Screening a Natural Product-Inspired Library for Anti-Phytophthora Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Compound Library
3.2. Phytophthora Isolates and Culture Conditions
3.3. Inhibition Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baldauf, S.L.; Roger, A.J.; Wenk-Siefert, I.; Doolittle, W.F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000, 290, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; Furzer, O.; Jones, J.D.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabieres, F.; et al. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Oliver, R.P.; Hewitt, H.G. Plant pathology and plant pathogens. In Fungicides in Crop Protection, 2nd ed.; CABI Publishing: Wallingford, UK, 2014; pp. 11–20. [Google Scholar]
- Guenthner, J.F.; Michael, K.C.; Nolte, P. The economic impact of potato late blight on US growers. Potato Res. 2001, 44, 121–125. [Google Scholar] [CrossRef]
- Grünwald, N.J.; Garbelotto, M.; Goss, E.M.; Heungens, K.; Prospero, S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 2012, 20, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Baysal-Gurel, F.; Liyanapathiranage, P.; Mullican, J. Biofumigation: Opportunities and challenges for control of soilborne diseases in nursery production. Plant Health Prog. 2018, 19, 332–337. [Google Scholar] [CrossRef]
- Serrano-Perez, P.; Palo, C.; Rodriguez-Molina, M.D. Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Sci. Hortic. 2017, 216, 126–133. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Velasco, P. Natural control of plant pathogens through glucosinolates: An effective strategy against fungi and oomycetes. Phytochem. Rev. 2020, 19, 1045–1059. [Google Scholar] [CrossRef]
- Bae, S.J.; Mohanta, T.K.; Chung, J.Y.; Ryu, M.; Park, G.; Shim, S.; Hong, S.B.; Seo, H.; Bae, D.W.; Bae, I.; et al. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 2016, 92, 128–138. [Google Scholar] [CrossRef]
- Bradshaw, R.E.; Bellgard, S.E.; Black, A.; Burns, B.R.; Gerth, M.L.; McDougal, R.L.; Scott, P.M.; Waipara, N.W.; Weir, B.S.; Williams, N.M.; et al. Phytophthora agathidicida: Research progress, cultural perspectives and knowledge gaps in the control and management of kauri dieback in New Zealand. Plant Pathol. 2020, 69, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Horner, I.J.; Hough, E.G.; Horner, M.B. Forest efficacy trials on phosphite for control of kauri dieback. N. Z. Plant Prot. 2015, 68, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.E.S.; Barrett, S.; Shearer, B.L. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australas Plant Pathol. 2001, 30, 133–139. [Google Scholar] [CrossRef]
- Barrett, S.; Rathbone, D. Long-term phosphite application maintains species assemblages, richness and structure of plant communities invaded by Phytophthora cinnamomi. Austral Ecol. 2018, 43, 360–374. [Google Scholar] [CrossRef]
- Eshraghi, L.; Anderson, J.P.; Aryamanesh, N.; McComb, J.A.; Shearer, B.; Hardy, G.E.S. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway. BMC Plant Biol. 2014, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Vinas, M.; Mendez, J.C.; Jimenez, V.M. Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Sci. Hortic. 2020, 265. [Google Scholar] [CrossRef]
- Dann, E.; McLeod, A. Phosphonic acid: A long-standing and versatile crop protectant. Pest. Manag. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, M.P.; Shearer, B.L.; Colquhoun, I.J.; O’Brien, P.A.; Hardy, G.E.S. Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathol. 2008, 57, 928–936. [Google Scholar] [CrossRef]
- Hunter, S.; Williams, N.; McDougal, R.; Scott, P.; Garbelotto, M. Evidence for rapid adaptive evolution of tolerance to chemical treatments in Phytophthora species and its practical implications. PLoS ONE 2018, 13, e0208961. [Google Scholar] [CrossRef]
- Hao, W.; Förster, H.; Adaskaveg, J.E. Resistance to potassium phosphite in Phytophthora species causing Citrus Brown Rot and integrated practices for management of resistant isolates. Plant Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wightwick, A.M.; Walters, R.; Allinson, G.; Reichman, S.M.; Menzies, N.W. Environmental risks of fungicides used in horticultural production systems. Fungicides 2010, 1, 273–304. [Google Scholar]
- Lawrence, S.A.; Armstrong, C.B.; Patrick, W.M.; Gerth, M.L. High-throughput chemical screening identifies compounds that inhibit different stages of the Phytophthora agathidicida and Phytophthora cinnamomi life cycles. Front Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Fenn, M.E.; Coffey, M.D. Studies on the in vitro and in vivo antifungal activity of fosetyl-al and phosphorus-acid. Phytopathology 1984, 74, 606–611. [Google Scholar] [CrossRef]
- Mateus, M.C.; Neves, D.; Dacunha, B.; Laczko, E.; Maia, C.; Teixeira, R.; Cravador, A. Structure, anti-Phytophthora and anti-tumor activities of a nortriterpenoid from the rhizome of Phlomis purpurea (Lamiaceae). Phytochemistry 2016, 131, 158–164. [Google Scholar] [CrossRef]
- Neves, D.; Caetano, P.; Oliveira, J.; Maia, C.; Horta, M.; Sousa, N.; Salgado, M.; Dionisio, L.; Magan, N.; Cravador, A. Anti-Phytophthora cinnamomi activity of Phlomis purpurea plant and root extracts. Eur. J. Plant Pathol. 2014, 138, 835–846. [Google Scholar] [CrossRef]
- Evidente, A.; Cristinzio, G.; Punzo, B.; Andolfi, A.; Testa, A.; Melck, D. Flufuran, an antifungal 3,5-disubstituted furan produced by Aspergillus flavus. Chem. Biodivers. 2009, 6, 328–334. [Google Scholar] [CrossRef]
- Ramirez-Reyes, T.; Monribot-Villanueva, J.L.; Jimenez-Martinez, O.D.; Aguilar-Colorado, A.S.; Bonilla-Landa, I.; Flores-Estevez, N.; Luna-Rodriguez, M.; Guerrero-Analco, J.A. Sesquiterpene lactones and phenols from polyfollicles of Magnolia vovidessi and their antimicrobial activity. Nat. Prod. Commun. 2018, 13, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Sakr, S.H.; De Feo, V.; Camele, I. Study of bio-pharmaceutical and antimicrobial properties of pomegranate (Punica granatum L.) leathery exocarp extract. Plants 2021, 10, 153. [Google Scholar] [CrossRef]
- Baillie, L.C.; Bearder, J.R.; Li, W.-S.; Sherringham, J.A.; Whiting, D.A. Studies into the synthesis of a sub-unit of the neurotoxic alkaloid methyllycaconitine. J. Chem. Soc. Perkin Trans. I 1998, 24, 4047–4055. [Google Scholar] [CrossRef]
- Dickson, E.; Pilkington, L.I.; Brimble, M.A.; Barker, D. Enantioselective synthesis of BE ring analogues of methyllycaconitine. Tetrahedron 2016, 72, 400–414. [Google Scholar] [CrossRef]
- Goodall, K.J.; Brimble, M.A.; Barker, D. 1H and 13C NMR spectra of methylmaleimido- and methylsuccinimidoanthranilate esters of 1-hydroxymethyl-6-methoxy-3-azabicyclo [3.3.1]nonanes. Magn. Reson. Chem. 2007, 45, 695–699. [Google Scholar] [CrossRef]
- Hardick, D.J.; Blagbrough, I.S.; Cooper, G.; Potter, B.V.L.; Critchley, T.; Wonnacott, S. Nudicauline and elatine as potent norditerpenoid ligands at rat neuronal α-bungarotoxin binding sites: Importance of the 2-(methylsuccinimido)benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J. Med. Chem. 1996, 39, 4860–4866. [Google Scholar] [CrossRef] [PubMed]
- Manners, G.D.; Panter, K.E.; Pelletier, S.W. Structure-activity relationships of norditerpenoid alkaloids occurring in toxic larkspur (delphinium) species. J. Nat. Prod. 1995, 58, 863–869. [Google Scholar] [CrossRef]
- Bergmeier, S.C.; Lapinsky, D.J.; Free, R.B.; McKay, D.B. Ring E analogs of methyllycaconitine (MLA) as novel nicotinic antagonists. Bioorganic Med. Chem. Lett. 1999, 9, 2263–2266. [Google Scholar] [CrossRef]
- Bryant, D.L.; Free, R.B.; Thomasy, S.M.; Lapinsky, D.J.; Ismail, K.A.; McKay, S.B.; Bergmeier, S.C.; McKay, D.B. Structure-activity studies with ring E analogues of methyllycaconitine on bovine adrenal α3β4* nicotinic receptors. Neurosci. Res. 2002, 42, 57–63. [Google Scholar] [CrossRef]
- Doisy, X.; Blagbrough, I.S.; Wonnacott, S.; Potter, B.V.L. Design, synthesis, and biological evaluation of substituted benzoate analogues of the selective nicotinic acetylcholine receptor antagonist, methyllycaconitine. Pharm. Pharmacol. Commun. 1998, 4, 313–317. [Google Scholar]
- Kraus, G.A.; Dneprovskaia, E. A direct connection of a tricyclic analog of methyllycaconitine with 2-methylsuccinimidobenzoic acid. Tetrahedron Lett. 1998, 39, 2451–2454. [Google Scholar] [CrossRef]
- Barker, D.; McLeod, M.D.; Brimble, M.A.; Savage, G.P. Application of olefin metathesis to the synthesis of ABE ring analogues of methyllycaconitine. Tetrahedron Lett. 2002, 43, 6019–6022. [Google Scholar] [CrossRef]
- Barker, D.; Brimble, M.A.; McLeod, M.; Savage, G.P.; Wong, D.J. Synthesis of ABE tricyclic analogues of methyllycaconitine using a Wacker oxidation-aldol strategy to append the B ring to the AE fragment. J. Chem. Soc. Perkin Trans. I 2002, 7, 924–931. [Google Scholar] [CrossRef]
- Zheng, L.; Mackrill, J.J. Calcium Signaling in Oomycetes: An Evolutionary Perspective. Front. Physiol. 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Putri, S.P.; Kinoshita, H.; Ihara, F.; Igarashi, Y.; Nihira, T. Farinomalein, a maleimide-bearing compound from the entomopathogenic fungus Paecilomyces farinosus. J. Nat. Prod. 2009, 72, 1544–1546. [Google Scholar] [CrossRef]
- Song, X.; Liu, C.; Chen, P.; Zhang, H.; Sun, R. Natural product-based pesticide discovery: Design, synthesis and bioactivity studies of N-amino-maleimide derivatives. Molecules 2018, 23, 1521. [Google Scholar] [CrossRef] [Green Version]
- Castell, A.; Short, F.L.; Evans, G.L.; Cookson, T.V.M.; Bulloch, E.M.M.; Joseph, D.D.A.; Lee, C.E.; Parker, E.J.; Baker, E.N.; Lott, J.S. The substrate capture mechanism of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase provides a mode for inhibition. Biochemistry 2013, 52, 1776–1787. [Google Scholar] [CrossRef]
- Cookson, T.V.M.; Castell, A.; Bulloch, E.M.M.; Evans, G.L.; Short, F.L.; Baker, E.N.; Lott, J.S.; Parker, E.J. Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis. Biochem. J. 2014, 461, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.L.; Gamage, S.A.; Bulloch, E.M.M.; Baker, E.N.; Denny, W.A.; Lott, J.S. Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis. ChemBioChem 2014, 15, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.L.; Furkert, D.P.; Abermil, N.; Kundu, P.; de Lange, K.M.; Parker, E.J.; Brimble, M.A.; Baker, E.N.; Lott, J.S. Anthranilate phosphoribosyltransferase: Binding determinants for 5 ‘-phospho-alpha-D-ribosyl-1 ‘-pyrophosphate (PRPP) and the implications for inhibitor design. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Parish, T.; Stoker, N.G.; Bancroft, G.J. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 2001, 69, 1142–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiroutová, K.; Horák, A.; Bowler, C.; Oborník, M. Tryptophan biosynthesis in stramenopiles: Eukaryotic winners in the diatom complex chloroplast. J. Mol. Evol. 2007, 65, 496–511. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.G. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct. 2018, 9, 6064–6081. [Google Scholar] [CrossRef] [PubMed]
- Baqi, Y. Anthraquinones as a privileged scaffold in drug discovery targeting nucleotide-binding proteins. Drug Discov. Today 2016, 21, 1571–1577. [Google Scholar] [CrossRef]
- Diaz-Muñoz, G.; Miranda, I.L.; Sartori, S.K.; de Rezende, D.C.; Diaz, M.A.N. Anthraquinones: An overview. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 58, pp. 313–338. [Google Scholar]
- Siddamurthi, S.; Gutti, G.; Jana, S.; Kumar, A.; Singh, S.K. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med. Chem. 2020, 12, 1037–1069. [Google Scholar] [PubMed]
- Jang, S.J.; Kuk, Y.I. Effects of different fractions of Rheum palmatum root extract and anthraquinone compounds on fungicidal, insecticidal, and herbicidal activities. J. Plant Dis. Prot. 2018, 125, 451–460. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, C.-H.; Kim, H.-G.; Lee, H.-S. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J. Agric. Food Chem. 2004, 52, 6096–6100. [Google Scholar] [CrossRef]
- Tala, M.F.; Ansary, M.W.R.; Talontsi, F.M.; Kowa, T.K.; Tofazzal Islam, M.; Tane, P. Anthraquinones and flavanols isolated from the vegetable herb Rumex abyssinicus inhibit motility of Phytophthora capsici zoospores. South Afr. J. Bot. 2018, 115, 1–4. [Google Scholar] [CrossRef]
- Wijnsma, R.; van Weerden, I.N.; Verpoorte, R.; Harkes, P.A.A.; Lugt, C.B.; Scheffer, J.J.C.; Baerheim Svendsen, A. Anthraquinones in Cinchona ledgeriana bark infected with Phytophthora cinnamomi. Planta Med. 1986, 52, 211–212. [Google Scholar] [CrossRef]
- Knölker, H.-J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2002, 102, 4303–4427. [Google Scholar] [CrossRef]
- Greger, H. Phytocarbazoles: Alkaloids with great structural diversity and pronounced biological activities. Phytochem. Rev. 2017, 16, 1095–1153. [Google Scholar] [CrossRef]
- Rennison, D.; Gueret, S.M.; Laita, O.; Bland, R.J.; Sutherland, I.A.; Boddy, I.K.; Brimble, M.A. Substituted carbazoles—A new class of anthelmintic agent. Austral. J. Chem. 2016, 69, 1268–1276. [Google Scholar] [CrossRef]
- Mackrill, J.J.; Kehoe, R.A.; Zheng, L.; McKee, M.L.; O’Sullivan, E.C.; Doyle Prestwich, B.M.; McCarthy, F.O. Inhibitory properties of aldehydes and related compounds against Phytophthora infestans—Identification of a new lead. Pathogens 2020, 9, 542. [Google Scholar] [CrossRef] [PubMed]
- McKee, M.L.; Zheng, L.; O’sullivan, E.C.; Kehoe, R.A.; Doyle Prestwich, B.M.; Mackrill, J.J.; McCarthy, F.O. Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of Phytophthora infestans. Pathogens 2020, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Boddy, I.K.; Boniface, P.J.; Cambie, R.C.; Craw, P.A.; Huang, Z.D.; Larsen, D.S.; Mcdonald, H.; Rutledge, P.S.; Woodgate, P.D. Experiments directed towards the synthesis of anthracyclinones. VIII: Functionalization of hydroxyanthraquinones by reductive Claisen rearrangements. Aust. J. Chem. 1984, 37, 1511–1529. [Google Scholar] [CrossRef]
- Balsells, J.; Mejorado, L.; Phillips, M.; Ortega, F.; Aguirre, G.; Somanathan, R.; Walsh, P.J. Synthesis of chiral sulfonamide/Schiff base ligands. Tetrahedron Asymmetry 1998, 9, 4135–4142. [Google Scholar] [CrossRef]
- Li, B.J.; Jiang, L.; Liu, M.; Chen, Y.C.; Ding, L.S.; Wu, Y. Asymmetric Michael addition of arylthiols to alpha,beta-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett 2005, 4, 603–606. [Google Scholar]
- Chan, Y.; Guthmann, H.; Brimble, M.A.; Barker, D. Diastereoselective synthesis of substituted 4-piperidones and 4-piperidols using a double mannich reaction. Synlett 2008, 2008, 2601–2604. [Google Scholar] [CrossRef]
- Chan, Y.; Balle, J.; Kevin Sparrow, J.; Boyd, P.D.W.; Brimble, M.A.; Barker, D. A double Mannich approach to the synthesis of substituted piperidones—application to the synthesis of substituted E-ring analogues of methyllycaconitine. Tetrahedron 2010, 66, 7179–7191. [Google Scholar] [CrossRef]
- Guéret, S.M.; Furkert, D.P.; Brimble, M.A. Synthesis of a functionalized 7,6-bicyclic spiroimine ring fragment of the spirolides. Org. Lett. 2010, 12, 5226–5229. [Google Scholar] [CrossRef]
- Sparrow, K.; Barker, D.; Brimble, M.A. An efficient synthesis of 3-alkyl-1,5,3-dioxazepanes and their use as electrophiles in double-Mannich reactions. Tetrahedron 2012, 68, 1017–1028. [Google Scholar] [CrossRef]
- Pieroni, M.; Annunziato, G.; Azzali, E.; Dessanti, P.; Mercurio, C.; Meroni, G.; Trifiro, P.; Vianello, P.; Villa, M.; Beato, C.; et al. Further insights into the SAR of alpha-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. Eur. J. Med. Chem. 2015, 92, 377–386. [Google Scholar] [CrossRef]
- Lawrence, S.A.; Burgess, E.J.; Pairama, C.; Black, A.; Patrick, W.M.; Mitchell, I.; Perry, N.B.; Gerth, M.L. Mātauranga-guided screening of New Zealand native plants reveals flavonoids from kānuka (Kunzea robusta) with anti-Phytophthora activity. J. R. Soc. N. Z. 2019, 49, 137–154. [Google Scholar] [CrossRef] [Green Version]
Compound ID | P. cinnamomi IC50 µM | P. agathidicida IC50 µM |
---|---|---|
1 | ND | 92 (64–190) * |
2 | 6.9 (5.6–8.4) | 5.5 (3.7–8.0) |
3 | 35 (27–46) | 24 (13–47) |
4 | 61 (42–91) | 20 (16–24) |
5 | 51 (46–56) | 56 (32–210) |
6 | 50 (29–84) | ND |
7 | 82 (57–130) | ND |
8 | 38 (31–46) | 19 (16–24) |
9 | ND | 23 (16–32) |
10 | 67 (59–77) | 76 (50–190) |
11 | 72 (63–82) | 100 (80–130) |
12 | 43 (36–49) | 42 (29–93) |
13 | 22 (19–26) | 26 (11–140) |
14 | 35 (32–38) | 24 (20–29) * |
15 | 9.2 (8.3–10) | 6.4 (5.3–7.6) |
16 | ND | 220 (130–940) * |
17 | 37 (29–48) | 71 (38–460) |
18 | 34 (26–44) | ND |
19 | 26 (22–30) | 36 (27–49) |
20 | 3.4 (1.3–5.4) | 3.4 (1.7–5.3) |
21 | 11 (5.0–27) | 9.6 (6.6–14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, S.A.; Robinson, H.F.; Furkert, D.P.; Brimble, M.A.; Gerth, M.L. Screening a Natural Product-Inspired Library for Anti-Phytophthora Activities. Molecules 2021, 26, 1819. https://doi.org/10.3390/molecules26071819
Lawrence SA, Robinson HF, Furkert DP, Brimble MA, Gerth ML. Screening a Natural Product-Inspired Library for Anti-Phytophthora Activities. Molecules. 2021; 26(7):1819. https://doi.org/10.3390/molecules26071819
Chicago/Turabian StyleLawrence, Scott A., Hannah F. Robinson, Daniel P. Furkert, Margaret A. Brimble, and Monica L. Gerth. 2021. "Screening a Natural Product-Inspired Library for Anti-Phytophthora Activities" Molecules 26, no. 7: 1819. https://doi.org/10.3390/molecules26071819
APA StyleLawrence, S. A., Robinson, H. F., Furkert, D. P., Brimble, M. A., & Gerth, M. L. (2021). Screening a Natural Product-Inspired Library for Anti-Phytophthora Activities. Molecules, 26(7), 1819. https://doi.org/10.3390/molecules26071819