubMed]
- Soler, D.; Chapman, T.; Yang, L.L.; Wyant, T.; Egan, R.; Fedyk, E.R. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J. Pharmacol. Exp. Ther. 2009, 330, 864–875. [Google Scholar] [CrossRef] [Green Version]
- Rosario, M.; Dirks, N.L.; Gastonguay, M.R.; Fasanmade, A.A.; Wyant, T.; Parikh, A.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Fox, I. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment. Pharmacol. Ther. 2015, 42, 188–202. [Google Scholar] [CrossRef]
- Bloem, K.; Schaap, T.; Boshuizen, R.; Kneepkens, E.L.; Wolbink, G.J.; De Vries, A.; Rispens, T. Capillary blood microsampling to determine serum biopharmaceutical concentration: Mitra® microsampler vs dried blood spot. Bioanalysis 2018, 10, 815–823. [Google Scholar] [CrossRef]
- Biemans, V.B.C.; Van Der Woude, C.J.; Dijkstra, G.; Jong, A.E.V.D.M.-D.; Löwenberg, M.; de Boer, N.K.; Oldenburg, B.; Srivastava, N.; Jansen, J.M.; Bodelier, A.G.L.; et al. Ustekinumab is associated with superior effectiveness outcomes compared to vedolizumab in Crohn’s disease patients with prior failure to anti-TNF treatment. Aliment. Pharmacol. Ther. 2020, 52, 123–134. [Google Scholar] [CrossRef]
- Hanžel, J.; Zdovc, J.; Kurent, T.; Sever, N.; Javornik, K.; Tuta, K.; Koželj, M.; Smrekar, N.; Novak, G.; Štabuc, B.; et al. Peak Concentrations of Ustekinumab After Intravenous Induction Therapy Identify Patients with Crohn’s Disease Likely to Achieve Endoscopic and Biochemical Remission. Clin. Gastroenterol. Hepatol. 2021, 19, 111–118 e10. [Google Scholar] [CrossRef]
- Berghe, N.V.D.; Verstockt, B.; Vandeput, E.; Ballet, V.; Gils, A.; Ferrante, M.; Vermeire, S.; Thomas, D. Development and validation of dried blood spot sampling as a tool to identify the best time point to measure predictive ustekinumab serum concentrations in patients with Crohn’s disease. J. Crohn’s Colitis 2020, 14, S502. [Google Scholar] [CrossRef] [Green Version]
- Velghe, S.; Delahaye, L.; Stove, C.P. Is the hematocrit still an issue in quantitative dried blood spot analysis? J. Pharm. Biomed. Anal. 2019, 163, 188–196. [Google Scholar] [CrossRef]
- Denniff, P.; Spooner, N. The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis 2010, 2, 1385–1395. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-critical issues in quantitative analysis of dried blood spots: Challenges and solutions. Bioanalysis 2013, 5, 2023–2041. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rabie, P.; Denniff, P.; Spooner, N.; Chowdhry, B.Z.; Pullen, F.S. Investigation of different approaches to incorporating internal standard in DBS quantitative bioanalytical workflows and their effect on nullifying hematocrit-based assay bias. Anal. Chem. 2015, 87, 4996–5003. [Google Scholar] [CrossRef] [PubMed]
- Xie, I.; Xu, Y.; Anderson, M.; Wang, M.; Xue, L.; Breidinger, S.; Goykhman, D.; Woolf, E.J.; Bateman, K.P. Extractability-mediated stability bias and hematocrit impact: High extraction recovery is critical to feasibility of volumetric adsorptive microsampling (VAMS) in regulated bioanalysis. J. Pharm. Biomed. Anal. 2018, 156, 58–66. [Google Scholar] [CrossRef]
- Chao, T.C.; Trybala, A.; Starov, V.; Das, D.B. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surf. A Physicochem. Eng. Asp. 2014, 451, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Kadjo, A.F.; Stamos, B.N.; Shelor, C.P.; Berg, J.M.; Blount, B.C.; Dasgupta, P.K. Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry. Anal. Chem. 2016, 88, 6531–6537. [Google Scholar] [CrossRef]
- Dvorak, M.; Rysava, L.; Kuban, P. Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection for Quantitative Analysis of Dried Blood Spots with Unknown Blood Volume. Anal. Chem. 2020, 92, 1557–1564. [Google Scholar] [CrossRef]
- Alsous, M.M.; Hawwa, A.F.; McElnay, J.C. Hematocrit, blood volume, and surface area of dried blood spots—A quantitative model. Drug Test. Anal. 2020, 12, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Daousani, C.; Karalis, V.; Malenovic, A.; Dotsikas, Y. Hematocrit effect on dried blood spots in adults: A computational study and theoretical considerations. Scand. J. Clin. Lab. Investig. 2019, 79, 325–333. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Capiau, S.; Lambert, W.E.; Stove, C.P. Current strategies for coping with the hematocrit problem in dried blood spot analysis. Bioanalysis 2014, 6, 1871–1874. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open Source platform for biological image analysis Johannes. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Ben, F.; Biasizzo, J.; Curcio, F. A fast, nondestructive, low-cost method for the determination of hematocrit of dried blood spots using image analysis. Clin. Chem. Lab. Med. 2019, 57, e81–e82. [Google Scholar] [CrossRef]
- Miller, I.V.J.H.; Poston, P.A.; Rutan, S.C.; Karnes, T.H. An On-card Approach for Assessment of Hematocrit on Dried Blood Spots which Allows for Correction of Sample Volume. J. Anal. Bioanal. Tech. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Capiau, S.; Wilk, L.S.; Aalders, M.C.; Stove, C.P. A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy. Anal. Chem. 2016, 88, 6538–6546. [Google Scholar] [CrossRef] [Green Version]
- Capiau, S.; Wilk, L.S.; De Kesel, P.M.M.; Aalders, M.C.G.; Stove, C.P. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method. Anal. Chem. 2018, 90, 1795–1804. [Google Scholar] [CrossRef]
- Oostendorp, M.; El Amrani, M.; Diemel, E.C.; Hekman, D.; van Maarseveen, E.M. Measurement of Hematocrit in Dried Blood Spots Using Near-Infrared Spectroscopy: Robust, Fast, and Nondestructive. Clin. Chem. 2016, 62, 1534–1536. [Google Scholar] [CrossRef]
- Richardson, G.; Marshall, D.; Keevil, B.G. Prediction of haematocrit in dried blood spots from the measurement of haemoglobin using commercially available sodium lauryl sulphate. Ann. Clin. Biochem. 2018, 55, 363–367. [Google Scholar] [CrossRef]
- Karsan, A.; Maclaren, I.; Conn, D.; Wadsworth, L. An evaluation of hemoglobin determination using sodium lauryl sulfate. Am. J. Clin. Pathol. 1993, 100, 123–126. [Google Scholar] [CrossRef]
- Trajan Scientific Australia Pty Ltd., hemaPEN. Available online: https://www.trajanscimed.com/pages/hemapen. (accessed on 28 February 2021).
- Protti, M.; Marasca, C.; Cirrincione, M.; Cavalli, A.; Mandrioli, R.; Mercolini, L. Assessment of capillary volumetric blood microsampling for the analysis of central nervous system drugs and metabolites. Analyst 2020, 145, 5744–5753. [Google Scholar] [CrossRef]
- Deprez, S.; Paniagua-Gonzalez, L.; Velghe, S.; Stove, C.P. Evaluation of the Performance and Hematocrit Independence of the HemaPEN as a Volumetric Dried Blood Spot Collection Device. Anal. Chem. 2019, 91, 14467–14475. [Google Scholar] [CrossRef] [Green Version]
- DBS System SA, Hemaxis. Available online: https://hemaxis.com (accessed on 28 February 2021).
- Zwart, T.C.; Gokoel, S.R.; van der Boog, P.J.; de Fijter, J.W.; Kweekel, D.M.; Swen, J.J.; Guchelaar, H.-J.; Moes, D.J.A. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device. Br. J. Clin. Pharmacol. 2018, 84, 2889–2902. [Google Scholar] [CrossRef] [Green Version]
- Delahaye, L.; Veenhof, H.; Koch, B.C.P.; Alffenaar, J.C.; Linden, R.; Stove, C. Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Ther. Drug Monit. 2021. [Google Scholar] [CrossRef]
- Neoteryx, L. Mitra® microsampling. Available online: https://www.neoteryx.com (accessed on 28 February 2021).
- De Kesel, P.M.; Lambert, W.E.; Stove, C.P. Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. Anal. Chim. Acta 2015, 881, 65–73. [Google Scholar] [CrossRef] [Green Version]
Antibody | Indication | Target trough Serum Concentration [μg/mL] | References |
---|---|---|---|
Adalimumab | IBD | ≥7.5 | [25,27] |
Pso | ≥3.51 | [34] | |
RA | ≥5 | [23] | |
Certolizumab pegol | IBD | ≥13 | [25] |
Infliximab | IBD | ≥5 | [25,27] |
Golimumab | IBD | ≥1 | [25] |
Antibody | Indication | Number of Patients | Microsampling Method | Lower Limit of Quantification (µg/mL) | Conversion of DBS Concentration into DBS-Serum Concentration | Stability | Extraction | Extraction Solution | Analytical Method | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Adalimumab | RA, PsA, AS | n = 161: RA n = 96, PsA n = 31, AS n = 34 | DBS-Whatman® 903 Protein Saver Card | 0.411 | DBS H0.42: Cs = Ce × 1/(1 − 0.42) × Ve/A (Hct) × (v0 + v1 × 0.42) Correction Factor: 1.19 = 1/(1 − 16.26%) | DBS cards spiked with anti-adalimumab at RT for up to 3 months | Overnight incubation (gently shaking) at RT | PBS/0.05% Tween 20/0.05% NaN3 | ELISA | [53] |
IBD (UC and CD) | n = 33: CD n = 27, UC n = 6 | Mitra® microsampler-volumetric absorptive microsampling (VAMS) | 0.6 | A fixed Hct (0.42) was used for the conversion of DBS (VAMS) extracts to serum concentrations | - | Overnight vigorous shaking (≥17 h) on an orbital shaker | PBS/0.05% Tween 20/0.05% NaN3 | ELISA | [54] | |
Infliximab | IBD (UC and CD) | n = 40: CD n = 29, UC n = 11 | Mitra® microsampler-volumetric absorptive microsampling (VAMS) | 0.6 | DBS H-Hb: serum fraction in DBS extract is calculated using Hct computed from haemoglobin in DBS extract | - | Overnight vigorous shaking (≥17 h) on an orbital shaker | PBS/0.05% Tween 20/0.05% NaN3 | ELISA | [41] |
Golimumab | UC | n = 10 | DBS-Whatman® 903 Protein Saver Card | 0.2 | Correction factor 3.9: combination of extraction recovery and the capillary blood/serum ratio for golimumab | DBS cards up to one month at RT, DBS extracts up to 3 months at −20 °C | 1 h incubation, gentle shaking (300 rpm, RT) -> centrifugation at 14,000× g RCF (g), 5 min | SuperBlock®T20 | ELISA | [55] |
Vedolizumab | IBD (UC and CD) | n = 19: UC n = 9, CD n = 10 | DBS-Whatman® 903 Protein Saver Card | 2 | [VDZ]DBS = [VDZ]serum × 0.435 + 0.995 (R2 = 0.956) | DBS cards up to 1 month at RT/extracts at −20 °C for 3.5 months-no influence on VDZ recovery | 1 h incubation, gentle shaking (300 rpm, RT) -> centrifugation at 14,000× g for 5 min | SuperBlock®T20 | ELISA | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mingas, P.-D.; Zdovc, J.; Grabnar, I.; Vovk, T. The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules 2021, 26, 1787. https://doi.org/10.3390/molecules26061787
Mingas P-D, Zdovc J, Grabnar I, Vovk T. The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules. 2021; 26(6):1787. https://doi.org/10.3390/molecules26061787
Chicago/Turabian StyleMingas, Panagiotis-Dimitrios, Jurij Zdovc, Iztok Grabnar, and Tomaž Vovk. 2021. "The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases" Molecules 26, no. 6: 1787. https://doi.org/10.3390/molecules26061787