Dielectric Loss and Electrical Conductivity Behaviors of Epoxy Composites Containing Semiconducting ZnO Varistor Particles
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis and Sintering of ZnO Varistor Particles
2.2. Processing of Epoxy-Based Nanocomposites
2.3. Characterizations of Ceramics and Composites
3. Results and Discussion
3.1. Synthesized ZnO Varistor Powders
3.2. Microstructures of Nanodielectric Composites
3.3. Dielectric and Electrical Properties of Nanocomposites
3.3.1. Temperature and Frequency Dependence for Semiconducting Behavior Exhibition
3.3.2. Electric Bias Effect for Conducting Behavior Exhibition
3.3.3. Analysis of Particle Interconnection at Higher Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yu, K.; Wang, H.; Zhou, Y.; Bai, Y.; Niu, Y. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 2013, 113, 034105. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef]
- Lomax, J.F.; Lomax, E.A.; Lu, S.C.-L.; Haverhals, L.; Calame, J.P.; Fontanella, J.J.; Edmondson, C.A.; Wintersgill, M.C.; Westgate, M.A. Electrical properties of BaTiO3 nanoparticles in poly(ether imide). Smart Mater. Struct. 2012, 21, 85017. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q.; Runt, J.; Zhang, Q.M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622. [Google Scholar] [CrossRef]
- Tan, D.Q. Review of Polymer-based Nanodielectric Exploration and Film Scale-up for Advanced Capacitors. Adv. Funct. Mater. 2020, 30, 1808567. [Google Scholar] [CrossRef]
- Zhang, H.J.; Jeong, C.K.; Shen, Z.H.; Wang, J.; Sun, H.J.; Jian, Z.L.; Chen, W.; Zhang, Y. Ultrahigh augmentation of flexible composite-based piezoelectric energy harvesting efficiency via polymer-impregnated nanoparticles network within 3D cellulose scaffold. Compos. Part B 2022, 236, 109813. [Google Scholar] [CrossRef]
- Tan, D.Q. Superior performing nano-enabled metal oxide varistors. Int. J. Ceramic Eng. Sci. 2019, 1, 136–143. [Google Scholar] [CrossRef]
- Shante, V.K.S.; Kirkpatrick, S. An introduction to percolation theory. Adv. Phys. 1971, 20, 325. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Bdikin, I.K.; Silibin, M.V.; Meng, X.J.; Lin, T.; Wang, J.L.; Karpinsky, D.V.; Bystrova, A.V.; Paramonova, E.V. Pyroelectric properties of ferroelectric composites based on polyvinylidene fluoride (PVDF) with graphene and graphene oxide. Ferroelectrics 2019, 541, 17–24. [Google Scholar] [CrossRef]
- Li, H.; Yang, T.N.; Zhou, Y.; Ai, D.; Yao, B.; Liu, Y.; Li, L.; Chen, L.Q.; Wang, Q. Enabling High-Energy-Density High-Efficiency Ferroelectric Polymer Nanocomposites with Rationally Designed Nanofillers. Adv. Funct. Mater. 2021, 31, 2006739. [Google Scholar] [CrossRef]
- Xie, Y.C.; Fan, X.; Li, X.Y.; Zhang, Y.; Zhang, Z.C.; Huang, X.Y. Perspective on interface engineering for capacitive energy storage polymer nanodielectrics. Phys. Chem. Chem. Phys. 2022, 24, 19624–19633. [Google Scholar] [CrossRef]
- Ganesh, K.S. A Review of Zinc Oxide Varistors for Surge Arrester. In Proceedings of the 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9 February 2018; pp. 470–474. [Google Scholar]
- Shao, Q.; Sima, W.; Sun, P.; Yang, M.; Xu, H.; Yin, Z. A novel nonlinear conductive ZnO micro-varistor/epoxy resin composite film for metallic particle deactivation in DC GIL. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 675–683. [Google Scholar] [CrossRef]
- Levine, J.D. Theory of varistor electronic properties. Crit. Rev. Solid State Mater. Sci. 1975, 5, 597–608. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 531–542. [Google Scholar] [CrossRef]
- Yang, W.; Yi, R.; Yang, X.; Xu, M.; Hui, S.; Cao, X. Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites. Trans. Electr. Electron. Mater. 2012, 13, 116–120. [Google Scholar] [CrossRef]
- Fothergill, J.C.; Nelson, J.K.; Fu, M. Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers. In Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Boulder, CO, USA, 17–20 October 2004; LEOS 2004. pp. 406–409. [Google Scholar]
- Zhang, Y.; Wang, Y.; Deng, Y.; Li, M.; Bai, J.B. Enhanced Dielectric Properties of Ferroelectric Polymer Composites Induced by Metal-Semiconductor Zn-ZnO Core−Shell Structure. ACS Appl. Mater. Interfaces 2012, 4, 65–68. [Google Scholar] [CrossRef]
- Gao, L.; Yang, X.; Hu, J.; He, J.L. ZnO microvaristors doped polymer composites with electrical field dependent nonlinear conductive and dielectric characteristics. Mater. Lett. 2016, 171, 1–4. [Google Scholar] [CrossRef]
- Hong, J.I.; Schadler, L.S.; Siegel, R.W. Rescaled electrical properties of ZnO low density polyethylene nanocomposites. Appl. Phys. Lett. 2003, 82, 1956–1958. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, X.; Zhou, X.; Qin, Z.; Liu, Z. Varistor effect in Ag—Graphene/epoxy resin nanocomposites. Scr. Mater. 2012, 66, 113–116. [Google Scholar] [CrossRef]
- Wu, X.D.; Gandla, D.; Lei, L.; Chen, C.X.; Tan, D.Q. Superior Discharged Energy Density in Polyetherimide Composites Enabled by Ultra-low ZnO@BN Core-Shell Fillers. Mater. Lett. 2021, 290, 129434. [Google Scholar] [CrossRef]
- Sheppard, N.F., Jr.; Senturia, S.D. Dielectric Properties of Bisphenol-A Epoxy Resins. J. Polym. Sci. Polym. Phys. 1989, 27, 753–762. [Google Scholar] [CrossRef]
Content | ZnO | Bi2O3 | Sb2O3 | MnO2 | Co3O4 | Cr2O3 | NiO | SiO2 |
---|---|---|---|---|---|---|---|---|
wt% | 86.08 | 5.24 | 4.90 | x | y | z | u | v |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, L.; Chen, C.; Nie, H.; Wu, X.; Tan, D.Q. Dielectric Loss and Electrical Conductivity Behaviors of Epoxy Composites Containing Semiconducting ZnO Varistor Particles. Molecules 2022, 27, 6067. https://doi.org/10.3390/molecules27186067
Lei L, Chen C, Nie H, Wu X, Tan DQ. Dielectric Loss and Electrical Conductivity Behaviors of Epoxy Composites Containing Semiconducting ZnO Varistor Particles. Molecules. 2022; 27(18):6067. https://doi.org/10.3390/molecules27186067
Chicago/Turabian StyleLei, Li, Chaoxin Chen, Haoran Nie, Xudong Wu, and Daniel Q. Tan. 2022. "Dielectric Loss and Electrical Conductivity Behaviors of Epoxy Composites Containing Semiconducting ZnO Varistor Particles" Molecules 27, no. 18: 6067. https://doi.org/10.3390/molecules27186067
APA StyleLei, L., Chen, C., Nie, H., Wu, X., & Tan, D. Q. (2022). Dielectric Loss and Electrical Conductivity Behaviors of Epoxy Composites Containing Semiconducting ZnO Varistor Particles. Molecules, 27(18), 6067. https://doi.org/10.3390/molecules27186067