On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS
Abstract
:1. Introduction
2. Applications to Polymers
3. Applications to Complexes and Compounds
4. Applications to Metal-Organic Frameworks
5. Applications to Catalyst
6. Applications to Flame Retardants
7. Applications to Epoxy Resins
8. Applications to Biomass
9. Applications to Oil and Bitumen
10. Applications to Cellulose, Lignin and Lignite
11. Applications to Materials
12. Applications to Composites
13. Applications to Nanoparticles and Nanomaterials
14. Applications to Zeolites
15. Applications to Clays
16. Applications to Coal
17. Applications to Membranes
18. Applications to Coatings
19. Applications to Archaeology and Heritage
20. Applications to Environment and Health
21. Applications to Sewage Sludge
22. Applications to Sulfur
23. Applications to Aluminium Industries
24. Applications to Explosives and Propellants
25. Applications to Batteries and Conducting Materials
26. Applications to Waste Materials
27. Applications to Food
28. Applications to Space Materials
29. Applications to Pharmaceuticals
30. Applications to Glass
31. Applications to Paint
32. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EGA | Evolved gas Analysis |
TG | ThermoGravimetry |
TGA | ThermoGravimetric Analysis |
MS | Mass Spectrometry |
QMS | Quadrupole Mass Spectrometry |
FTIR | Fourier-Transform InfraRed spectroscopy |
UV | UltraViolet spectroscopy |
XRD | X-ray Diffraction |
PMMA | Polymethylmethacrilate |
DART | Direct analysis in real time |
DFT | Density Functional Theory |
DSC | Differential Scanning Calorimetry |
DTA | Differential Thermal Analysis |
ICP-OES | Inductively Coupled Plasma–Optical Emission Spectroscopy |
MOF | metal Organic Framework |
DRIFTs | Diffuse Reflectance Infrared Fourier Transform Spectroscopy |
SEM | Scanning Electron Microscopy |
HRTEM | High-Resolution Transmission Electron Microscopy |
FID | Flame Ionization Detector |
Py-GC/MS | Pyrolysis-GasChromatography/Mass Spectrometry |
PCA | Principal Component Analysis |
References
- Risoluti, R.; Materazzi, S. Mass Spectrometry for Evolved Gas Analysis: An Update. Appl. Spectrosc. Rev. 2019, 54, 87–116. [Google Scholar] [CrossRef]
- Materazzi, S.; Risoluti, R. Evolved Gas Analysis by Mass Spectrometry. Appl. Spectrosc. Rev. 2014, 49, 635–665. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S. Evolved Gas Analysis by Mass Spectrometry. Appl. Spectrosc. Rev. 2011, 46, 261–340. [Google Scholar] [CrossRef]
- Materazzi, S.; Gentili, A.; Curini, R. Applications of Evolved Gas Analysis. Part 2: EGA by Mass Spectrometry. Talanta 2006, 69, 781–794. [Google Scholar] [CrossRef]
- Materazzi, S.; Curini, R. The Coupling of Mass Spectrometry with Thermoanalytical Instruments: Applications of Evolved Gas Analysis. Appl. Spectrosc. Rev. 2001, 36, 169. [Google Scholar] [CrossRef]
- Materazzi, S. Mass Spectrometry Coupled to Thermogravimetry (TG-MS) for Evolved Gas Characterization: A Review. Appl. Spectrosc. Rev. 1998, 33, 189–218. [Google Scholar] [CrossRef]
- Risoluti, R.; Fabiano, M.A.; Gullifa, G.; Vecchio Ciprioti, S.; Materazzi, S. FTIR-Evolved Gas Analysis in Recent Thermoanalytical Investigations. Appl. Spectrosc. Rev. 2017, 52, 39–72. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S. Recent Applications of Evolved Gas Analysis by Infrared Spectroscopy (IR-EGA). Appl. Spectrosc. Rev. 2013, 48, 654–689. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S. Evolved Gas Analysis by Infrared Spectroscopy. Appl. Spectrosc. Rev. 2010, 45, 241–273. [Google Scholar] [CrossRef]
- Materazzi, S.; Gentili, A.; Curini, R. Applications of Evolved Gas Analysis: Part 1: EGA by Infrared Spectroscopy. Talanta 2006, 68, 489–496. [Google Scholar] [CrossRef]
- Materazzi, S.; Curini, R. On-Line Evolved Gas Analysis by Infrared Spectroscopy Coupled to Thermoanalytical Instruments. Appl. Spectrosc. Rev. 2001, 36, 1. [Google Scholar] [CrossRef]
- Materazzi, S. Thermogravimetry—Infrared Spectroscopy (TG-FTIR) Coupled Analysis. Appl. Spectrosc. Rev. 1997, 32, 385–404. [Google Scholar] [CrossRef]
- Rüger, C.P.; Tiemann, O.; Neumann, A.; Streibel, T.; Zimmermann, R. Review on Evolved Gas Analysis Mass Spectrometry with Soft Photoionization for the Chemical Description of Petroleum, Petroleum-Derived Materials, and Alternative Feedstocks. Energy Fuels 2021, 35, 18308–18332. [Google Scholar] [CrossRef]
- Mustata, F.; Rosu, D.; Varganici, C.-D.; Rosu, L.; Rosca, I.; Tudorachi, N. Assessing the Thermal and Fungal Behavior of Eco-Friendly Epoxy Thermosets Derived from Vegetable Oils for Wood Protective Coatings. Prog. Org. Coat. 2021, 163, 106612. [Google Scholar] [CrossRef]
- Hamciuc, C.; Lisa, G.; Hamciuc, E.; Epure, E.-L.; Tudorachi, N. Thermal Behavior Study and Degradation Mechanism by TG/MS/FTIR Technique of Some Poly(Aryl Ether Ether Ketone)s. J. Anal. Appl. Pyrolysis 2020, 150, 104877. [Google Scholar] [CrossRef]
- Yamada, K.; Kumagai, S.; Shiratori, T.; Kameda, T.; Saito, Y.; Watanabe, A.; Watanabe, C.; Teramae, N.; Yoshioka, T. Combined UV-Irradiation and Pyrolysis-GC/MS Approach for Evaluating the Deterioration Behavior of Ethylene Vinyl Acetate. Polym. Degrad. Stab. 2021, 190, 109623. [Google Scholar] [CrossRef]
- Godiya, C.B.; Gabrielli, S.; Materazzi, S.; Pianesi, M.S.; Stefanini, N.; Marcantoni, E. Depolymerization of Waste Poly(Methyl Methacrylate) Scraps and Purification of Depolymerized Products. J. Environ. Manag. 2019, 231, 1012–1020. [Google Scholar] [CrossRef]
- Ma, C.; Xie, S.; Kumagai, S.; Takahashi, Y.; Saito, Y.; Kameda, T.; Yoshioka, T. Synergistic Effects during Co-Pyrolysis of Milled Wood Lignin and Polyolefins at the Gas Phase and Liquid/Solid Phase Contacting Modes. Chem. Eng. J. 2022, 431, 134030. [Google Scholar] [CrossRef]
- Micheluz, A.; Angelin, E.M.; Lopes, J.A.; Melo, M.J.; Pamplona, M. Discoloration of Historical Plastic Objects: New Insight into the Degradation of β-Naphthol Pigment Lakes. Polymers 2021, 13, 2278. [Google Scholar] [CrossRef]
- Cody, R.B.; Fouquet, T.N.J.; Takei, C. Thermal Desorption and Pyrolysis Direct Analysis in Real Time Mass Spectrometry for Qualitative Characterization of Polymers and Polymer Additives. Rapid Commun. Mass Spectrom. 2020, 34, e8687. [Google Scholar] [CrossRef]
- Xanthopoulou, E.; Zamboulis, A.; Terzopoulou, Z.; Kostoglou, M.; Bikiaris, D.N.; Papageorgiou, G.Z. Effectiveness of Esterification Catalysts in the Synthesis of Poly(Ethylene Vanillate). Catalysts 2021, 11, 822. [Google Scholar] [CrossRef]
- Sasidharakurup, R.; Kunduchi Periya, V.; Chinthalapalli, S.; Thomas, D.; Nair, C.P.R. Facile Crosslinking of Polybutadienes via Triazoline Heterocyclics: Deciphering Mechanism and Structural-Property Relations. Polym. Adv. Technol. 2020, 31, 2842–2847. [Google Scholar] [CrossRef]
- Tang, W.; Zeng, T.; Hu, J.; Li, J.; Yang, R. Investigation on the Thermal Decomposition of the Elastomer Containing Fluoroolefin Segment by DSC-TG-MS-FTIR. Polym. Adv. Technol. 2021, 32, 4880–4890. [Google Scholar] [CrossRef]
- Ishimura, T.; Watanabe, A.; Watanabe, C.; Teramae, N. Quantitative Analysis of Red Phosphorus in Polypropylene by Evolved Gas Analysis Mass Spectrometry. Anal. Sci. 2020, 36, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xue, B.; Chen, J.-G.; He, Z.-H.; Ji, Y.; Wang, B.; Lu, J.; Liu, Z.-W.; Liu, Z.-T. A Combined Experimental and Theoretical Study of the Thermal Decomposition Mechanism and Kinetics of Ammonium Dinitramide (ADN). New J. Chem. 2020, 44, 6833–6844. [Google Scholar] [CrossRef]
- Xu, Y.; Li, D.; Wang, P.; Lin, Q.; Ding, L.; Hou, T.; Yuan, Y.; Lu, M. A Low Sensitivity Energetic Cocrystal of Ammonium Pentazolate. J. Energ. Mater. 2021. [Google Scholar] [CrossRef]
- Avilés, M.D.; Carrión, F.J.; Sanes, J.; Bermúdez, M.D. Bio-Based Ionic Liquid Crystal for Stainless Steel-Sapphire High Temperature Ultralow Friction. Wear 2021, 484–485, 204020. [Google Scholar] [CrossRef]
- Gui, W.; Zhang, C.; Zhu, W.; Zhang, L.; Liu, X.; Zhang, H.; Wang, Z. Application of Two Morphologies of Mn2O3for Efficient Catalyticortho-Methylation of 4-Chlorophenol. RSC Adv. 2021, 11, 20836–20849. [Google Scholar] [CrossRef]
- Nikolić, M.A.; Szécsényi, K.M.; Dražić, B.; Rodić, M.V.; Stanić, V.; Tanasković, S. Binuclear Co(II) Complexes with Macrocycle and Carboxylato Ligands: Structure, Cytotoxicity and Thermal Behavior. J. Mol. Struct. 2021, 1236, 130133. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Fabiano, M.A.; Iona, R.; Zuccatosta, F.; Wo, L.W.; Materazzi, S. Divalent Transition Metal Complexes of 2-(Pyridin-2-Yl)Imidazole: Evolved Gas Analysis Predicting Model to Provide Characteristic Coordination. Russ. J. Gen. Chem. 2017, 87, 2915–2921. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Cristóvão, B.; Ferenc, W.; Hatzidimitriou, A.; Ciprioti, S.V.; Risoluti, R.; Lalia-Kantouri, M. Thermoanalytical, Magnetic and Structural Investigation of Neutral Co(II) Complexes with 2,2′-Dipyridylamine and Salicylaldehydes. J. Therm. Anal. Calorim. 2016, 123, 717–729. [Google Scholar] [CrossRef]
- Franguelli, F.P.; Barta-Holló, B.; Petruševski, V.M.; Sajó, I.E.; Klébert, S.; Farkas, A.; Bódis, E.; Szilágyi, I.M.; Pawar, R.P.; Kótai, L. Thermal Decomposition and Spectral Characterization of Di[Carbonatotetraamminecobalt(III)] Sulfate Trihydrate and the Nature of Its Thermal Decomposition Products. J. Therm. Anal. Calorim. 2021, 145, 2907–2923. [Google Scholar] [CrossRef]
- Maciołek, U.; Mendyk, E.; Kosińska, M.; Sternik, D.; Drewniak, M.; Kozioł, A.E. Thermal Study, Identification of Intermediate Solid Products and Evolved Gas Analysis (EGA) during Pyrolysis and Oxidative Decomposition of Sodium Complex of Quercetin-5′-Sulfonic Acid (Na-5′-QSA). J. Anal. Appl. Pyrolysis 2020, 150, 104881. [Google Scholar] [CrossRef]
- Materazzi, S.; de Angelis Curtis, S.; Vecchio Ciprioti, S.; Risoluti, R.; Finamore, J. Thermogravimetric Characterization of Dark Chocolate. J. Therm. Anal. Calorim. 2014, 116, 93–98. [Google Scholar] [CrossRef]
- Bretti, C.; Crea, F.; de Stefano, C.; Foti, C.; Materazzi, S.; Vianelli, G. Thermodynamic Properties of Dopamine in Aqueous Solution. Acid-Base Properties, Distribution, and Activity Coefficients in NaCl Aqueous Solutions at Different Ionic Strengths and Temperatures. J. Chem. Eng. Data 2013, 58, 2835–2847. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S.; Wo, L.W.; de Angelis Curtis, S. Thermoanalytical Studies of Imidazole-Substituted Coordination Compounds: Mn(II)-Complexes of Bis(1-Methylimidazol-2-Yl)Ketone. J. Therm. Anal. Calorim. 2011, 103, 59–64. [Google Scholar] [CrossRef]
- Crea, F.; Falcone, G.; Foti, C.; Giuffrè, O.; Materazzi, S. Thermodynamic Data for Pb2+ and Zn2+ Sequestration by Biologically Important S-Donor Ligands, at Different Temperatures and Ionic Strengths. New J. Chem. 2014, 38, 3973–3983. [Google Scholar] [CrossRef]
- Perrino, C.; Marconi, E.; Tofful, L.; Farao, C.; Materazzi, S.; Canepari, S. Thermal Stability of Inorganic and Organic Compounds in Atmospheric Particulate Matter. Atmos. Environ. 2012, 54, 36–43. [Google Scholar] [CrossRef]
- De Angelis Curtis, S.; Kurdziel, K.; Materazzi, S.; Vecchio, S. Crystal Structure and Thermoanalytical Study of a Manganese(II) Complex with 1-Allylimidazole. J. Therm. Anal. Calorim. 2008, 92, 109–114. [Google Scholar] [CrossRef]
- Serra Moreno, J.; Panero, S.; Materazzi, S.; Martinelli, A.; Sabbieti, M.G.; Agas, D.; Materazzi, G. Polypyrrole-Polysaccharide Thin Films Characteristics: Electrosynthesis and Biological Properties. J. Biomed. Mater. Res. Part A 2009, 88, 832–840. [Google Scholar] [CrossRef]
- Navarra, M.A.; Materazzi, S.; Panero, S.; Scrosati, B. PVdF-Based Membranes for DMFC Applications. J. Electrochem. Soc. 2003, 150, A1528–A1532. [Google Scholar] [CrossRef]
- Kurdziel, K.; Głowiak, T.; Materazzi, S.; Jezierska, J. Crystal Structure and Physico-Chemical Properties of Cobalt(II) and Manganese(II) Complexes with Imidazole-4-Acetate Anion. Polyhedron 2003, 22, 3123–3128. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Fabiano, M.A.; Wo, L.W.; Materazzi, S. Biomimetic Complexes of Cd(II), Mn(II), and Zn(II) with 2-Aminomethylbenzimidazole. EGA/MS Characterization of the Thermally Induced Decomposition. Russ. J. Gen. Chem. 2017, 87, 300–304. [Google Scholar] [CrossRef]
- Risoluti, R.; Fabiano, M.A.; Gullifa, G.; Wo, L.W.; Materazzi, S. Biomimetic Complexes of Cd(II), Mn(II), and Zn(II) with 1,1-Diaminobutane–Schiff Base. EGA/MS Study of the Thermally Induced Decomposition. Russ. J. Gen. Chem. 2017, 87, 564–568. [Google Scholar] [CrossRef]
- Materazzi, S.; Finamore, J.; Risoluti, R.; Napoli, A. Biomimetic Complexes of Co(II), Cu(II) and Ni(II) with 2-Aminomethylbenzimidazole. EGA-MS Characterization of the Thermally Induced Decomposition. Microchem. J. 2014, 115, 27–31. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Fabiano, M.A.; Materazzi, S. Biomimetic Complexes of Co(II), Mn(II), and Ni(II) with 2-Propyl-4,5-Imidazoledicarboxylic Acid. EGA-MS Characterization of the Thermally Induced Decomposition. Russ. J. Gen. Chem. 2015, 85, 2374–2377. [Google Scholar] [CrossRef]
- Materazzi, S.; Foti, C.; Crea, F.; Risoluti, R.; Finamore, J. Biomimetic Complexes of Divalent Cobalt and Zinc with N-Heterocyclic Dicarboxylic Ligands. Thermochim. Acta 2014, 580, 7–12. [Google Scholar] [CrossRef]
- Materazzi, S.; Aquili, S.; de Angelis Curtis, S.; Vecchio, S.; Kurdziel, K.; Sagone, F. Biomimetic Complexes: Thermal Stability, Kinetic Study and Decomposition Mechanism of Co(II)-, Ni(II)- and Cu(II)-4(5)-Hydroxymethyl-5(4)-Methylimidazole Complexes. Thermochim. Acta 2004, 421, 19–24. [Google Scholar] [CrossRef]
- Materazzi, S.; Aquili, S.; Kurdziel, K.; Vecchio, S. Biomimetic Polyimidazole Complexes: A Thermoanalytical Study of Co(II)-, Ni(II)- and Cu(II)-Bis(Imidazol-2-Yl)Methane Complexes. Thermochim. Acta 2007, 457, 7–10. [Google Scholar] [CrossRef]
- Materazzi, S.; Napoli, A.; Risoluti, R.; Finamore, J.; D’Arienzo, S. Characterization of Thermally Induced Mechanisms by Mass Spectrometry-Evolved Gas Analysis (EGA-MS): A Study of Divalent Cobalt and Zinc Biomimetic Complexes with N-Heterocyclic Dicarboxylic Ligands. Int. J. Mass Spectrom. 2014, 365–366, 372–376. [Google Scholar] [CrossRef]
- Materazzi, S.; Risoluti, R.; Napoli, A. EGA-MS Study to Characterize the Thermally Induced Decomposition of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with 1,1-Diaminobutane-Schiff Base. Thermochim. Acta 2015, 606, 90–94. [Google Scholar] [CrossRef]
- Curini, R.; Tentolini, U.; Materazzi, S.; Vasca, E.; Caruso, T.; Fontanella, C.; Palladino, G. Modeling of Radionuclides in Natural Fluids: Synthesis and Characterization of the Na4(UO2)2 (OH)4(C2O4)2 Complex. Thermochim. Acta 2002, 387, 17–21. [Google Scholar] [CrossRef]
- Materazzi, S.; Foti, C.; Crea, F. Nickel and Copper Biomimetic Complexes with N-Heterocyclic Dicarboxylic Ligands. Thermochim. Acta 2013, 573, 101–105. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S.; Wo, L.W.; de Angelis Curtis, S. TG-MS and TG-FTIR Studies of Imidazole-Substituted Coordination Compounds: Co(II) and Ni(II)-Complexes of Bis(1-Methylimidazol-2-Yl)Ketone. Thermochim. Acta 2012, 543, 183–187. [Google Scholar] [CrossRef]
- Vecchio, S.; di Rocco, R.; Ferragina, C.; Materazzi, S. Thermal and Kinetic Study of Dehydration and Decomposition Processes for Copper Intercalated γ-Zirconium and γ-Titanium Phosphates. Thermochim. Acta 2005, 435, 181–187. [Google Scholar] [CrossRef]
- Risoluti, R.; Piazzese, D.; Napoli, A.; Materazzi, S. Study of [2-(2′-Pyridyl)Imidazole] Complexes to Confirm Two Main Characteristic Thermoanalytical Behaviors of Transition Metal Complexes Based on Imidazole Derivatives. J. Anal. Appl. Pyrolysis 2016, 117, 82–87. [Google Scholar] [CrossRef]
- Raducka, A.; Czylkowska, A.; Gobis, K.; Czarnecka, K.; Szymański, P.; Świątkowski, M. Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer. Materials 2021, 14, 2958. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, D.; Shu, C.-M.; Roy, N.; Qi, M.; Liu, Y. Study on Thermal Stability and Thermal Decomposition Mechanism of 1-((Cyano-1-Methylethyl) Azo) Formamide. Process Saf. Environ. Prot. 2021, 155, 219–229. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Miyaoka, H.; Kojima, Y. Concentration-Composition-Isotherm for the Ammonia Absorption Process of Zirconium Phosphate. RSC Adv. 2020, 10, 20882–20885. [Google Scholar] [CrossRef]
- Czylkowska, A.; Pietrzak, A.; Szczesio, M.; Rogalewicz, B.; Wojciechowski, J. Crystal Structures, Hirshfeld Surfaces, and Thermal Study of Isostructural Polymeric Ladders of La(III) and Sm(III) Coordination Compounds with 4,4′-Bipyridine and Dibromoacetates. Materials 2020, 13, 4274. [Google Scholar] [CrossRef]
- Du, X.; Yang, D.; Zheng, S.; Sun, Z.; Li, C. Deep Insight into the Reductive Roasting Treatment on Iron Removing from Quartz. Adv. Powder Technol. 2021, 32, 4825–4832. [Google Scholar] [CrossRef]
- Jacobson, N.S.; Fegley, B.; Mcadam, A.C.; Knudson, C.A. Solubility of CO2 in Sodium Silicate Melts. ACS Earth Space Chem. 2020, 4, 2113–2120. [Google Scholar] [CrossRef]
- Wei, Q.; Hu, J.; Zhang, H.; Wang, G.; Yang, X. Efficient Synthesis of Dimethyl Carbonate via Transesterification from Ethylene Carbonate with Methanol Using KAlO2/γ-Al2O3 Heterogeneous Catalyst. ChemistrySelect 2020, 5, 7826–7834. [Google Scholar] [CrossRef]
- Migliorati, V.; Ballirano, P.; Gontrani, L.; Materazzi, S.; Ceccacci, F.; Caminiti, R. A Combined Theoretical and Experimental Study of Solid Octyl and Decylammonium Chlorides and of Their Aqueous Solutions. J. Phys. Chem. B 2013, 117, 7806–7818. [Google Scholar] [CrossRef]
- Preuß, A.; Ehnert, R.; Kretzschmar, B.S.M.; Noll, J.; Heft, A.; Grünler, B.; Lang, H. Gold(I) Carboxylates and [Au(C(NH2)2(=S))2][SO3Me] for the Deposition of Gold and Gold-Doped SiOX Materials by the Atmospheric Pressure Combustion CVD Process. Inorganica Chim. Acta 2020, 502, 119355. [Google Scholar] [CrossRef]
- Gatiatulin, A.K.; Osel’skaya, V.Y.; Ziganshin, M.A.; Gorbatchuk, V.V. Guest Exchange in Anhydrous Inclusion Compounds of α-Cyclodextrin and Its Amorphization. J. Therm. Anal. Calorim. 2021, 146, 2417–2422. [Google Scholar] [CrossRef]
- Antoniak-Jurak, K.; Kowalik, P.; Próchniak, W.; Bicki, R.; Słowik, G. Heterostructural Mixed Oxides Prepared via ZnAlLa LDH or Ex-ZnAl LDH Precursors—Effect of LA Content and Its Incorporation Route. Materials 2021, 14, 2082. [Google Scholar] [CrossRef]
- Yao, E.; Xu, S.; Zhao, F.; Huang, T.; Li, H.; Zhao, N.; Yi, J.; Yang, Y.; Wang, C. Study on Thermal Decomposition Behavior, Gaseous Products, and Kinetic Analysis of Bis-(Dimethylglyoximato) Nickel(II) Complex Using TG-DSC-FTIR-MS Technique. Catalysts 2020, 10, 331. [Google Scholar] [CrossRef] [Green Version]
- Xiaojun, W.; Na, W.; Yanpeng, Y.; GuoLiang, J.; Zhouting, L.; Xia, W.; Zhiyan, L. Synthesis, Crystal Structure and Thermal Behavior of Magnesium 5,5′-Bistetrazole-1,1′-Diolate Hexahydrate Complex. J. Energ. Mater. 2021, 39, 113–124. [Google Scholar] [CrossRef]
- Ekawa, B.; Carvalho, A.C.S.; Fernandes, R.P.; do Nascimento, A.L.C.S.; Caires, F.J. Synthesis, Thermoanalytical and Spectroscopic Studies of Trivalent Lanthanides (Eu-Ho) Complexes with the Valsartan Ligand. Thermochim. Acta 2020, 686, 178532. [Google Scholar] [CrossRef]
- Fujita, M.; Izato, Y.-I.; Miyake, A. Thermal and Evolved Gas Analyses on Michael Addition Oligomers of Acrylic Acid. J. Therm. Anal. Calorim. 2021, 147, 1825–1833. [Google Scholar] [CrossRef]
- Xu, S.; Gao, Q.; Zhou, C.; Li, J.; Shen, L.; Lin, H. Improved Thermal Stability and Heat-Aging Resistance of Silicone Rubber via Incorporation of UiO-66-NH2. Mater. Chem. Phys. 2021, 274, 125182. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Zhang, Y.; Bai, M.; Zhang, Y.; Yue, Z.; Duan, E. Effects of Apparent Activation Energy in Pyrolytic Carbonization on the Synthesis of MOFs-Carbon Involving Thermal Analysis Kinetics and Decomposition Mechanism. Chem. Eng. J. 2020, 395, 124980. [Google Scholar] [CrossRef]
- Tong, W.; Xie, Y.; Hu, W.; Peng, Y.; Liu, W.; Li, Y.; Zhang, Y.; Wang, Y. A Bifunctional CoP/N-Doped Porous Carbon Composite Derived from a Single Source Precursor for Bisphenol A Removal. RSC Adv. 2020, 10, 9976–9984. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Dou, J.; Zhao, Y.; Rish, S.K.; Yu, J. A Study on Mn-Fe Catalysts Supported on Coal Fly Ash for Low-Temperature Selective Catalytic Reduction of Nox in Flue Gas. Catalysts 2020, 10, 1399. [Google Scholar] [CrossRef]
- Zhang, P.; Xin, J.; Fan, W.; Han, L.; Chen, Y. Analysis on Impurity of Guard Catalyst from Diesel Hydrocracking Process. Pet. Process. Petrochem. 2021, 52, 49–55. [Google Scholar]
- Li, H.; Yang, L.; Tao, Y.; Luo, C.; Cao, C.; Zhong, Q.; Xu, Z.; Wang, W. Decomposition and Kinetic Studies of AdBlue Using Thermogravimetric and Mass Spectrometric (TG-MS) Analyses. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Wu, X.; Tu, C.; Zhang, Q.; Ling, L.; Huang, W. Effect of Thermal Treatment Method on Structure and Hydrodenitrogenation Performance of NiMoAl Catalyst. Pet. Process. Petrochem. 2020, 51, 53–58. [Google Scholar]
- Filatov, E.; Lagunova, V.; Potemkin, D.; Kuratieva, N.; Zadesenets, A.; Plyusnin, P.; Gubanov, A.; Korenev, S. Tetraammineplatinum(II) and Tetraamminepalladium(II) Chromates as Precursors of Metal Oxide Catalysts. Chem. Eur. J. 2020, 26, 4341–4349. [Google Scholar] [CrossRef]
- Farooq, W.; Ali, I.; Raza Naqvi, S.; Sajid, M.; Abbas Khan, H.; Adamu, S. Evolved Gas Analysis and Kinetics of Catalytic and Non-Catalytic Pyrolysis of Microalgae Chlorella Sp. Biomass With Ni/θ-Al2O3 Catalyst via Thermogravimetric Analysis. Front. Energy Res. 2021, 9. [Google Scholar] [CrossRef]
- Wen, X.; Xu, L.; Chen, M.; Shi, Y.; Lv, C.; Cui, Y.; Wu, X.; Cheng, G.; Wu, C.-E.; Miao, Z.; et al. Exploring the Influence of Nickel Precursors on Constructing Efficient Ni-Based CO2 Methanation Catalysts Assisted with in situ Technologies. Appl. Catal. B Environ. 2021, 297, 120486. [Google Scholar] [CrossRef]
- Kaljuvee, T.; Uibu, M.; Yörük, C.R.; Einard, M.; Trikkel, A.; Kuusik, R.; Trass, O.; Štubňa, I.; Húlan, T.; Loide, V.; et al. Study of Thermooxidation of Oil Shale Samples and Basics of Processes for Utilization of Oil Shale Ashes. Minerals 2021, 11, 193. [Google Scholar] [CrossRef]
- Pan, N.; Yue, Y.; He, Z.; Lv, W. Influence of Transition Metal Salts and Pyrolysis Conditions on the Product Yield via Jimsar Oil Shale Pyrolysis. Oil Shale 2020, 37, 304–318. [Google Scholar] [CrossRef]
- Shen, B.; Li, Z.; Zheng, Z.; Li, C.; Lei, H.; Zhang, L.; Zhu, H.; Lu, S.; Du, M. Status and Relative Content of Water in Shale Determined by Thermogravimetry-Mass Spectrometry Analysis. J. Pet. Sci. Eng. 2021, 196, 107739. [Google Scholar] [CrossRef]
- Mu, M.; Han, X.; Jiang, X. Interactions between Oil Shale and Hydrogen-Rich Wastes during Co-Pyrolysis: 1. Co-Pyrolysis of Oil Shale and Polyolefins. Fuel 2020, 265, 116994. [Google Scholar] [CrossRef]
- Cimino, S.; Russo, R.; Lisi, L. Insights into the Cyclic CO2 Capture and Catalytic Methanation over Highly Performing Li-Ru/Al2O3 Dual Function Materials. Chem. Eng. J. 2022, 428, 131275. [Google Scholar] [CrossRef]
- Ballotin, F.C.; Almeida, V.F.; Ardisson, J.D.; da Silva, M.J.; Soares, R.R.; Teixeira, A.P.C.; Lago, R.M. New Magnetic Fe Oxide-Carbon Based Acid Catalyst Prepared from Bio-Oil for Esterification Reactions. J. Braz. Chem. Soc. 2020, 31, 1714–1724. [Google Scholar] [CrossRef]
- Liu, Z.; Han, W.; Hu, D.; Nie, H.; Wang, Z.; Sun, S.; Deng, Z.; Yang, Q. Promoting Effects of SO42-on a NiMo/γ-Al2O3hydrodesulfurization Catalyst. Catal. Sci. Technol. 2020, 10, 5218–5230. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z.; Zhao, X.; Gao, J.; Yang, R.; Yu, L. Promotion Effect of Chromium on the Activity and SO2Resistance of CeO2-TiO2Catalysts for the NH3-SCR Reaction. Ind. Eng. Chem. Res. 2021, 60, 11676–11688. [Google Scholar] [CrossRef]
- Chen, X.; Dong, Y.; Lin, S.; Zhang, H.; Yu, X.; Wang, Z.; Liu, Y.; Liu, J.; Yao, S. Promoting Mechanism of MCAR/MDA Coupling Reaction Under Oxygen-Rich Condition to Avoid Rapid Deactivation of MDA Reaction. Catal. Lett. 2020, 150, 2115–2131. [Google Scholar] [CrossRef]
- Venezia, V.; Matta, S.; Lehner, S.; Vitiello, G.; Costantini, A.; Gaan, S.; Malucelli, G.; Branda, F.; Luciani, G.; Bifulco, A. Detailed Thermal, Fire, and Mechanical Study of Silicon-Modified Epoxy Resin Containing Humic Acid and Other Additives. ACS Appl. Polym. Mater. 2021, 3, 5969–5981. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Papadopoulou, L.; Achilias, D. οS. Effect of Brominated Flame Retardant on the Pyrolysis Products of Polymers Originating in WEEE. Environ. Sci. Pollut. Res. 2021, 29, 29570–29582. [Google Scholar] [CrossRef] [PubMed]
- Shao, N.; Qu, Y.; Hou, L.; Hu, Y.; Tian, Z.; Gao, Y.; Zhu, X. Effect of Starch-Based Flame Retardant on the Thermal Degradation and Combustion Properties of Reconstituted Tobacco Sheet. Cellulose 2021, 28, 741–755. [Google Scholar] [CrossRef]
- Salasinska, K.; Celiński, M.; Barczewski, M.; Leszczyński, M.K.; Borucka, M.; Kozikowski, P. Fire Behavior of Flame Retarded Unsaturated Polyester Resin with High Nitrogen Content Additives. Polym. Test. 2020, 84, 106379. [Google Scholar] [CrossRef]
- Su, S.; Wu, H.; Tang, M.; Sun, M.; Tang, L. Fire-Retardant Synergy of Tris(1-Methoxy-2,2,6,6-Tetramethyl-4-Piperidinyl)Phosphite and Melamine Hydrobromide/Aluminum Diethylphosphinate in Polypropylene. J. Macromol. Sci. Part B Phys. 2021, 61, 121–136. [Google Scholar] [CrossRef]
- Yu, S.; Xia, Z.; Kiratitanavit, W.; Thota, S.; Kumar, J.; Mosurkal, R.; Nagarajan, R. Unusual Role of Labile Phenolics in Imparting Flame Resistance to Polyamide. Polym. Degrad. Stab. 2020, 175, 109103. [Google Scholar] [CrossRef]
- Nazir, R.; Parida, D.; Borgstädt, J.; Lehner, S.; Jovic, M.; Rentsch, D.; Bülbül, E.; Huch, A.; Altenried, S.; Ren, Q.; et al. In situ Phosphine Oxide Physical Networks: A Facile Strategy to Achieve Durable Flame Retardant and Antimicrobial Treatments of Cellulose. Chem. Eng. J. 2021, 417, 128028. [Google Scholar] [CrossRef]
- Morgan, A.B.; Knapp, G.; Stoliarov, S.I.; Levchik, S.V. Studying Smoldering to Flaming Transition in Polyurethane Furniture Subassemblies: Effects of Fabrics, Flame Retardants, and Material Type. Fire Mater. 2021, 45, 56–67. [Google Scholar] [CrossRef]
- Li, Z.; Weng, S.; Song, F.; Ren, X.; Yang, X.; Hu, L. Synthesis and Thermal Analysis of Lignin-Based Flame Retardant Containing Nitrogen and Phosphorus. Chem. Ind. For. Prod. 2021, 41, 63–70. [Google Scholar] [CrossRef]
- Bifulco, A.; Parida, D.; Salmeia, K.A.; Nazir, R.; Lehner, S.; Stämpfli, R.; Markus, H.; Malucelli, G.; Branda, F.; Gaan, S. Fire and Mechanical Properties of DGEBA-Based Epoxy Resin Cured with a Cycloaliphatic Hardener: Combined Action of Silica, Melamine and DOPO-Derivative. Mater. Des. 2020, 193, 108862. [Google Scholar] [CrossRef]
- Mustata, F.; Tudorachi, N. Synthesis and Thermal Characterization of Some Hardeners for Epoxy Resins Based on Castor Oil and Cyclic Anhydrides. Ind. Crops Prod. 2021, 159, 113087. [Google Scholar] [CrossRef]
- Merckel, R.D.; Heydenrych, M.D.; Sithole, B.B. Pyrolysis Oil Composition and Catalytic Activity Estimated by Cumulative Mass Analysis Using Py-GC/MS EGA-MS. Energy 2021, 219, 119428. [Google Scholar] [CrossRef]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Okieimen, C.O.; Kusuma, H.S. Biomass Pyrolysis Technologies for Value-Added Products: A State-of-the-Art Review. Environ. Dev. Sustain. 2021, 23, 14324–14378. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, L.; Du, G.; Zhu, M. A Novel Activation-Hydrochar via Hydrothermal Carbonization and KOH Activation of Sewage Sludge and Coconut Shell for Biomass Wastes: Preparation, Characterization and Adsorption Properties. J. Colloid Interface Sci. 2021, 593, 390–407. [Google Scholar] [CrossRef]
- Li, R.; Wei, K.; Huang, Q.; Xia, H. A Novel Method for Precise Measurement of Unburnt Carbon in Boiler Fly Ash by ECSA® Based on TG-MS. Fuel 2020, 264, 116849. [Google Scholar] [CrossRef]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Sielski, J.; Grzesik, M.; Romanowska-Duda, Z.; Piotrowski, K.; Lewandowska, W. Acquisition of Torrefied Biomass from Jerusalem Artichoke Grown in a Closed Circular System Using Biogas Plant Waste. Molecules 2020, 25, 3862. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhang, P.; Yang, X.; Li, H.; Liu, Y.; Pan, B. An Integrated Study on the Pyrolysis Mecanism of Peanut Shell Based on the Kinetic Analysis and Solid/Gas Characterization. Bioresour. Technol. 2021, 329, 124860. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, Q.; Yuan, Q.; Hao, Z.; Luan, C.; Tu, C.; Liang, L.; Huang, W. Characteristics of Co-Pyrolysis of Biomass and Heavy Oil and the Evolution Behavior of Produced Gases. Meitan XuebaoJournal China Coal Soc. 2021, 46, 1146–1154. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Q.; Liang, L.; Tu, C.; Xiang, X.; Liu, J.; Huang, W. Characteristics of Co-Pyrolysis of Coal and FCC Slurry and the Evolution Behavior of the Produced Gases. Meitan XuebaoJournal China Coal Soc. 2021, 46, 2690–2698. [Google Scholar] [CrossRef]
- Kwoczynski, Z.; Čmelík, J. Characterization of Hazardous Gases Evolved from Various Biomass Wastes during Biochar Production Using TGA-MS. Int. J. Environ. Sci. Technol. 2020, 18, 73–88. [Google Scholar] [CrossRef]
- Magida, N.E.; Bolo, L.L.; Hlangothi, S.P.; Dugmore, G.; Ogunlaja, A.S. Co-Combustion Characteristics of Coal-Scenedesmus Microalgae Blends and Their Resulting Ash. Combust. Sci. Technol. 2021, 193, 419–436. [Google Scholar] [CrossRef]
- Slezak, R.; Krzystek, L.; Dziugan, P.; Ledakowicz, S. Co-Pyrolysis of Beet Pulp and Defecation Lime in TG-MS System. Energies 2020, 13, 2304. [Google Scholar] [CrossRef]
- Slezak, R.; Krzystek, L.; Ledakowicz, S. CO2 Gasification of Char from Spent Mushroom Substrate in TG-MS System. J. Therm. Anal. Calorim. 2020, 140, 2337–2345. [Google Scholar] [CrossRef]
- Nan, H.; Zhao, L.; Yang, F.; Liu, Y.; Xiao, Z.; Cao, X.; Qiu, H. Different Alkaline Minerals Interacted with Biomass Carbon during Pyrolysis: Which One Improved Biochar Carbon Sequestration? J. Clean. Prod. 2020, 255, 120162. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Guo, W.; Wu, Z.; Wang, Z.; Yang, B. Effect of Torrefaction Pretreatment on Biomass Chemical Looping Gasification (BCLG) Characteristics: Gaseous Products Distribution and Kinetic Analysis. Energy Convers. Manag. 2021, 237, 114100. [Google Scholar] [CrossRef]
- Zeng, J.; Yuan, J.; Jiang, L.; Chen, S.; Zhang, S.; Li, Z. Kinetics of Solid Reactions with Gas Intermediates in Chemical Looping Combustion. Chem. Eng. J. 2021, 420, 127695. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cai, N. Microfluidized Bed Thermogravimetry Combined with Mass Spectrometry (MFB-TG-MS) for Redox Kinetic Study of Oxygen Carrier. Energy Fuels 2020, 34, 11186–11193. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Liu, C.-G.; Nawaz, M.; Tawab, A.; Shen, X.; Shen, B.; Mehmood, M.A. Elucidating the Pyrolysis Reaction Mechanism of Calotropis Procera and Analysis of Pyrolysis Products to Evaluate Its Potential for Bioenergy and Chemicals. Bioresour. Technol. 2021, 322, 124545. [Google Scholar] [CrossRef]
- Radojević, M.; Janković, B.; Stojiljković, D.; Jovanović, V.; Čeković, I.; Manić, N. Improved TGA-MS Measurements for Evolved Gas Analysis (EGA) during Pyrolysis Process of Various Biomass Feedstocks. Syngas Energy Balance Determination. Thermochim. Acta 2021, 699, 178912. [Google Scholar] [CrossRef]
- Babinszki, B.; Jakab, E.; Terjék, V.; Sebestyén, Z.; Várhegyi, G.; May, Z.; Mahakhant, A.; Attanatho, L.; Suemanotham, A.; Thanmongkhon, Y.; et al. Thermal Decomposition of Biomass Wastes Derived from Palm Oil Production. J. Anal. Appl. Pyrolysis 2021, 155, 105069. [Google Scholar] [CrossRef]
- Shao, S.; Liu, C.; Xiang, X.; Li, X.; Zhang, H.; Xiao, R.; Cai, Y. In Situ Catalytic Fast Pyrolysis over CeO2 Catalyst: Impact of Biomass Source, Pyrolysis Temperature and Metal Ion. Renew. Energy 2021, 177, 1372–1381. [Google Scholar] [CrossRef]
- Quiroga, E.; Moltó, J.; Conesa, J.A.; Valero, M.F.; Cobo, M. Kinetics of the Catalytic Thermal Degradation of Sugarcane Residual Biomass over Rh-Pt/CeO2-SiO2 for Syngas Production. Catalysts 2020, 10, 508. [Google Scholar] [CrossRef]
- Santos, V.O.; Araujo, R.O.; Ribeiro, F.C.P.; Queiroz, L.S.; Guimarães, M.N.; Colpani, D.; da Costa, C.E.F.; Chaar, J.S.; de Souza, L.K.C. Non-Isothermal Kinetics Evaluation of Buriti and Inaja Seed Biomass Waste for Pyrolysis Thermochemical Conversion Technology. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. Development of a “Single-Click” Analytical Platform for the Detection of Cannabinoids in Hemp Seed Oil. RSC Adv. 2020, 10, 43394–43399. [Google Scholar] [CrossRef]
- Hou, X.; Li, Z.; Zhang, Z. Selectively Producing Acetic Acid via Boric Acid-Catalyzed Fast Pyrolysis of Woody Biomass. Catalysts 2021, 11, 494. [Google Scholar] [CrossRef]
- Nardella, F.; Duce, C.; Ribechini, E. Analytical Pyrolysis and Thermal Analysis to Chemically Characterise Bitumen from Italian Geological Deposits and Neolithic Stone Tools. J. Anal. Appl. Pyrolysis 2021, 158, 105262. [Google Scholar] [CrossRef]
- Cadeau, P.; Romero-Sarmiento, M.-F.; Sissmann, O.; Beaumont, V. On-Line Recovery System Coupled to a Rock-Eval® Device: An Analytical Methodology for Characterization of Liquid and Solid Samples. Org. Geochem. 2020, 144, 104014. [Google Scholar] [CrossRef]
- Bauerová, P.; Reiterman, P.; Mácová, P.; Slížková, Z.; Havelcová, M.; Mahun, A.; Švarcová, S.; Keppert, M. Analytical Techniques for Detection of Oil Presence in Mortar. Key Eng. Mater. 2021, 898, 57–65. [Google Scholar] [CrossRef]
- Xuan, J.; Wang, C.; Zhang, L.; Cui, Q.; Wang, H. Effect of CO2/H2O on Adsorptive Removal of H2S/SO2 Mixture. Environ. Technol. 2020, 43, 2069–2079. [Google Scholar] [CrossRef]
- Özveren, U.; Kartal, F.; Sezer, S.; Özdoğan, Z.S. Investigation of Steam Gasification in Thermogravimetric Analysis by Means of Evolved Gas Analysis and Machine Learning. Energy 2022, 239, 122232. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, L.; Zhang, C.; Gao, G.; Ye, Z.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. Steam Reforming of Acetic Acid over Nickel Catalysts: Impacts of Fourteen Additives on the Catalytic Behaviors. J. Energy Inst. 2020, 93, 1000–1019. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Tamburini, D.; Modugno, F.; Ribechini, E.; Colombini, M.P. Analytical Pyrolysis and Mass Spectrometry to Characterise Lignin in Archaeological Wood. Appl. Sci. Switz. 2021, 11, 240. [Google Scholar] [CrossRef]
- Grojzdek, M.; Novosel, B.; Klinar, D.; Golob, J.; Žgajnar Gotvajn, A. Pyrolysis of Different Wood Species: Influence of Process Conditions on Biochar Properties and Gas-Phase Composition. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Tang, G.; Gu, J.; Huang, Z.; Yuan, H.; Chen, Y. Cellulose Gasification with Ca–Fe Oxygen Carrier in Chemical-Looping Process. Energy 2022, 239, 122204. [Google Scholar] [CrossRef]
- Nardella, F.; Bellavia, S.; Mattonai, M.; Ribechini, E. Co-Pyrolysis of Wood and Plastic: Evaluation of Synergistic Effects and Kinetic Data by Evolved Gas Analysis-Mass Spectrometry (EGA-MS). J. Anal. Appl. Pyrolysis 2021, 159, 105308. [Google Scholar] [CrossRef]
- Yan, H.; Mao, F.; Wang, J. Thermogravimetric-Mass Spectrometric Characterization of Thermal Decomposition of Lignite with Attention to the Evolutions of Small Molecular Weight Oxygenates. J. Anal. Appl. Pyrolysis 2020, 146, 104781. [Google Scholar] [CrossRef]
- Mamleeva, N.A.; Shumyantsev, A.V.; Kharlanov, A.N. Degradation of Structure of Populus Tremula Wood during Delignification with Ozone. Thermal Analysis. Russ. J. Phys. Chem. A 2021, 95, 682–689. [Google Scholar] [CrossRef]
- Mattonai, M.; Nardella, F.; Zaccaroni, L.; Ribechini, E. Effects of Milling and UV Pretreatment on the Pyrolytic Behavior and Thermal Stability of Softwood and Hardwood. Energy Fuels 2021, 35, 11353–11365. [Google Scholar] [CrossRef]
- Nardella, F.; Mattonai, M.; Ribechini, E. Evolved Gas Analysis-Mass Spectrometry and Isoconversional Methods for the Estimation of Component-Specific Kinetic Data in Wood Pyrolysis. J. Anal. Appl. Pyrolysis 2020, 145, 104725. [Google Scholar] [CrossRef]
- Fan, J.; Li, M.; Zeng, F.; Zhao, Y.; Wang, X.; Shao, Y. High Resolution TEM Image Analysis of the Aggregate Structural Characteristics under Heat Treatment:A Case Study of Yimin Coal. Meitan XuebaoJournal China Coal Soc. 2021, 46, 1978–1984. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Gu, J.; Yuan, H.; Chen, Y. Insight into the Role of Varied Acid-Base Sites on Fast Pyrolysis Kinetics and Mechanism of Cellulose. Waste Manag. 2021, 135, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dou, B.; Zhang, H.; Zhang, H.; Chen, H.; Xu, Y.; Wu, C. Pyrolysis Characteristics and Non-Isothermal Kinetics of Waste Wood Biomass. Energy 2021, 226, 120358. [Google Scholar] [CrossRef]
- Li, T.; Song, F.; Zhang, J.; Liu, S.; Xing, B.; Bai, Y. Pyrolysis Characteristics of Soil Humic Substances Using TG-FTIR-MS Combined with Kinetic Models. Sci. Total Environ. 2020, 698, 134237. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Zhao, B.; Yang, D.; Wang, H.; Yan, M.; Li, Z.; Qin, Y.; Qiu, X. Insights into Gas-Exfoliation and the In situ Template Mechanism of Zinc Compound for Lignin-Derived Supercapacitive Porous Carbon. ACS Appl. Energy Mater. 2021, 4, 13617–13626. [Google Scholar] [CrossRef]
- Shiono, A.; Watanabe, A.; Watanabe, C.; Freeman, R.R.; Pipkin, W.; Teramae, N.; Ohtani, H. Evolved Gas Analysis-Mass Spectrometry in an Oxidative Atmosphere Using a Temperature-Programmable Furnace-Type Pyrolyzer. J. Anal. Appl. Pyrolysis 2021, 156, 105122. [Google Scholar] [CrossRef]
- Göckeler, M.; Berger, C.M.; Purcel, M.; Bergsträßer, R.; Schinkel, A.-P.; Muhler, M. Surface Reactions during Temperature-Programmed Desorption and Reduction Experiments with Oxygen-Functionalized Carbon Blacks. Appl. Surf. Sci. 2021, 561, 150044. [Google Scholar] [CrossRef]
- Schirmer, U.; Osburg, A. A New Method for the Quantification of Adsorbed Styrene Acrylate Copolymer Particles on Cementitious Surfaces: A Critical Comparative Study. SN Appl. Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Celluzzi, A.; Paolini, A.; D’Oria, V.; Risoluti, R.; Materazzi, S.; Pezzullo, M.; Casciardi, S.; Sennato, S.; Bordi, F.; Masotti, A. Biophysical and Biological Contributions of Polyamine-Coated Carbon Nanotubes and Bidimensional Buckypapers in the Delivery of Mirnas to Human Cells. Int. J. Nanomed. 2017, 13, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Risoluti, R.; Gullifa, G.; Carcassi, E.; Masotti, A.; Materazzi, S. TGA/Chemometrics Addressing Innovative Preparation Strategies for Functionalized Carbon Nanotubes. J. Pharm. Anal. 2020, 10, 351–355. [Google Scholar] [CrossRef]
- Jamrozik, A.; Strzemiecka, B.; Jakubowska, P.; Koltsov, I.; Klapiszewski, Ł.; Voelkel, A.; Jesionowski, T. The Effect of Lignin-Alumina Hybrid Additive on the Properties of Composition Used in Abrasive Tools. Int. J. Biol. Macromol. 2020, 161, 531–538. [Google Scholar] [CrossRef]
- Liu, W.; Aldahri, T.; Liang, B.; Lv, L. Absorption of SO2 with Recyclable Melamine Slurry. Sep. Purif. Technol. 2020, 251, 117285. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, S.-H.; Yan, S.; Li, P.; Liu, X.; Mu, W.; Teng, F.; Wang, Y.; Lei, X. Carbothermal Reduction of LiFePO4/C Composite Cathodes Using Acid-Washed Iron Red as Raw Material through Carboxylic Acid Pyrolysis Reducing Gas Participation Strategies. Electrochim. Acta 2020, 363, 137159. [Google Scholar] [CrossRef]
- Velikova, N.; Spassova, I. Bifunctional Mesoporous Hybrid Sol-Gel Prepared Silicas for CO2 Adsorption. J. Sol-Gel Sci. Technol. 2021, 100, 326–340. [Google Scholar] [CrossRef]
- Martín-Garrido, M.; Martínez-Ramírez, S. CO2 Adsorption on Calcium Silicate Hydrate Gel Synthesized by Double Decomposition Method. J. Therm. Anal. Calorim. 2021, 143, 4331–4339. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Adediran, A.; Yliniemi, J.; Luukkonen, T.; Illikainen, M. Effect of Organic Resin in Glass Wool Waste and Curing Temperature on the Synthesis and Properties of Alkali-Activated Pastes. Mater. Des. 2021, 212, 110287. [Google Scholar] [CrossRef]
- Luksic, S.A.; Pokorny, R.; George, J.; Hrma, P.; Varga, T.; Reno, L.R.; Buchko, A.C.; Kruger, A.A. In Situ Characterization of Foam Morphology during Melting of Simulated Waste Glass Using X-Ray Computed Tomography. Ceram. Int. 2020, 46, 17176–17185. [Google Scholar] [CrossRef]
- Prorok, R.; Madej, D. Influence of Hydrothermal Conditions on the Phase Composition of Materials from the System MgO-Al2O3-SiO2-H2O. J. Aust. Ceram. Soc. 2020, 56, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Q.; Chen, C.-M.; Sun, G.-H.; Xie, L.-J. Effect of the Epichlorohydrin Grafting of Starch on Its Pyrolysis Behavior and Mechanism. Xinxing Tan CailiaoNew Carbon Mater. 2020, 35, 452–458. [Google Scholar] [CrossRef]
- Peng, Y.-S.; Yang, J.-X.; Shi, K.; Guo, J.-G.; Zhu, H.; Li, X.-K. Effects of the Degree of Oxidation of Pitch Fibers on Their Stabilization and Carbonization Behaviors. Xinxing Tan CailiaoNew Carbon Mater. 2020, 35, 722–730. [Google Scholar] [CrossRef]
- Kmita, A.; Benko, A.; Roczniak, A.; Holtzer, M. Evaluation of Pyrolysis and Combustion Products from Foundry Binders: Potential Hazards in Metal Casting. J. Therm. Anal. Calorim. 2020, 140, 2347–2356. [Google Scholar] [CrossRef]
- Bernini, F.; Castellini, E.; Brigatti, M.F.; Bighi, B.; Borsari, M.; Malferrari, D. Gaseous Heptanethiol Removal by a Fe3+-Phenanthroline-Kaolinite Hybrid Material. ACS Omega 2021, 6, 32589–32596. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Zhu, R.; Liu, H.; Wang, Q.; Li, Z.; Zhang, G.; Wu, L. Growth and Characterization of Freestanding AlN by PVT Method under Tungsten Crucible System. Rengong Jingti XuebaoJournal Synth. Cryst. 2020, 49, 1162–1167. [Google Scholar]
- Hadian, A.; Zamani, C.; Schreiner, C.; Figi, R.; Clemens, F.J. Influence of Carbon Content and Processing Treatment of Metallic Binder on the Outgassing and Sintering of NbC Based Cemented Carbide. Ceram. Int. 2020, 46, 28422–28431. [Google Scholar] [CrossRef]
- Gu, S.; Yu, L.; Wen, G.; Tang, P.; Wang, Z.; Gao, Z. Qualitative, Quantitative and Mechanism Research of Volatiles in the Most Commonly Used CaO–SiO2–CaF2–Na2O Slag During Casting Process. Trans. Indian Inst. Met. 2021, 74, 775–782. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Kierys, A. Polymer Templated Production of Highly Porous Cerium Oxide in Direct Temperature Driven Transformation of Cerium(III) Salt. Microporous Mesoporous Mater. 2021, 318, 111032. [Google Scholar] [CrossRef]
- Hortelano, C.; Ruiz-Bermejo, M.; de la Fuente, J.L. Solid-State Polymerization of Diaminomaleonitrile: Toward a New Generation of Conjugated Functional Materials. Polymer 2021, 223, 123696. [Google Scholar] [CrossRef]
- Lawal, S.O.; Yu, L.; Nagasawa, H.; Tsuru, T.; Kanezashi, M. A Carbon-Silica-Zirconia Ceramic Membrane with CO2flow-Switching Behaviour Promising Versatile High-Temperature H2/CO2 separation. J. Mater. Chem. A 2020, 8, 23563–23573. [Google Scholar] [CrossRef]
- Watanabe, R.; Sugahara, A.; Hagihara, H.; Mizukado, J.; Shinzawa, H. Three-Way Evolved Gas Analysis-Mass Spectrometry Combined with Principal Component Analysis (EGA-MS-PCA) to Probe Interfacial States between Matrix and Filler in Poly(Styrene-b-Butadiene-b-Styrene) (SBS) Nanocomposites. Polym. Test. 2021, 101, 107300. [Google Scholar] [CrossRef]
- Airinei, A.; Asandulesa, M.; Stelescu, M.D.; Tudorachi, N.; Fifere, N.; Bele, A.; Musteata, V. Dielectric, Thermal and Water Absorption Properties of Some EPDM/Flax Fiber Composites. Polymers 2021, 13, 2555. [Google Scholar] [CrossRef]
- Putz, A.-M.; Almásy, L.; Horváth, Z.E.; Trif, L. Butyl-Methyl-Pyridinium Tetrafluoroborate Confined in Mesoporous Silica Xerogels: Thermal Behaviour and Matrix-Template Interaction. Materials 2021, 14, 4918. [Google Scholar] [CrossRef]
- Zahra, H.; Sawada, D.; Kumagai, S.; Ogawa, Y.; Johansson, L.-S.; Ge, Y.; Guizani, C.; Yoshioka, T.; Hummel, M. Evolution of Carbon Nanostructure during Pyrolysis of Homogeneous Chitosan-Cellulose Composite Fibers. Carbon 2021, 185, 27–38. [Google Scholar] [CrossRef]
- Cai, F.; Ni, D.; Chen, B.; Ye, L.; Sun, Y.; Lu, J.; Zou, X.; Zhou, H.; He, P.; Zhao, T.; et al. Fabrication and Properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC High-Entropy Ceramic Matrix Composites via Precursor Infiltration and Pyrolysis. J. Eur. Ceram. Soc. 2021, 41, 5863–5871. [Google Scholar] [CrossRef]
- Zou, X.; Ni, D.; Chen, B.; Ye, L.; Sun, Y.; Lu, J.; Cai, F.; Gao, L.; Zhao, T.; Dong, S. Fabrication and Properties of Cf/Ta4HfC5-SiC Composite via Precursor Infiltration and Pyrolysis. J. Am. Ceram. Soc. 2021, 104, 6601–6610. [Google Scholar] [CrossRef]
- Bouzat, F.; Lucas, R.; Leconte, Y.; Foucaud, S.; Champavier, Y.; Diogo, C.C.; Babonneau, F. Formation of Zrc–Sic Composites from the Molecular Scale through the Synthesis of Multielement Polymers. Materials 2021, 14, 3901. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Su, S.; Chen, D.; Shu, T.; Zheng, X.; Yu, J.; Feng, Y.; Wang, Y.; Hu, S.; Xiang, J. Highly Efficient NH3-SCR of NOx over MnFeW/Ti Catalyst at Low Temperature: SO2 Tolerance and Reaction Mechanism. Fuel 2022, 307, 121805. [Google Scholar] [CrossRef]
- Campostrini, R.; Zambotti, A.; Biesuz, M.; Sorarù, G.D. On the Pyrolysis of a Methyl-Silsesquioxane in Reactive CO2 Atmosphere: A TG/MS and FT-IR Study. J. Am. Ceram. Soc. 2021, 105, 2465–2473. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, Y.; Wang, Y.-N.; Song, X.-L. Preparation and Properties of Superfine NC/GAPE/CL-20 Energetic Composite Fibers. Huozhayao XuebaoChinese J. Explos. Propellants 2021, 44, 496–503. [Google Scholar] [CrossRef]
- Komárková, B.; Motlochová, M.; Slovák, V.; Ecorchard, P.; Bezdička, P.; Bavol, D.; Šubrt, J. Effect of Amines on (Peroxo)Titanates: Characterization and Thermal Decomposition. J. Therm. Anal. Calorim. 2021, 147, 5009–5022. [Google Scholar] [CrossRef]
- Scala, A.; Piperno, A.; Micale, N.; Mineo, P.G.; Abbadessa, A.; Risoluti, R.; Castelli, G.; Bruno, F.; Vitale, F.; Cascio, A.; et al. “Click” on PLGA-PEG and Hyaluronic Acid: Gaining Access to Anti-Leishmanial Pentamidine Bioconjugates. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2778–2785. [Google Scholar] [CrossRef]
- Gullifa, G.; Risoluti, R. Evaluation of Novel Strategies for Carbon Nanotube Functionalization by Tga/Chemometrics. Key Eng. Mater. 2021, 885, 59–66. [Google Scholar] [CrossRef]
- Paolini, A.; Battafarano, G.; D’oria, V.; Mura, F.; Sennato, S.; Mussi, V.; Risoluti, R.; Materazzi, S.; Fattore, A.D.; Masotti, A. A 3d-Printed Multi-Chamber Device Allows Culturing Cells on Buckypapers Coated with Pamam Dendrimer and Obtain Innovative Materials for Biomedical Applications. Int. J. Nanomed. 2019, 14, 9295–9306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Yan, H.; Chen, C.; Lin, D.; Tan, K.; Feng, X.; Liu, Y.; Chen, X.; Yang, C.; Shan, H. Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction. Catalysts 2020, 10, 890. [Google Scholar] [CrossRef]
- Pan, Y.; Fu, L.; Zhou, Q.; Wen, Z.; Lin, C.-T.; Yu, J.; Wang, W.; Zhao, H. Flammability, Thermal Stability and Mechanical Properties of Polyvinyl Alcohol Nanocomposites Reinforced with Delaminated Ti3C2Tx (MXene). Polym. Compos. 2020, 41, 210–218. [Google Scholar] [CrossRef]
- Wan, C.; Li, J.; Chen, S.; Wang, W.; Xu, K. In Situ Synthesis and Catalytic Decomposition Mechanism of CuFe2O4/g-C3N4 Nanocomposite on AP and RDX. J. Anal. Appl. Pyrolysis 2021, 160, 105372. [Google Scholar] [CrossRef]
- Catauro, M.; D’Angelo, A.; Fiorentino, M.; Gullifa, G.; Risoluti, R.; Vecchio Ciprioti, S. Thermal Behavior, Morphology and Antibacterial Properties Study of Silica/Quercetin Nanocomposite Materials Prepared by Sol–Gel Route. J. Therm. Anal. Calorim. 2021, 147, 5337–5350. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Cui, Z.; Yu, X.; Zhang, X.; Li, Y.; Zhang, Q.; Chen, L.; Ma, L. In Situ Synthesis of Cu Nanoparticles on Carbon for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol by Using Pomelo Peel as the Carbon Source. ACS Sustain. Chem. Eng. 2020, 8, 12944–12955. [Google Scholar] [CrossRef]
- Romero, J.; Varela, M.; Assebban, M.; Oestreicher, V.; Guedeja-Marrón, A.; Jordá, J.L.; Abellán, G.; Coronado, E. Insights into the Formation of Metal Carbon Nanocomposites for Energy Storage Using Hybrid NiFe Layered Double Hydroxides as Precursors. Chem. Sci. 2020, 11, 7626–7633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wu, S.; Li, Y.; Zhang, Q. Significant Improvement in Activity, Durability, and Light-to-Fuel Efficiency of Ni Nanoparticles by La2O3 Cluster Modification for Photothermocatalytic CO2 Reduction. Appl. Catal. B Environ. 2020, 264, 118544. [Google Scholar] [CrossRef]
- Rio, S.; Peru, G.; Léger, B.; Kerdi, F.; Besson, M.; Pinel, C.; Monflier, E.; Ponchel, A. Supported Ruthenium Nanoparticles on Ordered Mesoporous Carbons Using a Cyclodextrin-Assisted Hard-Template Approach and Their Applications as Hydrogenation Catalysts. J. Catal. 2020, 383, 343–356. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Serageldin, M.A.; Wang, T.; Pan, W.-P. Carbon Deposition Mechanism and Structural Changes for Zeolite-Templated Carbons. Microporous Mesoporous Mater. 2021, 324, 111311. [Google Scholar] [CrossRef]
- Yang, T.-H.; Liu, J.-X.; Li, B.-S.; Zhai, Y.-M.; Wang, J.; Tong, B.-L. Effect of Ca Modified HZSM-5 Zeolites on Catalytic Pyrolysis of Oil Shale. Ranliao Huaxue XuebaoJournal Fuel Chem. Technol. 2021, 49, 137–144. [Google Scholar] [CrossRef]
- Liang, X.; Peng, X.; Xia, C.; Yuan, H.; Zou, K.; Huang, K.; Lin, M.; Zhu, B.; Luo, Y.; Shu, X. Improving Ti Incorporation into the BEA Framework by Employing Ethoxylated Chlorotitanate as Ti Precursor: Postsynthesis, Characterization, and Incorporation Mechanism. Ind. Eng. Chem. Res. 2021, 60, 1219–1230. [Google Scholar] [CrossRef]
- Silvero, E.Z.; Albiol, J.G.; Díaz-Canales, E.M.; Vaquer, M.J.V.; Gómez-Tena, M.P. Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays. Minerals 2020, 10, 824. [Google Scholar] [CrossRef]
- Kašpar, V.; Šachlová, Š.; Hofmanová, E.; Komárková, B.; Havlová, V.; Aparicio, C.; Černá, K.; Bartak, D.; Hlaváčková, V. Geochemical, Geotechnical and Microbiological Changes in Mg/ca Bentonite after Thermal Loading at 150 °C. Minerals 2021, 11, 965. [Google Scholar] [CrossRef]
- Cheng, X.; Shi, L.; Liu, Q.; Liu, Z. A Study on Vitrinite and Inertinite Interaction in Pyrolysis of 3 Coals. J. Anal. Appl. Pyrolysis 2021, 156, 105134. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, J.; Xue, Y.; Liu, P.; Dai, B.; Lin, H.; Han, S. The Pyrolysis of Vitrinite and Inertinite by a Combination of Quantum Chemistry Calculation and Thermogravimetry-Mass Spectrometry. Fuel 2020, 264, 116794. [Google Scholar] [CrossRef]
- Xian, S.; Zhang, H.; Chai, Z.; Zhu, Z. Release Characteristics of Gaseous Products during CO2 Gasification of Char. J. Therm. Anal. Calorim. 2020, 140, 177–187. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Jiang, X.; Shen, J. An Improved Parallel Reaction Model Applied to Coal Pyrolysis. Fuel Process. Technol. 2021, 211, 106608. [Google Scholar] [CrossRef]
- Ji, X.; Jialong, Z.; Haoquan, H.; Lijun, J. Application of On-Line Pyrolysis Coupled with Mass Spectrometry Techniques in Coal Conversion. Clean Coal Technol. 2021, 27, 1–10. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Xu, J. Investigating the Release Behavior of Biomass and Coal during the Co-Pyrolysis Process. Int. J. Hydrogen Energy 2021, 46, 34652–34662. [Google Scholar] [CrossRef]
- Zhang, H.; Dou, B.; Zhang, H.; Li, J.; Ruan, C.; Wu, C. Study on Non-Isothermal Kinetics and the Influence of Calcium Oxide on Hydrogen Production during Bituminous Coal Pyrolysis. J. Anal. Appl. Pyrolysis 2020, 150, 104888. [Google Scholar] [CrossRef]
- Alyeksandr, A.; Bai, Z.; Bai, J.; Janchig, N.; Barnasan, P.; Feng, Z.; Hou, R.; He, C. Thermal Behavior of Mongolian Low-Rank Coals during Pyrolysis. Carbon Resour. Convers. 2021, 4, 19–27. [Google Scholar] [CrossRef]
- Ning, J.; Xu, S.; Jin, H.; Wang, Z.; Tu, Y.; Liu, H. Chlorine Release and Migration Characteristics During Combustion of High Chlorine Coal. Ranshao Kexue Yu JishuJournal Combust. Sci. Technol. 2020, 26, 340–347. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, Z.; Liu, L.; Wang, Z.; Li, X. Study on the Migration Characteristics of Sulfur and Nitrogen during Combustion of Oil Sludge with CaO Additive. Energy Fuels 2020, 34, 6124–6135. [Google Scholar] [CrossRef]
- Zhu, P.; Quan, S.; Lei, Z.; Zhang, J. Structural and Pyrolysis Behaviors Analysis of Coal Pretreated with a Weak Acid. Energy Sources Part Recovery Util. Environ. Eff. 2021, 43, 660–671. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, J.; Zhao, B.; Hang, Y.; Liu, Z.; Zhu, Y. Co-Pyrolysis Characteristics of Zhundong Coal and Corn Stalk and the Release of Related Gaseous Products. Dongli Gongcheng XuebaoJournal Chin. Soc. Power Eng. 2020, 40, 272–281. [Google Scholar] [CrossRef]
- Kun, Z.; He, D.; Guan, J.; Shan, L.; Wu, Z.; Zhang, Q. Coal Gasification Using Chemical Looping with Varied Metal Oxides as Oxygen Carriers. Int. J. Hydrog. Energy 2020, 45, 10696–10708. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Hu, X.; Guo, Q.; Guo, X.; Pan, X. Nitrogen Migration in Coal during the Chemical Looping Gasification Reduction Process Using a Nickel-Based Oxygen Carrier. J. Anal. Appl. Pyrolysis 2021, 159, 105331. [Google Scholar] [CrossRef]
- Jayaraman, K.; Kök, M.V.; Gökalp, I. Combustion Mechanism and Model Free Kinetics of Different Origin Coal Samples: Thermal Analysis Approach. Energy 2020, 204, 117905. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, C.; Li, J.-Y.; Liu, Z.-W.; Zhao, J.-X.; Wang, W.-A. Combustion Performance of Blast Furnace Pulverized Coal Mixed with Metallurgical Sludge. Kang TiehIron Steel 2020, 55, 115–122. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Z.; Wang, Q. Effect of Metal Salts on the Decomposition Characteristics of Mengdong Lignite. Energy Sources Part Recovery Util. Environ. Eff. 2020, 42, 246–257. [Google Scholar] [CrossRef]
- Shi, P.; Chang, G.; Tan, X.; Guo, Q. Enhancement of Bituminous Coal Pyrolysis for BTX Production by Fe2O3/MoSi2-HZSM-5 Catalysts. J. Anal. Appl. Pyrolysis 2020, 150, 104867. [Google Scholar] [CrossRef]
- Kundu, N.; Biswas, P.; Bhunia, P.; Ghosh, R.; Sarkar, S. Evolution Characteristics of Metallurgical Coals for Coke Making through Thermogravimetric-Mass Spectroscopic Measurements. J. Environ. Chem. Eng. 2021, 9, 106874. [Google Scholar] [CrossRef]
- Ding, H.; Ouyang, Z.; Wang, W.; Zhang, X.; Zhu, S. Experimental Study on the Influence of O2/CO2 Ratios on NO Conversion and Emission during Combustion and Gasification of High-Temperature Coal Char. Fuel 2022, 310, 122311. [Google Scholar] [CrossRef]
- Li, X.; Jin, Z.; Bai, G.; Wang, J.; Gao, F.; Linghu, J. Experimental Study on the Influence of Water Immersion on Spontaneous Combustion of Anthracite with High Concentrations of Sulfur-Bearing Minerals. J. Therm. Anal. Calorim. 2020, 141, 893–903. [Google Scholar] [CrossRef]
- Ma, M.; Bai, Y.; Song, X.; Wang, J.; Su, W.; Yao, M.; Yu, G. Investigation into the Co-Pyrolysis Behaviors of Cow Manure and Coal Blending by TG–MS. Sci. Total Environ. 2020, 728, 138828. [Google Scholar] [CrossRef]
- Ma, M.; Bai, Y.; Wang, J.; Song, X.; Su, W.; Wang, F.; Yu, G. Thermal Conversion Behavior and Nitrogen-Containing Gas Products Evolution during Co-Pyrolysis of Cow Manure and Coal: A Thermal Gravimetric Analyzer/Differential Scanning Calorimetry–Mass Spectrometer Investigation. Asia-Pac. J. Chem. Eng. 2021, 16, e2663. [Google Scholar] [CrossRef]
- Song, X.; Wei, J.; Bai, Y.; Wang, J.; Su, W.; Yao, M.; Yu, G. Investigation on Gas Release Characteristics of Catalytic Coal Pyrolysis Using Thermogravimetric Analyzer-Mass Spectrometry. Energy Sources Part Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Bai, H.; Mao, N.; Wang, R.; Li, Z.; Zhu, M.; Wang, Q. Kinetic Characteristics and Reactive Behaviors of HSW Vitrinite Coal Pyrolysis: A Comprehensive Analysis Based on TG-MS Experiments, Kinetics Models and ReaxFF MD Simulations. Energy Rep. 2021, 7, 1416–1435. [Google Scholar] [CrossRef]
- Mao, N.; Wang, Q.; Yang, Y.; Xu, D.; Feng, W.; Zhang, J.; Bai, H.; Guo, Q. Pyrolysis Characteristics and Kinetics Analysis of Qinghua Coal, Ningxia Based on Chemical Bonding Characteristics of Macerals. Huagong XuebaoCIESC J. 2020, 71, 811–820. [Google Scholar] [CrossRef]
- Xi, Z.; Gao, K.; Guo, X.; Li, M.; Ren, C. Mechanistic Study of the Inhibition of Active Radicals in Coal by Catechin. Combust. Sci. Technol. 2021, 193, 1931–1948. [Google Scholar] [CrossRef]
- Wang, Q.; Kawano, Y.; Yu, L.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Development of High-Performance Sub-Nanoporous SiC-Based Membranes Derived from Polytitanocarbosilane. J. Membr. Sci. 2020, 598, 117688. [Google Scholar] [CrossRef]
- Gullifa, G.; Materazzi, S. Edible Film Coatings to Extend the Shelf-Life of Fresh-Cut Pineapple. Key Eng. Mater. 2021, 885, 67–74. [Google Scholar] [CrossRef]
- De Carvalho, S.Y.B.; Almeida, R.R.; Pinto, N.A.R.; de Mayrinck, C.; Vieira, S.S.; Haddad, J.F.; Leitão, A.A.; Guimarães, L.G.D.L. Encapsulation of Essential Oils Using Cinnamic Acid Grafted Chitosan Nanogel: Preparation, Characterization and Antifungal Activity. Int. J. Biol. Macromol. 2021, 166, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, M.; Trzciński, J.; Rogulska, M.; Kaproń, G.; Welc, F.; Południkiewicz, A. A Multiproxy Approach to the Reconstruction of an Ancient Manufacturing Technology: A Case Study of a Faience Ptolemaic Bowl from Tell Atrib (Nile Delta). Minerals 2020, 10, 785. [Google Scholar] [CrossRef]
- La Nasa, J.; Biale, G.; Ferriani, B.; Trevisan, R.; Colombini, M.P.; Modugno, F. Plastics in Heritage Science: Analytical Pyrolysis Techniques Applied to Objects of Design. Molecules 2020, 25, 1705. [Google Scholar] [CrossRef] [Green Version]
- Elsässer, C.; Micheluz, A.; Pamplona, M.; Kavda, S.; Montag, P. Selection of Thermal, Spectroscopic, Spectrometric, and Chromatographic Methods for Characterizing Historical Celluloid. J. Appl. Polym. Sci. 2021, 138, 50477. [Google Scholar] [CrossRef]
- Navarro-Moreno, D.; Martínez-Arredondo, A.; García-Vera, V.E.; Lourdes Gutiérrez-Carrillo, M.; Antonio Madrid, J.; Lanzón, M. Nanolime, Ethyl Silicate and Sodium Silicate: Advantages and Inconveniences in Consolidating Ancient Bricks (XII-XIII Century). Constr. Build. Mater. 2021, 277, 122240. [Google Scholar] [CrossRef]
- La Nasa, J.; Biale, G.; Fabbri, D.; Modugno, F. A Review on Challenges and Developments of Analytical Pyrolysis and Other Thermoanalytical Techniques for the Quali-Quantitative Determination of Microplastics. J. Anal. Appl. Pyrolysis 2020, 149, 104841. [Google Scholar] [CrossRef]
- Biale, G.; la Nasa, J.; Mattonai, M.; Corti, A.; Vinciguerra, V.; Castelvetro, V.; Modugno, F. A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics. Polymers 2021, 13, 1997. [Google Scholar] [CrossRef]
- Simonetti, G.; Castellani, F.; di Filippo, P.; Riccardi, C.; Pomata, D.; Risoluti, R.; Buiarelli, F.; Sonego, E. Determination of Mancozeb, a Pesticide Used Worldwide in Agriculture: Comparison among Gc, Lc, and Ce. Curr. Anal. Chem. 2020, 16, 1041–1053. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Lee, J. Elemental Carbon and Its Fractions during Evolved Gas Analysis with Respect to Pyrolytic Carbon and Split Time. Appl. Sci. Switz. 2021, 11, 7544. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, J.; Jia, W.; Guo, F.; Qiu, G.; Wang, R.; Zhang, Y.; Dai, B. Evaluation of the Thermal Behavior, Synergistic Catalysis, and Pollutant Emissions during the Co-Combustion of Sewage Sludge and Coal Gasification Fine Slag Residual Carbon. Catalysts 2021, 11, 1142. [Google Scholar] [CrossRef]
- Goedecke, C.; Dittmann, D.; Eisentraut, P.; Wiesner, Y.; Schartel, B.; Klack, P.; Braun, U. Evaluation of Thermoanalytical Methods Equipped with Evolved Gas Analysis for the Detection of Microplastic in Environmental Samples. J. Anal. Appl. Pyrolysis 2020, 152, 104961. [Google Scholar] [CrossRef]
- Risoluti, R.; Caprari, P.; Gullifa, G.; Massimi, S.; Sorrentino, F.; Maffei, L.; Materazzi, S. Innovative Screening Test for the Early Detection of Sickle Cell Anemia. Talanta 2020, 219, 121243. [Google Scholar] [CrossRef]
- Risoluti, R.; Caprari, P.; Gullifa, G.; Massimi, S.; Maffei, L.; Sorrentino, F.; Carcassi, E.; Materazzi, S. An Innovative Multilevel Test for Hemoglobinopathies: TGA/Chemometrics Simultaneously Identifies and Classifies Sickle Cell Disease From Thalassemia. Front. Mol. Biosci. 2020, 7, 141. [Google Scholar] [CrossRef]
- Risoluti, R.; Caprari, P.; Gullifa, G.; Sorrentino, F.; Maffei, L.; Massimi, S.; Carcassi, E.; Materazzi, S. Differential Diagnosis of Hereditary Hemolytic Anemias in a Single Multiscreening Test by TGA/Chemometrics. Chem. Commun. 2020, 56, 7557–7560. [Google Scholar] [CrossRef]
- Materazzi, S.; Caprari, P.; Gullifa, G.; Massimi, S.; Carcassi, E.; Risoluti, R. Development of a Novel Test for the Identification of Hereditary Erythrocyte Membrane Defects by TGA/Chemometrics. Analyst 2020, 145, 4452–4456. [Google Scholar] [CrossRef]
- Sorrentino, F.; Maffei, L.; Caprari, P.; Cassetta, R.; Dell’anna, D.; Materazzi, S.; Risoluti, R. Pregnancy in Thalassemia and Sickle Cell Disease: The Experience of an Italian Thalassemia Center. Front. Mol. Biosci. 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Maffei, L.; Sorrentino, F.; Caprari, P.; Taliani, G.; Massimi, S.; Risoluti, R.; Materazzi, S. HCV Infection in Thalassemia Syndromes and Hemoglobinopathies: New Perspectives. Front. Mol. Biosci. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Caprari, P.; Massimi, S.; Diana, L.; Sorrentino, F.; Maffei, L.; Materazzi, S.; Risoluti, R. Hemorheological Alterations and Oxidative Damage in Sickle Cell Anemia. Front. Mol. Biosci. 2019, 6, 142. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Caprari, P.; Gullifa, G.; Diana, L.; Luciani, M.; Amato, A.; Materazzi, S. TGA/Chemometric Test Is Able to Detect the Presence of a Rare Hemoglobin Variant Hb Bibba. Front. Mol. Biosci. 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Caprari, P.; Gullifa, G.; Massimi, S.; Sorrentino, F.; Buiarelli, F.; Materazzi, S. New Methods for Thalassemia Screening: TGA/Chemometrics Test Is Not Influenced by the Aging of Blood Samples. Microchem. J. 2019, 146, 374–380. [Google Scholar] [CrossRef]
- Risoluti, R.; Gullifa, G.; Fabiano, M.A.; Sorrentino, F.; Caprari, P.; Materazzi, S. Advances in Thermoanalytical Techniques: May Aspirin Interfere with ß-Thalassemia Diagnosis? J. Therm. Anal. Calorim. 2018, 134, 1299–1306. [Google Scholar] [CrossRef]
- Risoluti, R.; Materazzi, S.; Sorrentino, F.; Bozzi, C.; Caprari, P. Update on Thalassemia Diagnosis: New Insights and Methods. Talanta 2018, 183, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Materazzi, S.; Sorrentino, F.; Maffei, L.; Caprari, P. Thermogravimetric Analysis Coupled with Chemometrics as a Powerful Predictive Tool for SS-Thalassemia Screening. Talanta 2016, 159, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Materazzi, S. Chemometrics Assessement of Occupational Exposure to Hydroxyurea. Front. Chem. 2018, 6, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Materazzi, S.; Gullifa, G.; Fabiano, M.A.; Frati, P.; Santurro, A.; Scopetti, M.; Fineschi, V.; Risoluti, R. New Frontiers in Thermal Analysis: A TG/Chemometrics Approach for Postmortem Interval Estimation in Vitreous Humor. J. Therm. Anal. Calorim. 2017, 130, 549–557. [Google Scholar] [CrossRef]
- Risoluti, R.; Canepari, S.; Frati, P.; Fineschi, V.; Materazzi, S. “2n Analytical Platform” to Update Procedures in Thanatochemistry: Estimation of Post Mortem Interval in Vitreous Humor. Anal. Chem. 2019, 91, 7025–7031. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Jiao, L.; Yan, B.; Li, Z.; Dong, X.; Chen, G. Microwave Pyrolysis of Herb Residue for Syngas Production with In situ Tar Elimination and Nitrous Oxides Controlling. Fuel Process. Technol. 2021, 221, 106955. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, G.; Zhang, J.; Wen, H.; Li, Y.; Zhang, J.; Xu, G. Performances and Kinetics Analyses of Co-Combustion of Alcohol Extracted Herb Residue and Wasted Activated Coke. Huagong XuebaoCIESC J. 2021, 72, 1116–1124. [Google Scholar] [CrossRef]
- Wang, X.; Cui, X.; Che, Y.; Zhou, S.; Dan, Z.; Yan, B.; Chen, G.; Wang, T. Gasification of Tibetan Herb Residue: Thermogravimetric Analysis and Experimental Study. Biomass Bioenergy 2021, 146, 105952. [Google Scholar] [CrossRef]
- Yan, B.; Jiao, L.; Li, J.; Zhu, X.; Ahmed, S.; Chen, G. Investigation on Microwave Torrefaction: Parametric Influence, TG-MS-FTIR Analysis, and Gasification Performance. Energy 2021, 220, 119794. [Google Scholar] [CrossRef]
- Rabinovich, A.; Heckman, J.R.; Lew, B.; Rouff, A.A. Magnesium Supplementation for Improved Struvite Recovery from Dairy Lagoon Wastewater. J. Environ. Chem. Eng. 2021, 9, 105628. [Google Scholar] [CrossRef]
- Cheng, H.; Ye, G.; Wang, X.; Su, C.; Zhang, W.; Yao, F.; Wang, Y.; Jiao, Y.; Huang, H.; Ye, D. Micro-Mesoporous Carbon Fabricated by Phanerochaete Chrysosporium Pretreatment Coupling with Chemical Activation: Promoting Effect and Toluene Adsorption Performance. J. Environ. Chem. Eng. 2021, 9, 105054. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, H.; Hu, D.; Wang, J.-A.; Li, M.; Zhou, Z.; Shen, Q.; Sun, N.; Wei, W. Preparation of Potassium Intercalated Carbons by In situ Activation and Speciation for CO2 Capture from Flue Gas. J. CO2 Util. 2020, 35, 59–66. [Google Scholar] [CrossRef]
- Nedeljković, M.; Visser, J.; Nijland, T.G.; Valcke, S.; Schlangen, E. Physical, Chemical and Mineralogical Characterization of Dutch Fine Recycled Concrete Aggregates: A Comparative Study. Constr. Build. Mater. 2021, 270, 121475. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Li, K.; Lin, F.; Tian, W.; Che, L.; Yan, B.; Ma, W.; Song, Y. Nitrogen, Sulfur, Chlorine Containing Pollutants Releasing Characteristics during Pyrolysis and Combustion of Oily Sludge. Fuel 2020, 273, 117772. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Liu, J.; He, Y.; Evrendilek, F.; Buyukada, M.; Xie, W.; Sun, S. Co-Pyrolytic Mechanisms, Kinetics, Emissions and Products of Biomass and Sewage Sludge in N2, CO2 and Mixed Atmospheres. Chem. Eng. J. 2020, 397, 125372. [Google Scholar] [CrossRef]
- Pan, X.; Wang, M.; Wang, X.; Xia, Y.; Liu, C.; Wu, Y.; Fu, C.; Hu, K.; Su, K.; Zhang, Z. Comparative Study on the Effect of Different Dewatering Skeleton Conditioners on Sludge Pyrolysis Products. J. Environ. Chem. Eng. 2021, 9, 106527. [Google Scholar] [CrossRef]
- Wang, M.; Pan, X.; Xia, Y.; Zhu, A.; Wu, Y.; Fu, C.; Zhang, P.; Zhao, J.; Li, J.; Fu, J. Effect of Dewatering Conditioners on Pollutants with Nitrogen, Sulfur, and Chlorine Releasing Characteristics during Sewage Sludge Pyrolysis. Fuel 2022, 307, 121834. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Z. Influence of Fe2O3 on Release Mechanism of NH3 and Other Nitrogen-Containing Compounds from Pyrolysis of Three Typical Amino Acids in Urban Sludge. J. Donghua Univ. Engl. Ed. 2021, 38, 294–303. [Google Scholar] [CrossRef]
- Wang, T.; Ma, H.; Ren, L.; Chen, Z.; Chen, S.; Liu, J.; Mei, M.; Li, J.; Xue, Y. Insights into In situ Sulfur Retention by Co-Combustion of Dyeing Sludge and Wood Sawdust. J. Clean. Prod. 2021, 323, 129114. [Google Scholar] [CrossRef]
- Zhang, H.; Xian, S.; Zhu, Z.; Guo, X. Release Behaviors of Sulfur-Containing Pollutants during Combustion and Gasification of Coals by TG-MS. J. Therm. Anal. Calorim. 2021, 143, 377–386. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, L.; Liu, T.; Dai, L.; Zhang, L.; Han, W.; Li, D. An Insight into the Evolution of Sulfur Species during the Integration Process of Residue Hydrotreating and Delayed Coking. Ind. Eng. Chem. Res. 2020, 59, 12719–12728. [Google Scholar] [CrossRef]
- Debiagi, P.; Yildiz, C.; Richter, M.; Ströhle, J.; Epple, B.; Faravelli, T.; Hasse, C. Experimental and Modeling Assessment of Sulfur Release from Coal under Low and High Heating Rates. Proc. Combust. Inst. 2021, 38, 4053–4061. [Google Scholar] [CrossRef]
- Debiagi, P.; Yildiz, C.; Ströhle, J.; Epple, B.; Faravelli, T.; Hasse, C. Systematic Evaluation and Kinetic Modeling of Low Heating Rate Sulfur Release in Various Atmospheres. Fuel 2021, 289, 119739. [Google Scholar] [CrossRef]
- Yu, X.; Yu, D.; Yu, G.; Liu, F.; Han, J.; Wu, J.; Xu, M. Temperature-Resolved Evolution and Speciation of Sulfur during Pyrolysis of a High-Sulfur Petroleum Coke. Fuel 2021, 295, 120609. [Google Scholar] [CrossRef]
- Cepollaro, E.M.; Caputo, D.; Gargiulo, N.; Deorsola, F.A.; Cimino, S.; Lisi, L. H2S Catalytic Removal at Low Temperature over Cu- and Mg- Activated Carbon Honeycombs. Catal. Today 2021, 390–391, 221–229. [Google Scholar] [CrossRef]
- Ju, F.; Wu, C.; Luan, H.; Tang, Z.; Pan, H.; Pan, H.; Xiu, G.; Ling, H. Influence of Wet Flue Gas Desulfurization on the Pollutants Monitoring in FCC Flue Gas. Environ. Sci. Pollut. Res. 2021, 28, 55502–55510. [Google Scholar] [CrossRef]
- Song, W.; Zhou, J.; Wang, B.; Li, S.; Han, J. New Insight into Investigation of Reduction of Desulfurization Ash by Pyrite for Clean Generation SO2. J. Clean. Prod. 2020, 253, 120026. [Google Scholar] [CrossRef]
- Castellini, E.; Bernini, F.; Sebastianelli, L.; Sainz-Díaz, C.I.; Serrano, A.; Castro, G.R.; Malferrari, D.; Brigatti, M.F.; Borsari, M. Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2s on Montmorillonite. Minerals 2020, 10, 510. [Google Scholar] [CrossRef]
- Li, R.; Lu, T.; Xie, M.; Liu, F. Analysis on Thermal Behavior of Fluorides and Cyanides for Heat-Treating Spent Cathode Carbon Blocks from Aluminum Smelters by TG/DSC-MS & ECSA®. Ecotoxicol. Environ. Saf. 2020, 189, 110015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Teng, Z.; Han, K.; Li, Y.; Wang, M. Co-Combustion Characteristics and Kinetics of Meager Coal and Spent Cathode Carbon Block by TG-MS Analysis. Arab. J. Chem. 2021, 14, 103198. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, G.; Liu, J.; Evrendilek, D.E.; Buyukada, M. Thermal Behaviors, Combustion Mechanisms, Evolved Gasses, and Ash Analysis of Spent Potlining for a Hazardous Waste Management. J. Environ. Sci. China 2021, 107, 124–137. [Google Scholar] [CrossRef]
- EL-Sayed, S.A. Review of Thermal Decomposition, Kinetics Parameters and Evolved Gases during Pyrolysis of Energetic Materials Using Different Techniques. J. Anal. Appl. Pyrolysis 2022, 161, 105364. [Google Scholar] [CrossRef]
- Chelouche, S.; Trache, D.; Maamache, I.; Tarchoun, A.F.; Khimeche, K.; Mezroua, A. A New Experimental Way for the Monitoring of the Real/Equivalent in-Service-Time of Double Base Rocket Propellant by Coupling VST and PCA. Def. Technol. 2021, 17, 440–449. [Google Scholar] [CrossRef]
- Yang, D.; Mo, W.; Zhang, S.; Li, B.; Hu, D.; Chen, S. A Graphene Oxide Functionalized Energetic Coordination Polymer Possesses Good Thermostability, Heat Release and Combustion Catalytic Performance for Ammonium Perchlorate. Dalton Trans. 2020, 49, 1582–1590. [Google Scholar] [CrossRef]
- Izato, Y.-I.; Shiota, K.; Satoh, K.; Satoh, T.; Yahata, Y.; Miyake, A. Analyses of the Thermal Characteristics and Gaseous Products of Guanidine Nitrate/Basic Copper Nitrate Mixtures Using Calorimetry with High Resolution Mass Spectrometry. J. Anal. Appl. Pyrolysis 2020, 151, 104918. [Google Scholar] [CrossRef]
- Song, X.; Guo, K.; Wang, Y.; Li, F. Characterization and Properties of F2602/GAP/CL-20 Energetic Fibers with High Energy and Low Sensitivity Prepared by the Electrospinning Method. ACS Omega 2020, 5, 11106–11114. [Google Scholar] [CrossRef]
- Kou, Y.; Song, X.; Guo, K.; Cheng, Z.; Wang, Y. Characterization, Thermolysis, and Energetic Properties of an MTNP/PETN Eutectic Prepared via the Solvent/Anti-Solvent Method. Propellants Explos. Pyrotech. 2021, 46, 299–308. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, L.; Zhu, Y.; Wang, B.; Li, X.; Zhang, J. Comparative Thermal Research on Tetraazapentalene-Derived Heat-Resistant Energetic Structures. Sci. Rep. 2020, 10, 21757. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cao, X.; Liu, J.; Zhang, Z.; Jin, X.; Gao, J.; Yu, H.; Sun, S.; Li, F. TF-Al/TiC Highly Reactive Composite Particle for Application Potential in Solid Propellants. Chem. Eng. J. 2021, 425, 130674. [Google Scholar] [CrossRef]
- Chai, H.; Duan, Q.; Cao, H.; Li, M.; Sun, J. Effects of Nitrogen Content on Pyrolysis Behavior of Nitrocellulose. Fuel 2020, 264, 116853. [Google Scholar] [CrossRef]
- Mani, G.; Jos, J.; Radhakrishnan Nair, P.; Mathew, S. Investigation of Kinetic Parameters for Ammonium Perchlorate Thermal Decomposition in Presence of GCN/CuO by TG-MS Analysis and Kinetic Compensation Correction. J. Solid State Chem. 2021, 301, 122301. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.; Wang, H.; Yang, H.; Huang, H.; Liu, Y.; Fan, X. Investigation on the Thermal Behavior of Ammonium Dinitramide with Different Copper-Based Catalysts. Propellants Explos. Pyrotech. 2020, 45, 1607–1613. [Google Scholar] [CrossRef]
- Wu, J.; Feng, B.; Gao, Z.; Li, Y.; Wu, S.; Yin, Q.; Huang, J.; Ren, X. Investigation on the Thermal Decomposition and Thermal Reaction Process of PTFE/Al/MoO3 Fluorine-Containing Thermite. J. Fluor. Chem. 2021, 241, 109676. [Google Scholar] [CrossRef]
- Agnihotri, R.; Oommen, C. Kinetics and Mechanism of Thermal and Catalytic Decomposition of Hydroxylammonium Nitrate (HAN) Monopropellant. Propellants Explos. Pyrotech. 2021, 46, 286–298. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, L.; Yang, F.; Li, D.; Wang, P.; Lin, Q.; Lu, M. LiN5: A Novel Pentazolate Salt with High Nitrogen Content. Chem. Eng. J. 2022, 429, 132399. [Google Scholar] [CrossRef]
- Zhai, P.; Shi, C.; Zhao, S.; Liu, W.; Wang, W.; Yao, L. Thermal Decomposition of Ammonium Perchlorate-Based Molecular Perovskite from TG-DSC-FTIR-MS and: Ab Initio Molecular Dynamics. RSC Adv. 2021, 11, 16388–16395. [Google Scholar] [CrossRef]
- Salehi, S.; Eslami, A. Organic Based Additives Impact on Thermal Behavior of Ammonium Perchlorate: Superior 4, 4′-Bipyridine Versus Inferior Biphenyl. Propellants Explos. Pyrotech. 2021, 46, 1227–1239. [Google Scholar] [CrossRef]
- Benhammada, A.; Trache, D. Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review. Appl. Spectrosc. Rev. 2020, 55, 724–777. [Google Scholar] [CrossRef]
- Chen, X.-B.; Chen, S.-L.; Lin, Y.-S.; Lu, S.-G.; Wu, K. Design of High-Safety and High-Energy Density Lithium Ion Battery: High Voltage Layered Cathode Materials. Zhongguo Youse Jinshu XuebaoChinese J. Nonferrous Met. 2020, 30, 2912–2919. [Google Scholar] [CrossRef]
- Kosova, N.V.; Podgornova, O.A.; Volfkovich, Y.M.; Sosenkin, V.E. Optimization of the Cathode Porosity via Mechanochemical Synthesis with Carbon Black. J. Solid State Electrochem. 2021, 25, 1029–1037. [Google Scholar] [CrossRef]
- Feng, X.; Bai, Y.; Zheng, L.; Liu, M.; Li, Y.; Zhao, R.; Li, Y.; Wu, C. Effect of Different Nitrogen Configurations on Sodium Storage Properties of Carbon Anodes for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 56285–56295. [Google Scholar] [CrossRef]
- Piperno, L.; Rasi, S.; De Santis, S.; Masi, A.; Santoni, A.; Mancini, A.; Angrisani Armenio, A.; Pinto, V.; Farjas, J.; Sotgiu, G.; et al. Elucidation of the Decomposition Reactions of Low-Fluorine YBa2Cu3O7-x Precursors during Film Pyrolysis. J. Anal. Appl. Pyrolysis 2020, 148, 104777. [Google Scholar] [CrossRef]
- Martinez, A.C.; Grugeon, S.; Cailleu, D.; Courty, M.; Tran-Van, P.; Delobel, B.; Laruelle, S. High Reactivity of the Nickel-Rich LiNi1-x-YMnxCoyO2 Layered Materials Surface towards H2O/CO2 Atmosphere and LiPF6-Based Electrolyte. J. Power Sources 2020, 468, 228204. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Liang, Y.; Wu, Y.-F.; Yang, J.; Zhang, X.; Cai, D.; Peng, X.; Kurmoo, M.; Zeng, M.-H. In Situ Pyrolysis Tracking and Real-Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angew. Chem. Int. Ed. 2020, 59, 13232–13237. [Google Scholar] [CrossRef]
- Abd-El-Latif, A.A.; Sichler, P.; Kasper, M.; Waldmann, T.; Wohlfahrt-Mehrens, M. Insights Into Thermal Runaway of Li–Ion Cells by Accelerating Rate Calorimetry Coupled with External Sensors and Online Gas Analysis. Batter. Supercaps 2021, 4, 1135–1144. [Google Scholar] [CrossRef]
- Kumari, P.; Pal, P.; Shinzato, K.; Awasthi, K.; Ichikawa, T.; Jain, A.; Kumar, M. Nanostructured Bi2Te3 as Anode Material as Well as a Destabilizing Agent for LiBH4. Int. J. Hydrogen Energy 2020, 45, 16992–16999. [Google Scholar] [CrossRef]
- Abedeen, A.; Hossain, M.S.; Som, U.; Moniruzzaman, M.D. Catalytic Cracking of Scrap Tire-Generated Fuel Oil from Pyrolysis of Waste Tires with Zeolite ZSM-5. Int. J. Sustain. Eng. 2021, 14, 2025–2040. [Google Scholar] [CrossRef]
- Zhu, P.; Pan, X.; Li, X.; Liu, X.; Liu, Q.; Zhou, J.; Dai, X.; Qian, G. Biodegradation of Plastics from Waste Electrical and Electronic Equipment by Greater Wax Moth Larvae (Galleria Mellonella). J. Clean. Prod. 2021, 310, 127346. [Google Scholar] [CrossRef]
- Dhahak, A.; Grimmer, C.; Neumann, A.; Rüger, C.; Sklorz, M.; Streibel, T.; Zimmermann, R.; Mauviel, G.; Burkle-Vitzthum, V. Real Time Monitoring of Slow Pyrolysis of Polyethylene Terephthalate (PET) by Different Mass Spectrometric Techniques. Waste Manag. 2020, 106, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, T.; Lee, J.; Lin, K.-Y.A.; Park, Y.-K.; Kwon, E.E. Catalytic Pyrolysis of Plastics Derived from End-of-Life-Vehicles (ELVs) under the CO2 Environment. Int. J. Energy Res. 2021, 45, 16781–16793. [Google Scholar] [CrossRef]
- Chaihad, N.; Kurnia, I.; Yoshida, A.; Watanabe, C.; Tei, K.; Reubroycharoen, P.; Kasai, Y.; Abudula, A.; Guan, G. Catalytic Pyrolysis of Wasted Fishing Net over Calcined Scallop Shells: Analytical Py-GC/MS Study. J. Anal. Appl. Pyrolysis 2020, 146, 104750. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Liu, H.; Ding, B. Characteristics of Waste Cooking Oil Pyrolysis by TG-FTIR-MS and TG-GC/MS. Zhongnan Daxue Xuebao Ziran Kexue BanJournal Cent. South Univ. Sci. Technol. 2021, 52, 1297–1306. [Google Scholar] [CrossRef]
- Wang, T.; Fu, T.; Chen, K.; Cheng, R.; Chen, S.; Liu, J.; Mei, M.; Li, J.; Xue, Y. Co-Combustion Behavior of Dyeing Sludge and Rice Husk by Using TG-MS: Thermal Conversion, Gas Evolution, and Kinetic Analyses. Bioresour. Technol. 2020, 311, 123527. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Li, J.; Xue, Y.; Liu, J.; Mei, M.; Hou, H.; Chen, S. Co-Pyrolysis Behavior of Sewage Sludge and Rice Husk by TG-MS and Residue Analysis. J. Clean. Prod. 2020, 250, 119557. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Wang, J.-F.; Wei, J.-T.; Bai, Y.-H.; Song, X.-D.; Su, W.-G.; Yu, G.-S. Effect of Alkali Metal Occurrence on the Pyrolysis Behavior of Rice Straw. Ranliao Huaxue XuebaoJournal Fuel Chem. Technol. 2021, 49, 752–758. [Google Scholar] [CrossRef]
- Varsha, S.S.V.; Vuppaladadiyam, A.K.; Shehzad, F.; Ghaedi, H.; Murugavelh, S.; Dong, W.; Antunes, E. Co-Pyrolysis of Microalgae and Municipal Solid Waste: A Thermogravimetric Study to Discern Synergy during Co-Pyrolysis Process. J. Energy Inst. 2021, 94, 29–38. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, L.; Guo, D.; Chen, Y.; Wang, X.; Zhu, Y. Co-Pyrolysis of Petrochemical Sludge and Sawdust for Syngas Production by TG-MS and Fixed Bed Reactor. Int. J. Hydrogen Energy 2020, 45, 30232–30243. [Google Scholar] [CrossRef]
- Singh, R.V.; Pai, M.R.; Banerjee, A.M.; Patkare, G.R.; Pai, R.V.; Kumar, A.; Yadav, A.K.; Phaphale, S.; Tripathi, A.K. Investigations on the Hydrolysis Step of Copper-Chlorine Thermochemical Cycle for Hydrogen Production. Int. J. Energy Res. 2020, 44, 2845–2863. [Google Scholar] [CrossRef]
- Xia, Z.; Yang, H.; Sun, J.; Zhou, Z.; Wang, J.; Zhang, Y. Co-Pyrolysis of Waste Polyvinyl Chloride and Oil-Based Drilling Cuttings: Pyrolysis Process and Product Characteristics Analysis. J. Clean. Prod. 2021, 318, 128521. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, Y.; Huang, J.; Fei, Z.; Liu, Q.; Chen, X.; Cui, M.; Qiao, X. Study on the Mechanism and Kinetics of Waste Polypropylene Cracking Oxidation over the Mn2O3/HY Catalyst by TG-MS and in Situ FTIR. Ind. Eng. Chem. Res. 2020, 59, 16569–16578. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Huang, H.; Evrendilek, F.; He, Y.; Buyukada, M. Combustion Parameters, Evolved Gases, Reaction Mechanisms, and Ash Mineral Behaviors of Durian Shells: A Comprehensive Characterization and Joint-Optimization. Bioresour. Technol. 2020, 314, 123689. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Ma, P.; Zhou, Z.; Long, H.; Peng, J.; Zhang, L. Evaluation of a Cleaner Production for Cyanide Tailings by Chlorination Thermal Treatments. J. Clean. Prod. 2021, 281, 124195. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, S.; Liu, Z.; Liu, Q.; Shi, L.; Han, W.; Zhang, L.; Li, M. Comparison of TG-MS and GC-Simulated Distillation for Determination of the Boiling Point Distribution of Various Oils. Fuel 2021, 301, 121088. [Google Scholar] [CrossRef]
- Qi, K.; Xu, M.; Yin, H.; Wu, L.; Hu, Y.; Yang, J.; Liu, C.; Pan, Y. Online Monitoring the Key Intermediates and Volatile Compounds Evolved from Green Tea Roasting by Synchrotron Radiation Photoionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 1402–1411. [Google Scholar] [CrossRef]
- Polat, S.; Sayan, P. Assessment of the Thermal Pyrolysis Characteristics and Kinetic Parameters of Spent Coffee Waste: A TGA-MS Study. Energy Sources Part Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Bejenari, V.; Marcu, A.; Ipate, A.-M.; Rusu, D.; Tudorachi, N.; Anghel, I.; Şofran, I.-E.; Lisa, G. Physicochemical Characterization and Energy Recovery of Spent Coffee Grounds. J. Mater. Res. Technol. 2021, 15, 4437–4451. [Google Scholar] [CrossRef]
- Mattonai, M.; Watanabe, A.; Ribechini, E. Characterization of Volatile and Non-Volatile Fractions of Spices Using Evolved Gas Analysis and Multi-Shot Analytical Pyrolysis. Microchem. J. 2020, 159, 105321. [Google Scholar] [CrossRef]
- Napoli, A.; Aiello, D.; Aiello, G.; Cappello, M.S.; Di Donna, L.; Mazzotti, F.; Materazzi, S.; Fiorillo, M.; Sindona, G. Mass Spectrometry-Based Proteomic Approach in Oenococcus Oeni Enological Starter. J. Proteome Res. 2014, 13, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Gullifa, G.; Materazi, S. Assessing the Quality of Milk Using a Multicomponent Analytical Platform. Front. Chem. 2020, 8, 614718. [Google Scholar] [CrossRef]
- De Jesus, J.H.F.; Szilágyi, I.M.; Regdon, G., Jr.; Cavalheiro, E.T.G. Thermal Behavior of Food Preservative Sorbic Acid and Its Derivates. Food Chem. 2021, 337, 127770. [Google Scholar] [CrossRef] [PubMed]
- Verchovsky, A.B.; Anand, M.; Barber, S.J.; Sheridan, S.; Morgan, G.H. A Quantitative Evolved Gas Analysis for Extra-Terrestrial Samples. Planet. Space Sci. 2020, 181, 104830. [Google Scholar] [CrossRef]
- Wong, G.M.; Lewis, J.M.T.; Knudson, C.A.; Millan, M.; McAdam, A.C.; Eigenbrode, J.L.; Andrejkovičová, S.; Gómez, F.; Navarro-González, R.; House, C.H. Detection of Reduced Sulfur on Vera Rubin Ridge by Quadratic Discriminant Analysis of Volatiles Observed During Evolved Gas Analysis. J. Geophys. Res. Planets 2020, 125, e2019JE006304. [Google Scholar] [CrossRef]
- Clark, J.; Sutter, B.; Archer, P.D., Jr.; Ming, D.; Rampe, E.; McAdam, A.; Navarro-González, R.; Eigenbrode, J.; Glavin, D.; Zorzano, M.-P.; et al. A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. Minerals 2021, 11, 475. [Google Scholar] [CrossRef]
- Ralston, S.J.; Hausrath, E.M.; Tschauner, O.; Rampe, E.; Peretyazhko, T.S.; Christoffersen, R.; Defelice, C.; Lee, H. Dissolution rates of allophane with variable Fe contents: Implications for aqueous alteration and the preservation of X-ray amorphous materials on mars. Clays Clay Miner. 2021, 69, 263–288. [Google Scholar] [CrossRef]
- Garvie, L.A.J. Mineralogy of the 2019 Aguas Zarcas (CM2) Carbonaceous Chondrite Meteorite Fall. Am. Mineral. 2021, 106, 1900–1916. [Google Scholar] [CrossRef]
- Freissinet, C.; Knudson, C.A.; Graham, H.V.; Lewis, J.M.T.; Lasue, J.; McAdam, A.C.; Teinturier, S.; Szopa, C.; Dehouck, E.; Morris, R.V.; et al. Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the Unique Cumberland Analog Investigation. Planet. Sci. J. 2020, 1, 41. [Google Scholar] [CrossRef]
- McAdam, A.C.; Sutter, B.; Archer, P.D.; Franz, H.B.; Wong, G.M.; Lewis, J.M.T.; Eigenbrode, J.L.; Stern, J.C.; Knudson, C.A.; Clark, J.V.; et al. Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. J. Geophys. Res. Planets 2020, 125, e2019JE006309. [Google Scholar] [CrossRef]
- Yuan, P.-H.; Bi, Y.-C.; Su, B.; Yang, D.-Z.; Gong, N.-B.; Zhang, L.; Lu, Y.; Du, G.-H. Analysis of Four Solvatomorphs of Betulin by TG–DTA–EI/PI–MS System Equipped with the Skimmer-Type Interface. Nat. Prod. Bioprospecting 2020, 10, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Yang, D.; Wang, R.; Gong, N.; Zhang, L.; Lu, Y.; Du, G. Characterization of a New Solvatomorph of Drospirenone by Thermogravimetry-Mass Spectrometry Combined with Other Solid-State Analysis Methods. ACS Omega 2020, 5, 25289–25296. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Gullifa, G.; Fineschi, V.; Frati, P.; Materazzi, S. Application of Innovative TGA/Chemometric Approach for Forensic Purposes: The Estimation of the Time since Death in Contaminated Specimens. Diagnostics 2021, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Hribar, U.; Spreitzer, M.; König, J. Applicability of Water Glass for the Transfer of the Glass-Foaming Process from Controlled to Air Atmosphere. J. Clean. Prod. 2021, 282, 125428. [Google Scholar] [CrossRef]
- Vannoni, L.; Pizzimenti, S.; Caroti, G.; la Nasa, J.; Duce, C.; Bonaduce, I. Disclosing the Chemistry of Oil Curing by Mass Spectrometry Using Methyl Linoleate as a Model Binder. Microchem. J. 2022, 173, 107012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risoluti, R.; Gullifa, G.; Barone, L.; Papa, E.; Materazzi, S. On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS. Molecules 2022, 27, 3518. https://doi.org/10.3390/molecules27113518
Risoluti R, Gullifa G, Barone L, Papa E, Materazzi S. On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS. Molecules. 2022; 27(11):3518. https://doi.org/10.3390/molecules27113518
Chicago/Turabian StyleRisoluti, Roberta, Giuseppina Gullifa, Laura Barone, Elena Papa, and Stefano Materazzi. 2022. "On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS" Molecules 27, no. 11: 3518. https://doi.org/10.3390/molecules27113518
APA StyleRisoluti, R., Gullifa, G., Barone, L., Papa, E., & Materazzi, S. (2022). On-Line Thermally Induced Evolved Gas Analysis: An Update—Part 1: EGA-MS. Molecules, 27(11), 3518. https://doi.org/10.3390/molecules27113518