Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L.
Abstract
:1. Introduction
2. Results
2.1. Antioxidant and Reduction Activity
2.2. The Antihyaluronidase Activity
2.3. Antibacterial Activity
2.4. Characterization of Flavonoid Glycosides and Flavonoid Aglycones Using Reversed Phase Liquid Chromatography/Electrospray Ionization Triple Quadrupole Mass Spectrometry (LC-ESI-MS/MS)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Extracts Preparation
5.2. Chemicals
5.3. The DPPH Assay
5.4. FRAP Assay
5.5. Antihyaluronidase Activity
5.6. Microorganism Species
5.7. LC-ESI(-)-MS/MS Method
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Flies, E.J.; Mavoa, S.; Zosky, G.R.; Mantzioris, E.; Williams, C.; Eri, R.; Brook, B.W.; Buettel, J.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ. Int. 2019, 133, 105187. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A. The effects of ultra-processed food consumption—Is there any action needed? Nutrients 2020, 12, 2556. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Yang, G.; Su, F.; Chen, M. Origin and prospect of homology medicine and food. Mod. Chin. Med. 2021, 23, 1851–1856. [Google Scholar]
- Valcheva-Kuzmanova, S.; Ivanova, D.; Belcheva, A. Total phenolic content and in vitro antioxidant activity of fruit juices from Aronia melanocarpa, Punica granatum and Rubus caesius. Bull. Med. Instit. Mehrabyan. 2006, 2, 5–9. [Google Scholar]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Paduch, R.; Wiater, A.; Dudek, A.; Pleszczyńska, M.; Tomczykowa, M.; Granica, S.; Polak, P.; Tomczyk, M. In vitro antiproliferative and antioxidant effects of extracts from Rubus caesius leaves and their quality evaluation. Evid. Based Complement. Altern. Med. 2016, 2016, 5698685. [Google Scholar] [CrossRef]
- Velickovic, I.; Grujic, S.; Dzamic, A.; Krivosej, Z.; Marin, P. In vitro antioxidant activity of dewberry (Rubus caesius L. var. aquaticus Weihe. & Nees.) leaf extracts. Arch. Biol. Sci. 2015, 67, 109. [Google Scholar]
- Grochowski, D.M.; Locatelli, M.; Granica, S.; Cacciagrano, F.; Tomczyk, M. A review on the dietary flavonoid tiliroside. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1395–1421. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Composit. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Gori, A.; Nascimento, L.B.; Ferrini, F.; Centritto, M.; Brunetti, C. Seasonal and diurnal variation in leaf phenolics of three medicinal mediterranean wild species: What is the best harvesting moment to obtain the richest and the most antioxidant extracts? Molecules 2020, 25, 956. [Google Scholar] [CrossRef]
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F.; Saragadam, S.D.; DiMaria, C.N.; Delgado-Daza, A. Infection of a prosthetic knee joint with Clostridium bifermentans. Oxf. Med. Case Rep. 2020, 8, 256–258. [Google Scholar] [CrossRef]
- Kanaujia, R.; Dahiya, D.; Banda, A.R.; Ray, P.; Angrup, A. Non-traumatic gas gangrene due to Clostridium sporogenes. Lancet Infect. Dis. 2020, 20, 754. [Google Scholar] [CrossRef]
- Gulig, P.A.; Danbara, H.; Guiney, D.G.; Lax, A.J.; Norel, F.; Rhen, M. Molecular analysis of spi virulence genes of the salmonella virulence plasmids. Mol. Microbiol. 1993, 7, 825–830. [Google Scholar] [CrossRef]
- Croxe, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Krzepiłko, A.; Prażak, R.; Święciło, A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds. Molecules 2021, 26, 327. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Nowicka, P.; Teleszko, M.; Cebulak, T.; Wolanin, M. Determination of phenolic compounds and antioxidant activity in leaves from wild Rubus L. species. Molecules 2015, 20, 4951–4966. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry leaves as new functional food? Screening antioxidant, anti-inflammatory and microbiological activities in correlation with phytochemical analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef]
- Sricharoen, P.; Techawongstein, S.; Chanthai, S. A high correlation indicating for an evaluation of antioxidant activity and total phenolics content of various chilli varieties. J. Food Sci. Technol. 2015, 52, 8077–8085. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Strawa, J.W.; Granica, S.; Tomczyk, M. Secondary metabolites of Rubus caesius (Rosaceae). Biochem. Syst. Ecol. 2020, 92, 104111. [Google Scholar] [CrossRef]
- Jablonska-Rys, E.; Zalewska-Korona, M.; Kolbarczyk, J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit. Ornam. Plant. Res. 2009, 17, 115–120. [Google Scholar]
- Koczka, N.; Stefanovits-Banyai, É.; Prokaj, E. Element Composition, Total Phenolics and Antioxidant Activity of Wild and Cultivated Blackberry (Rubus fruticosus L.) Fruits and Leaves during the Harvest Time. Not. Bot. Horti Agrobot. 2018, 46, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Akkol, E.K.; Süntar, I.; Ilhan, M.; Aras, E. In vitro enzyme inhibitory effects of Rubus sanctus Schreber and its active metabolite as a function of wound healing activity. J. Herb. Med. 2015, 5, 207–210. [Google Scholar] [CrossRef]
- Dudzinska, D.; Bednarska, K.; Boncler, M.; Luzak, B.; Watala, C. The influence of Rubus idaeus and Rubus caesius leaf extracts on platelet aggregation in whole blood. Cross-talk of platelets and neutrophils. Platelets 2016, 27, 433–439. [Google Scholar] [CrossRef]
- Selleck, E.M.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 1–38. [Google Scholar]
- Petrey, A.C.; de la Motte, C.A. Hyaluronan, a crucial regulator of inflammation. Front. Immunol. 2014, 5, 101. [Google Scholar] [CrossRef]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- Park, J.Y.; Han, X.; Piao, M.J.; Oh, M.C.; Fernando, P.M.D.J.; Kang, K.A.; Ryu, Y.S.; Jung, U.; Kim, I.G.; Hyun, J.W. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress. J. Cancer Prev. 2016, 21, 41–47. [Google Scholar] [CrossRef]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, K.; Jabeen, F.; Subhani, Z.; Younis, T.; Sarfraz, I.; Selamoglu, Z. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O. Total phenol, flavonoids, proanthocyjanidin and vitamin c levels and antioxidant activities of mauritian vegetables. J. Sci. Food Agric. 2004, 84, 1553–1561. [Google Scholar] [CrossRef]
- Kaessler, A.; Nourrisson, M.R.; Duflos, M.; Jose, J. Indole carboxamides inhibit bovine testes hyaluronidase at pH 7.0 and indole acetamides activate the enzyme at pH 3.5 by different mechanisms. J. Enzym. Inhib. Med. Chem. 2008, 23, 719–727. [Google Scholar] [CrossRef]
- Lekogo, B.M.; Coroller, L.; Mathot, A.G.; Mafart, P.; Leguerinel, I. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3. Int. J. Food Microb. 2010, 141, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCASTL Recommendations. Available online: https://www.eucast.org/eucast_news/news_singleview/?tx_ttnews%5Btt_news%5D=464&cHash=ea8540c0fbdaa71b3bbcb3bf765239de (accessed on 18 August 2022).
- Baverud, V.; Gunnarsson, A.; Karlsson, M.; Franklin, A. Antimicrobial susceptibility of equine and environmental isolates of Clostridium difficile. Microb. Drug Resist. 2004, 10, 57–63. [Google Scholar] [CrossRef]
- Hałasa, R.; Turecka, K.; Orlewska, C.; Werel, W. Comparison of fluorescence optical respirometry and microbroth dilution methods for testing antimicrobial compounds. J. Microbiol. Methods 2014, 107, 98–105. [Google Scholar] [CrossRef]
- Łyko, L.; Olech, M.; Nowak, R. LC-ESI-MS/MS Characterization of concentrated polyphenolic fractions from Rhododendron luteum and their anti-inflammatory and antioxidant activities. Molecules 2022, 27, 827. [Google Scholar] [CrossRef]
- Olech, M.; Nowak, R.; Ivanova, D.; Tashev, A.; Boyadzhieva, S.; Kalotova, G.; Angelov, G.; Gawlik-Dziki, U. LC-ESI-MS/MS-MRM profiling of polyphenols and antioxidant activity evaluation of junipers of different origin. Appl. Sci. 2020, 10, 8921. [Google Scholar] [CrossRef]
Extracts of Rubus caesius | Standards | |||||
---|---|---|---|---|---|---|
L-H2O a | S-H2O b | L-EtOH c | S-EtOH d | Ascorbic Acid | Oleanolic Acid | |
FRAP | 47.25 ± 1.88 a,b | 38.15 ± 2.05 b,a,d | 87.23 ± 0.89 | 50.11 ± 1.08 d,b | 4.75 ± 0.6 | n/a |
DPPH | 45.9 ± 3.9 a,c,d | 37.5 ± 4.7 b,c,d | 88.6 ± 7.4 c,a,b,d | 68.5 ± 5.2 d,a,b,c | 7.2 ± 0.7 | n/a |
A-H | 100.25 ± 3.73 a,b,d | 55.24 ± 3.21 b,a,d | n.r. | 68.7 ± 1.61 d,a,b | n/a | 45.71 ± 3.5 |
L-H2O DMSO | L-H2O Water | S-H2O DMSO | S-H2O Water | L-EtOH DMSO | L-EtOH Water | S-EtOH DMSO | S-EtOH Water | Ampicillin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteria Species | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC |
E. faecalis ATCC51299 | 10 | 10 | 0.625 | 5 | 10 | 10 | 5 | 10 | 10 | 10 | 1.25 | >10 | 10 | 10 | 1.25 | 10 | 0.0025 |
E. coli ATCC8739 | 10 | >10 | >5 | >5 | >10 | >10 | >5 | >5 | 10 | >10 | >5 | >5 | >10 | >10 | >5 | >5 | 0.0039 |
S. enterica ATCC13076 | 5 | 5 | 5 | >10 | >5 | >5 | 10 | >10 | 5 | >5 | 10 | >10 | 5 | >5 | 10 | >10 | 0.0005 |
C. bifermentans ATCC638 | 1.25 | >5 | 0.5 | >0.5 | 5 | 5 | 0.0625 | 0.5 | 2.5 | >5 | 0.0156 | >0.5 | 2.5 | >5 | 0.0625 | 0.5 | 0.016 |
C. sporogenes ATCC19404 | 2.5 | >5 | 0.03125 | >0.5 | 5 | >5 | 0.0156 | 0.5 | 2.5 | >5 | 0.0156 | >0.5 | 2.5 | >5 | 0.0156 | 0.5 | 0.00125 |
Flavonoid Aglycones | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rubus Extract | Catechin | Taxifolin | Luteolin | Eriodictyol | Quercetin | Apigenin | Kaempferol | Isokaempferide | Sakuranetin | Rhamnazin |
L-H2O | 0 | 8.23 ± 0.41 | 0.30 ± 0.02 | 0.58 ± 0.03 | 12.58 ± 0.43 | BQL | BQL | 0 | 0 | 0 |
S-H2O | 0 | 9.45 ± 0.07 | 0 | 0 | 2.84 ± 0.18 | BQL | 0 | 0 | 0 | 0 |
L-EtOH | 44.70 ± 0.95 | 10.30 ± 0.17 | 2.79 ± 0.10 | 0.69 ± 0.01 | 26.07 ± 0.96 | 16.43 ± 0.40 | 2.37 ± 0.10 | 19.77 ± 0.31 | BQL | 2.48 ± 0.08 |
S-EtOH | 159.00 ± 1.00 | 8.75 ± 0.20 | BQL | BQL | 17.40 ± 0.20 | 0.30 ± 0.01 | 0 | 15.93 ± 0.65 | 0 | BQL |
Flavonoid Glycosides | ||||||||||
RubusExtract | Rutin | Hyperoside | Luteoloside | Isoquercetin | Eriodictyol-7-glucopyranoside | Astragalin | Quercitrin | Apigenin 7-O-glucoside | Naringenin 7-O-glucoside | Tiliroside |
L-H2O | 38.31 ± 1.09 | 181.45 ± 5.64 | 0 | BQL | 0 | BQL | BQL | 0 | 0 | BQL |
S-H2O | 16.20 ± 0.60 | 101.50 ± 1.32 | 0 | BQL | 0 | BQL | BQL | 0 | 0 | BQL |
L-EtOH | 115.60 ± 9.15 | 1066.67 ± 32.15 | 32.30 ± 1.11 | 243.67 ± 9.07 | BQL | 342.00 ± 7.55 | BQL | BQL | 52.93 ± 2.06 | 1573.33 ± 23.09 |
S-EtOH | 140.67 ± 2.52 | 1096.67 ± 35.12 | BQL | 363.67 ± 16.44 | BQL | 99.33 ± 1.65 | BQL | BQL | 24.07 ± 1.50 | 408.00 ± 12.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hering, A.; Stefanowicz-Hajduk, J.; Hałasa, R.; Olech, M.; Nowak, R.; Kosiński, P.; Ochocka, J.R. Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules 2022, 27, 6181. https://doi.org/10.3390/molecules27196181
Hering A, Stefanowicz-Hajduk J, Hałasa R, Olech M, Nowak R, Kosiński P, Ochocka JR. Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules. 2022; 27(19):6181. https://doi.org/10.3390/molecules27196181
Chicago/Turabian StyleHering, Anna, Justyna Stefanowicz-Hajduk, Rafał Hałasa, Marta Olech, Renata Nowak, Piotr Kosiński, and J. Renata Ochocka. 2022. "Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L." Molecules 27, no. 19: 6181. https://doi.org/10.3390/molecules27196181
APA StyleHering, A., Stefanowicz-Hajduk, J., Hałasa, R., Olech, M., Nowak, R., Kosiński, P., & Ochocka, J. R. (2022). Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules, 27(19), 6181. https://doi.org/10.3390/molecules27196181