Modeling Binary and Multicomponent Systems Containing Supercritical CO2 with Polyethylene Glycols and Compounds Relevant to the Biodiesel Production
Abstract
:1. Introduction
2. The CPA Equation of State
3. Results and Discussion
3.1. CPA Pure Fluid Parameters
3.2. CO2–Polyethylene Glycols VLE
3.3. CO2–Glycerol Binary System
3.4. CO2–Glycerides
3.5. Ternary and Multicomponent Systems
4. Overview of Multicomponent Systems Modeled with the CPA EoS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Temelli, F. Perspectives on supercritical fluid processing of fats and oils. J. Supercrit. Fluids 2009, 47, 583–590. [Google Scholar] [CrossRef]
- Kultys, E.; Kurek, M.A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef] [PubMed]
- Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022, 27, 353. [Google Scholar] [CrossRef] [PubMed]
- Macaira, J.; Santana, A.; Costa, A.; Ramirez, E.; Larroyoz, M.A. Process intensification using CO2 as a cosolvent under super-critical conditions applied to design of biodiesel production. Ind. Eng. Chem. Res. 2014, 53, 3985–3995. [Google Scholar] [CrossRef]
- Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013, 3, 22739–22773. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.M.; Panayiotou, C. Dimerization of Carboxylic Acids: An Equation of State Approach. J. Phys. Chem. B 2017, 121, 2153–2163. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Ali, S.; Kontogeorgis, G.M. Modeling systems relevant to the biodiesel production using the CPA equation of state. Fluid Phase Equilibria 2016, 430, 75–92. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Ali, S.; Kontogeorgis, G.M. Modeling systems relevant to the biodiesel production using the CPA equation of state. Part 2. Systems with supercritical CO2. Fluid Phase Equilibria 2019, 504, 112337. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Voutsas, E.C.; Yakoumis, I.V.; Tassios, D.P. An Equation of State for Associating Fluids. Ind. Eng. Chem. Res. 1996, 35, 4310–4318. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Michelsen, M.L.; Folas, G.K.; Derawi, S.; von Solms, N.; Stenby, E.H. Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 1. Pure compounds and self-associating systems. Ind. Eng. Chem. Res. 2006, 45, 4855–4868. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Michelsen, M.L.; Folas, G.K.; Derawi, S.; von Solms, N.; Stenby, E.H. Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 2. Cross-associating and multicomponent systems. Ind. Eng. Chem. Res. 2006, 45, 4869–4878. [Google Scholar] [CrossRef]
- Derawi, S.O.; Kontogeorgis, G.M.; Michelsen, M.L.; Stenby, E.H. Extension of the Cubic-Plus-Association Equation of State to Glycol−Water Cross-Associating Systems. Ind. Eng. Chem. Res. 2003, 42, 1470–1477. [Google Scholar] [CrossRef]
- Breil, M.P.; Kontogeorgis, G.M. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems De-scribed by the Cubic-Plus-Association Equation of State. Ind. Eng. Chem. Res. 2009, 48, 5472–5480. [Google Scholar] [CrossRef]
- Arya, A.; Maribo-Mogensen, B.; Tsivintzelis, I.; Kontogeorgis, G. Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State. Ind. Eng. Chem. Res. 2014, 53, 11766–11778. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.M. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications. J. Chem. Thermodyn. 2016, 93, 305–319. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Bjørner, M.G.; Kontogeorgis, G.M. Recent advances with association models for practical applications. Mol. Phys. 2018, 116, 1921–1944. [Google Scholar] [CrossRef]
- Oliveira, M.; Marrucho, I.; Coutinho, J.; Queimada, A. Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. Fluid Phase Equilibria 2008, 267, 83–91. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Varanda, F.R.; Marrucho, I.; Queimada, A.J.; Coutinho, J. Prediction of Water Solubility in Biodiesel with the CPA Equation of State. Ind. Eng. Chem. Res. 2008, 47, 4278–4285. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Teles, A.R.R.; Queimada, A.J.; Coutinho, J.A.P. Phase equilibria of glycerol containing systems and their de-scription with the Cubic-Plus-Association (CPA) equation of state. Fluid Phase Equilibria 2009, 280, 22–29. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Queimada, A.J.; Coutinho, J.A. Modeling of Biodiesel Multicomponent Systems with the Cubic-Plus-Association (CPA) Equation of State. Ind. Eng. Chem. Res. 2009, 49, 1419–1427. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Queimada, A.J.; Kontogeorgisc, G.M.; Coutinho, J.A.P. Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association equation of state. J. Supercrit. Fluids 2011, 55, 876–892. [Google Scholar] [CrossRef]
- Follegatti-Romero, L.A.; Lanza, M.; Batista, F.R.M.; Batista, E.A.C.; Oliveira, M.B.; Coutinho, J.A.P.; Meirelles, J.A. Liquid-Liquid equilibrium for ternary systems containing ethyl esters, anhydrous ethanol and water at 298.15, 313.15 and 333.15 K. Ind. Eng. Chem. Res. 2010, 49, 12613–12619. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Barbedo, S.; Soletti, J.I.; Carvalho, S.H.; Queimada, A.J.; Coutinho, J.A. Liquid–liquid equilibria for the canola oil biodiesel + ethanol + glycerol system. Fuel 2011, 90, 2738–2745. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Ribeiro, V.; Quemada, A.J.; Coutinho, J.A.P. Modeling phase equilibria relevant to biodiesel production: A comparison of GE models, Cubic EoS, EoS-GE and association EoS. Ind. Eng. Chem. Res. 2011, 50, 2348–2358. [Google Scholar] [CrossRef]
- Follegatti-Romero, L.A.; Oliveira, M.B.; Batista, F.R.M.; Batista, E.A.C.; Coutinho, J.A.P.; Meirelles, J.A.A. Liquid-Liquid equilibrium for ternary systems containing ethyl esters, ethanol and glycerol at 323.15 and 353.15 K. Fuel 2012, 94, 386–394. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, Z.; Sun, S.; Zhang, T. Thermodynamic modeling of CO2 solubility in saline water using NVT flash with the cubic-plus-association equation of state. Fluid Phase Equilib. 2020, 520, 112657. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Shahid, A.; Kontogeorgis, G.M. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part 3. Applications relevant to liquid or supercritical CO2 transport. J. Chem. Eng. Data 2014, 59, 2955–2972. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Ali, S.; Kontogeorgis, G.M. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. Fluid Phase Equilibria 2015, 397, 1–17. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.M. Modeling Phase Equilibria for Acid Gas Mixtures using the CPA Equation of State. Part V. Multicomponent mixtures of containing CO2 and alcohols. J. Supercrit. Fluids 2015, 104, 29–39. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Karakatsani, E.; Kontogeorgis, G.M. Costa Tsonopoulos—his legacy and some personal reflections on cubic equations of state and beyond. Fluid Phase Equilibria 2020, 533, 112895. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.M.; Michelsen, M.L.; Stenby, E.H. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2. Fluid Phase Equilibria 2011, 306, 38–56. [Google Scholar] [CrossRef]
- DIPPR 801 Thermophysical Property Database and DIADEM Predictive Proffesional 2011 Version 5.0.1.
- Kontogeorgis, G.M.; Folas, G.K. Thermodynamic models for industrial applications. In From Classical and Advanced Mixing Rules to Association Theories, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Stefanis, E.; Constantinou, L.; Tsivintzelis, I.; Panayiotou, C. New group-contribution method for predicting temperature-dependent properties of pure organic compounds. Int. J. Thermophys. 2005, 26, 1369–1388. [Google Scholar] [CrossRef]
- Papaioannou, V.; Adjiman, C.S.; Jackson, G.; Galindo, A. Group contribution methodologies for the prediction of thermodynamic properties and phase behavior in mixtures. In Process Systems Engineering: Molecular Systems Engineering; Adjiman, C.S., Galindo, A., Eds.; Wiley-VCH: Weinheim, Germany, 2011; Volume 6, Chapter 4; pp. 135–172. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connel, J.P. The Properties of Gases and Liquids, 5th ed.; Mc-Graw Hill: New York, NY, USA, 2001. [Google Scholar]
- Folas, G.K.; Kontogeorgis, G.M.; Michelsen, A.M.L.; Stenby, E.H. Application of the Cubic-Plus-Association Equation of State to Mixtures with Polar Chemicals and High Pressures. Ind. Eng. Chem. Res. 2006, 45, 1516–1526. [Google Scholar] [CrossRef]
- Li, J.; Ye, Y.; Chen, L.; Qi, Z. Solubilities of CO2 in Poly(ethylene glycols) from (303.15 to 333.15) K. J. Chem. Eng. Data 2012, 57, 610–616. [Google Scholar]
- Nunes, A.V.; Carrera, G.V.; Najdanovic-Visak, V.; da Ponte, M.N. Solubility of CO2 in glycerol at high pressures. Fluid Phase Equilibria 2013, 358, 105–107. [Google Scholar] [CrossRef]
- Sovová, H.; Jez, J.; Khachaturyan, M. Solubility of squalane, dinonyl phthalate and glycerol in supercritical CO2. Fluid Phase Equilibria 1997, 137, 185–191. [Google Scholar] [CrossRef]
- Ostonen, A.; Sapei, E.; Uusi-Kyyny, P.; Klemela, A.; Alopaeus, V. Measurements and modeling of CO2 solubility in1,8-diazabicyclo-[5.4.0]-undec-7-ene-Glycerol solutions. Fluid Phase Equilibria 2014, 374, 25–36. [Google Scholar] [CrossRef]
- Décultot, M.; Ledoux, A.; Fournier-Salaün, M.-C.; Estel, L. Solubility of CO2 in methanol, ethanol, 1,2-propanediol and glycerol from 283.15 K to 373.15 K and up to 6.0 MPa. J. Chem. Thermodyn. 2019, 138, 67–77. [Google Scholar] [CrossRef]
- Borch-Jensen, C.; Mollerup, J. Phase equilibria of carbon dioxide and tricaprylin. J. Supercrit. Fluids 1997, 10, 87–93. [Google Scholar] [CrossRef]
- Florusse, L.; Fornari, T.; Bottini, S.; Peters, C. Phase behavior of carbon dioxide—low-molecular weight triglycerides binary systems: Measurements and thermodynamic modeling. J. Supercrit. Fluids 2004, 31, 123–132. [Google Scholar] [CrossRef]
- Howlader, S.; Venkatesan, S.; Goel, H.; Huda, M.; French, W.T.; Rai, N. Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria 2018, 476, 39–47. [Google Scholar] [CrossRef]
- Bamberger, T.; Erickson, J.C.; Cooney, C.L.; Kumar, S.K. Measurement and model prediction of solubilities of pure fatty acids, pure triglycerides, and mixtures of triglycerides in supercritical carbon dioxide. J. Chem. Eng. Data 1988, 33, 327–333. [Google Scholar] [CrossRef]
- Bharath, R.; Yamane, S.; Inomata, H.; Adschiri, T.; Arai, K. Phase equilibria of supercritical CO2-fatty oil component binary systems. Fluid Phase Equilibria 1993, 83, 183–192. [Google Scholar] [CrossRef]
- Pearce, D.L. Solubility of Triglycerides in Supercritical Carbon Dioxide. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 1990. [Google Scholar]
- Ashour, I.; Hammam, H. Equilibrium Solubility of Pure Mono-, Di-, and Trilaurin in Supercritical Carbon Dioxide-Experimental Measurements and Model Prediction. J. Supercrit. Fluids 1993, 6, 3–8. [Google Scholar] [CrossRef]
- Nilsson, W.B.; Gauglitz, E.J., Jr.; Hudson, J.K. Solubilities of Methyl Oleate, Oleic Acid, Oleyl Glycerols, Glycerol Mixtures in Supercritical Carbon Dioxide. JAOCS 1991, 68, 87–91. [Google Scholar] [CrossRef]
- Weber, W.; Petkov, S.; Brunner, G. Vapour–liquid-equilibria and calculations using the Redlich–Kwong-Aspen-equation of state for tristearin, tripalmitin, and triolein in CO2 and propane. Fluid Phase Equilibria 1999, 158–160, 695–706. [Google Scholar] [CrossRef]
- Perko, T.; Knez, Z.; Škerget, M. Phase Equilibria of Glycerol Tristearate and Glycerol Trioleate in Carbon Dioxide and Sulfur Hexafluoride. J. Chem. Eng. Data 2012, 57, 3604–3610. [Google Scholar] [CrossRef]
- Chrastil, J. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 1982, 86, 3016–3021. [Google Scholar] [CrossRef]
- Ribeiro, M.A.; Bernardo-Gil, M.G. Solubilities of Triolein in Supercritical CO2. J. Chem. Eng. Data 1995, 40, 1188–1192. [Google Scholar] [CrossRef]
- Ferreira-Pinto, L.; Ndiaye, P.; Ramos, L.P.; Corazza, M.L. Phase equilibrium data of the system CO2+glycerol+methanol at high pressures. J. Supercrit. Fluids 2011, 59, 1–7. [Google Scholar] [CrossRef]
- Araújo, O.A.; Ndiaye, P.M.; Ramos, L.P.; Corazza, M.L. Phase behavior measurement for the system CO2+glycerol+ethanol at high pressures. J. Supercrit. Fluids 2011, 62, 41–46. [Google Scholar] [CrossRef]
- Ferreira, F.M.; Ramos, L.P.; Ndiaye, P.M.; Corazza, M.L. Phase behavior of (CO2+methanol+lauric acid) system. J. Chem. Thermodyn. 2011, 43, 1074–1082. [Google Scholar] [CrossRef]
- Araújo, O.A.; Silva, F.R.; Ramos, L.P.; Lenzi, M.K.; Ndiaye, P.M.; Corazza, M.L. Phase behaviour measurements for the system (carbon dioxide + biodiesel + ethanol) at high pressures. J. Chem. Thermodyn. 2012, 47, 412–419. [Google Scholar] [CrossRef]
- Carrera, G.V.; Visak, Z.P.; Lukasik, R.M.; Da Ponte, M.N. CO2 + Methanol + Glycerol: Multiphase behaviour. J. Supercrit. Fluids 2018, 141, 260–264. [Google Scholar] [CrossRef]
- Carrera, G.; Visak, Z.; Bogel-Lukasik, R.; da Ponte, M.N. VLE of CO2+glycerol+(ethanol or 1-propanol or 1-butanol). Fluid Phase Equilibria 2011, 303, 180–183. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Musko, N.E.; Baiker, A.; Grunwaldt, J.-D.; Kontogeorgis, G.M. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J. Supercrit. Fluids 2013, 84, 155–163. [Google Scholar] [CrossRef]
Fluid | Temp. Range (K) | Tc (K) | a0 (L2 bar/moL2) | b (L/moL) | c1 | ε (bar L/moL) | β | % AAD a Psat/Vmolar | Ref. |
---|---|---|---|---|---|---|---|---|---|
CO2 | 216–274 | 304.2 | 3.5079 | 0.0272 | 0.7602 | - | - | [31] | |
Methanol | - | 512.6 | 4.0531 | 0.0310 | 0.4310 | 245.91 | 0.0161 | 0.6/0.5 | [37] |
Ethanol | - | 513.9 | 8.6716 | 0.0491 | 0.7369 | 215.32 | 0.0080 | 1.3/0.3 | [37] |
Glycerol (3 × 2B) | 340–680 | 850.0 | 11.80 | 0.0696 | 0.90 | 207.85 | 0.0133 | 0.7/1.8 | [7] |
Ethylene glycol (4C) | 290–576 | 720.0 | 13.259 | 0.0521 | 0.9245 | 143.37 | 0.0188 | 2.6/1.5 | This work |
Diethylene glycol (4C) | 324–596 | 744.6 | 24.029 | 0.0922 | 1.2409 | 143.37 | 0.0188 | 4.2/1.3 | This work |
Triethylene glycol (4C) | 347–616 | 769.5 | 38.485 | 0.1323 | 1.2254 | 143.37 | 0.0188 | 4.1/1.5 | This work |
Tetraethylene glycol (4C) | 376–636 | 795.0 | 53.936 | 0.1751 | 1.4228 | 143.37 | 0.0188 | 0.6/2.0 | This work |
Lauric acid (1A) | 334–668 | 743.0 | 72.958 | 0.2270 | 1.6113 | 236.08 | 7.75 × 10−4 | 0.7/2.1 | [7] |
Methyl palmitate | 304–609 | 762.2 | 105.049 | 0.3155 | 1.5496 | - | - | 0.4/3.1 | [7] |
Methyl stearate | 312–622 | 781.1 | 122.585 | 0.3518 | 1.5966 | - | - | 0.8/3.1 | [7] |
Methyl oleate | 305–611 | 764.0 | 115.416 | 0.3324 | 1.6709 | - | - | 2.1/3.2 | [7] |
Methyl linoleate | 278–363 | 795.3 | 105.250 | 0.3189 | 1.7639 | - | - | 1.9/1.1 | [7] |
Methyl linolenate | 340–435 | 797.2 | 105.310 | 0.3117 | 1.7642 | - | - | 2.1/1.1 | [7] |
Tributyrin | 318–364 | 658.7 | 135.39 | 0.3005 | 1.0563 | - | - | 0.7/- | [7] |
Tricaprylin | 401–452 | 793.4 | 239.40 | 0.5202 | 1.5765 | - | - | 2.4/- | [7] |
Trilaurin | 461–517 | 869.8 | 369.12 | 0.7400 | 1.8191 | - | - | 0.9/- | [7] |
Trimyristin | 489–548 | 898.6 | 444.95 | 0.8498 | 1.9035 | - | - | 1.1/- | [7] |
Triolein | - | 977.9 | 555.89 | 1.0506 | 2.1070 | - | - | (prediction) | [7] |
a Fluid | Tc (K) | ba0 (L2 bar/moL2) | ca0 (L2 bar/moL2) | b (L/moL) | c1 | ε (bar L/moL) | β |
---|---|---|---|---|---|---|---|
PEG (150) | 766 | 38.023 | 39.197 | 0.1332 | 1.2993 | 143.37 | 0.0188 |
PEG (200) | 812 | 56.337 | 54.688 | 0.1797 | 1.4135 | 143.37 | 0.0188 |
PEG (300) | 961 | 102.004 | 85.670 | 0.2726 | 1.5744 | 143.37 | 0.0188 |
PEG (400) | 1186 | 159.723 | 116.652 | 0.3654 | 1.6885 | 143.37 | 0.0188 |
PEG (600) | 1860 | 311.315 | 178.616 | 0.5512 | 1.8494 | 143.37 | 0.0188 |
System | Temp. Range (K) | kij | % AAD in Pressure | Exp. Data |
---|---|---|---|---|
CO2–PEG (150) | 303–333 | 0.0420 | 3.5 | [38] |
CO2–PEG (200) | 303–333 | 0.0195 | 4.0 | [38] |
CO2–PEG (300) | 303–333 | −0.0200 | 4.3 | [38] |
CO2–PEG (400) | 303–333 | −0.0617 | 3.8 | [38] |
Approach | kij | βcross | Liquid Phase AAD in x1 | Vapor Phase AAD in y2 |
---|---|---|---|---|
CO2 inert | 0.1643 | - | 15.09 | 98.5 |
CO2 with one association site | 0.3084 | 0.0979 | 20.0 | 40.2 |
System | Temp. Range (K) | kij | Liquid Phase AAD in x1 | Vapor Phase AAD in y2 | Exp. Data |
---|---|---|---|---|---|
CO2–Tricaprylin | 313–393 | 0.0522 | 8.9 | 35.8 | [43] |
CO2–Tributyrin | 278–368 | −0.0165 | 5.3 | - | [44,45] |
CO2–Trilaurin | 308–353 | 0.0708 | 11.3 | 63.7 | [46,47,48,49] |
CO2–Trimyristin | 308–328 | 0.0905 | - | 56.3 | [46,48] |
CO2–Triolein | 308–363 | 0.0585 | 8.9 | 139 | [50,51,52,53,54] |
Sub-Binary Mixture | kij | εcross (bar L/mol) | βcross | Reference |
---|---|---|---|---|
CO2–Methanol | 0.0479 | 123.8 (exp.) | 0.0196 | [31] |
CO2–Ethanol | 0.1132 | 123.8 (exp.) | 0.0320 | [31] |
CO2–Glycerol | 0.3084 | mCR1 a | 0.0979 | This work, see Table 4 |
CO2–Lauric acid | 0.0380 | - | - | [7] |
CO2–Methyl linoleate | 0.0480 | - | - | [7] |
CO2–Methyl oleate | 0.0566 | - | - | [7] |
CO2–Methyl linolenate | 0.3000 | - | - | [7] |
CO2–Methyl palmitate | 0.0653 | - | - | [7] |
CO2–Methyl stearate | 0.0715 | - | - | [7] |
Glycerol–Methanol | 0.0836 | CR1 a | CR1 a | [7] |
Glycerol–Ethanol | 0.0226 | CR1 a | CR1 a | [7] |
Lauric acid–Methanol | −0.0181 | mCR1 a | 0.1028 b | [7] |
System | Reference |
---|---|
CO2–methyl myristate–methyl palmitate | [8] |
CO2–methyl oleate–methyl linoleate | [8] |
CO2–methanol–lauric acid | This work |
CO2–glycerol–methanol | This work |
CO2–glycerol–ethanol | This work |
CO2–water–methanol | [16,29,61] |
CO2–water–ethanol | [29] |
CO2–various biodiesel samples | This work, [8] |
Methanol–glycerol–methyl oleate | [19,20,24,30] |
Methanol–glycerol–methyl ricinoleate | [20] |
Methanol–glycerol–methyl oleate–hexane | [20,30] |
Ethanol–glycerol–ethyl laurate | [7,24] |
Ethanol–glycerol–ethyl oleate | [25,30] |
Ethanol–glycerol–ethyl linoleate | [25,30] |
Ethanol–glycerol–ethyl palmitate | [25,30] |
Ethanol–glycerol–ethyl myristate | [20] |
Ethanol–glycerol–methyl stearate | [20] |
Ethanol–water–ethyl laurate | [22,24] |
Ethanol–water–ethyl myristate | [22] |
Various biodiesel samples–CO2 | This work, [8] |
Various biodiesel samples–water | [18,30] |
Various biodiesel samples–glycerol–methanol | [7] |
Various biodiesel samples–glycerol–ethanol | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsivintzelis, I.; Koutsou, G.; Kontogeorgis, G.M. Modeling Binary and Multicomponent Systems Containing Supercritical CO2 with Polyethylene Glycols and Compounds Relevant to the Biodiesel Production. Molecules 2022, 27, 5785. https://doi.org/10.3390/molecules27185785
Tsivintzelis I, Koutsou G, Kontogeorgis GM. Modeling Binary and Multicomponent Systems Containing Supercritical CO2 with Polyethylene Glycols and Compounds Relevant to the Biodiesel Production. Molecules. 2022; 27(18):5785. https://doi.org/10.3390/molecules27185785
Chicago/Turabian StyleTsivintzelis, Ioannis, Georgios Koutsou, and Georgios M. Kontogeorgis. 2022. "Modeling Binary and Multicomponent Systems Containing Supercritical CO2 with Polyethylene Glycols and Compounds Relevant to the Biodiesel Production" Molecules 27, no. 18: 5785. https://doi.org/10.3390/molecules27185785
APA StyleTsivintzelis, I., Koutsou, G., & Kontogeorgis, G. M. (2022). Modeling Binary and Multicomponent Systems Containing Supercritical CO2 with Polyethylene Glycols and Compounds Relevant to the Biodiesel Production. Molecules, 27(18), 5785. https://doi.org/10.3390/molecules27185785