Violin Varnishes: Microstructure and Nanomechanical Analysis
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Samples
4.1.1. Violin Instrument
4.1.2. Model System Samples
4.2. Atomic Force Microscopy (AFM)
4.3. Nanomechanical Measurements
4.3.1. Young’s Modulus Measurement
4.3.2. Adhesion Measurement
4.4. Micro-FTIR Measurements
4.5. Accelerated Aging
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sedighi Gilani, M.; Pflaum, J.; Hartmann, S.; Kaufmann, R.; Baumgartner, M.; Schwarze, F.W.M.R. Relationship of vibro-mechanical properties and microstructure of wood and varnish interface in string instruments. Appl. Phys. A 2016, 122, 260. [Google Scholar] [CrossRef]
- Echard, J.-P.; Lavédrine, B. Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J. Cult. Herit. 2008, 9, 420–429. [Google Scholar] [CrossRef]
- Lämmlein, S.L.; Mannes, D.; Van Damme, B.; Schwarze, F.W.M.R.; Burgert, I. The influence of multi-layered varnishes on moisture protection and vibrational properties of violin wood. Sci. Rep. 2019, 9, 18611. [Google Scholar] [CrossRef]
- Odlyha, M.; lluveras Tenorio, A.; Lucejko, J.J.; di Girolamo, F.; Colombini Maria, P.; Bergsten, C.J.; Lopez-Fontal, E.; Hudziak, S.; Strange, A.; Bozec, L. Correlation of Mechanical Behaviour with Advanced Chemical Analysis of Varnished Wood. In Proceedings of the 4th Annual Conference COST FP1302 WoodMusICK, Preservation of Wooden Musical Instruments Ethics, Practice and Assessment, Brussels, Belgium, 5–7 October 2017; p. 202. [Google Scholar]
- Odlyha, M.; Bergsten, C.J.; Scharff, M. Wood Science for Conservation of Cultural Heritage. In Proceedings of the International Conference held by COST Action IE0601, Izmir, Turkey, 20–22 October 2010. [Google Scholar]
- McLennan, J.E. On varnish. J. Aust. Assoc. Musical Instrum. Mak. 2000, 19, 16–27. [Google Scholar]
- Albano, M.; Comelli, D.; Fiocco, G.; Mattonai, M.; Lucejko, J.J.; Zoia, L.; Colombini, M.P.; Malagodi, M. Chemical modification of wood induced by the traditional making procedures of bowed string musical instruments: The effect of alkaline treatments. Herit. Sci. 2022, 10, 76. [Google Scholar] [CrossRef]
- Kasprzok, L.; Fabbri, D.; Rombolà, A.G.; Rovetta, T.; Malagodi, M. Identification of organic materials in historical stringed instruments by off-line analytical pyrolysis solid-phase microextraction with on-fiber silylation and gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 2020, 145, 104727. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Fiocco, G.; Albano, M.; Licchelli, M.; Gulmini, M.; Alf, G.; Fabbri, D.; Rombolà, A.G.; Malagodi, M. The case of Antonio Stradivari 1718 ex-San Lorenzo violin: History, restorations and conservation perspectives. J. Archaeol. Sci. Rep. 2019, 23, 443–450. [Google Scholar] [CrossRef]
- Fiocco, G.; Rovetta, T.; Gulmini, M.; Piccirillo, A.; Licchelli, M.; Malagodi, M. Spectroscopic Analysis to Characterize Finishing Treatments of Ancient Bowed String Instruments. Appl. Spectrosc. 2017, 71, 2477–2487. [Google Scholar] [CrossRef]
- Caruso, F.; Chillura Martino, D.F.; Saverwyns, S.; Van Bos, M.; Burgio, L.; Di Stefano, C.; Peschke, G.; Caponetti, E. Micro-analytical identification of the components of varnishes from South Italian historical musical instruments by PLM, ESEM–EDX, microFTIR, GC–MS, and Py–GC–MS. Microchem. J. 2014, 116, 31–40. [Google Scholar] [CrossRef]
- Bonaduce, I.; Odlyha, M.; Di Girolamo, F.; Lopez-Aparicio, S.; Grøntoft, T.; Colombini, M.P. The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish. Analyst 2013, 138, 487–500. [Google Scholar] [CrossRef]
- Bertrand, L.; Robinet, L.; Cohen, S.X.; Sandt, C.; Le Hô, A.-S.; Soulier, B.; Lattuati-Derieux, A.; Echard, J.-P. Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal. Bioanal. Chem. 2011, 399, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Echard, J.P.; Cotte, M.; Dooryhee, E.; Bertrand, L. Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods. Appl. Phys. A 2008, 92, 77–81. [Google Scholar] [CrossRef]
- Echard, J.-P.; Bertrand, L.; von Bohlen, A.; Le Hô, A.-S.; Paris, C.; Bellot-Gurlet, L.; Soulier, B.; Lattuati-Derieux, A.; Thao, S.; Robinet, L.; et al. The Nature of the Extraordinary Finish of Stradivari’s Instruments. Angew. Chem. Int. Ed. 2010, 49, 197–201. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Kowalska, M.; Targowski, P.; Blümich, B.; Rehorn, C.; Gabrielli, V.; Bersani, D.; Licchelli, M.; et al. Non-invasive mobile technology to study the stratigraphy of ancient Cremonese violins: OCT, NMR-MOUSE, XRF and reflection FT-IR spectroscopy. Microchem. J. 2020, 155, 104754. [Google Scholar] [CrossRef]
- Latour, G.; Echard, J.-P.; Soulier, B.; Emond, I.; Vaiedelich, S.; Elias, M. Structural and optical properties of wood and wood finishes studied using optical coherence tomography: Application to an 18th century Italian violin. Appl. Opt. 2009, 48, 6485–6491. [Google Scholar] [CrossRef] [PubMed]
- Young, T.J.; Monclus, M.A.; Burnett, T.L.; Broughton, W.R.; Ogin, S.L.; Smith, P.A. The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 2011, 22, 125703. [Google Scholar] [CrossRef]
- Bartoletti, A.; Odlyha, M.; Hudziak, S.; Mühlen Axelsson, K.; Groot, J.; Bozec, L. Visibilia ex invisibilibus: Seeing at the nanoscale for improved preservation of parchment. Insight—Non-Destr. Test. Cond. Monit. 2017, 59, 265–272. [Google Scholar] [CrossRef]
- Vlad-Cristea, M.; Riedl, B.; Blanchet, P.; Jimenez-Pique, E. Nanocharacterization techniques for investigating the durability of wood coatings. Eur. Polym. J. 2012, 48, 441–453. [Google Scholar] [CrossRef]
- Mao, J.; Abushammala, H.; Kasal, B. Monitoring the surface aging of wood through its pits using atomic force microscopy with functionalized tips. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125871. [Google Scholar] [CrossRef]
- Casdorff, K.; Keplinger, T.; Burgert, I. Nano-mechanical characterization of the wood cell wall by AFM studies: Comparison between AC- and QI™ mode. Plant Methods 2017, 13, 60. [Google Scholar] [CrossRef]
- Normand, A.C.; Charrier, A.M.; Arnould, O.; Lereu, A.L. Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studies. Sci. Rep. 2021, 11, 5739. [Google Scholar] [CrossRef] [PubMed]
- Czibula, C.; Seidlhofer, T.; Ganser, C.; Hirn, U.; Teichert, C. Longitudinal and transverse low frequency viscoelastic characterization of wood pulp fibers at different relative humidity. Materialia 2021, 16, 101094. [Google Scholar] [CrossRef]
- Korte, E.H.; Staat, H. Infrared reflection studies of historical varnishes. Fresenius J. Anal. Chem. 1993, 347, 454–457. [Google Scholar] [CrossRef]
- Cortea, I.; Cristache, R.; Sandu, I. Characterization of historical violin varnishes using ATR-FTIR spectroscopy. Rom. Rep. Phys. 2016, 68, 615–622. [Google Scholar]
- Rashid, A.M.F.; Hossain, Z. Morphological and nanomechanical analyses of ground tire rubber-modified asphalts. Innov. Infrastruct. Solut. 2016, 1, 36. [Google Scholar] [CrossRef]
- Ren, D.; Wang, H.; Yu, Z.; Wang, H.; Yu, Y. Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce quantitative nanomechanics (PQNM) technique. Holzforschung 2015, 69, 975–984. [Google Scholar] [CrossRef]
- Yamamoto, T.; Sugiyama, S. Structural Changes in Cuticles on Violin Bow Hair Caused by Wear. Biosci. Biotechnol. Biochem. 2010, 74, 408–410. [Google Scholar] [CrossRef]
- Casado, S. Studying friction while playing the violin: Exploring the stick–slip phenomenon. Beilstein J. Nanotechnol. 2017, 8, 159–166. [Google Scholar] [CrossRef]
- Heuberger, M.; Dietler, G.; Schlapbach, L. Mapping the local Young’s modulus by analysis of the elastic deformations occurring in atomic force microscopy. Nanotechnology 1995, 6, 12–23. [Google Scholar] [CrossRef]
- Trtik, P.; Kaufmann, J.; Volz, U. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem. Concr. Res. 2012, 42, 215–221. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Faix, O.; Bremer, J.; Meier, D.; Fortmann, I.; Scheijen, M.A.; Boon, J.J. Characterization of tobacco lignin by analytical pyrolysis and Fourier transform-infrared spectroscopy. J. Anal. Appl. Pyrolysis 1992, 22, 239–259. [Google Scholar] [CrossRef]
- Meier, E. Available online: https://www.wood-database.com/hard-maple/ (accessed on 30 August 2022).
- Sedighi Gilani, M. In Stradivari’s Footsteps Varnish Affects the Sound of a Violin. Available online: https://www.empa.ch/web/s604/varnish-and-violins (accessed on 11 March 2016).
- Ghaznavi, M.; Rostamisani, A.; Roohnia, M.; Jahanlatibari, A.; Yaghmaeipour, A. Traditional Varnishes and Acoustical Properties of Wooden Soundboards. Sci. Int. 2013, 1, 401–407. [Google Scholar] [CrossRef]
- Minato, K.; Akiyama, T.; Yasuda, R.; Yano, H. Dependence of Vibrational Properties of Wood on Varnishing during Its Drying Process in Violin Manufacturing. Holzforschung 1995, 49, 222–226. [Google Scholar] [CrossRef]
- Lämmlein, S.L.; Mannes, D.; van Damme, B.; Burgert, I.; Schwarze, F.W.M. Influence of varnishing on the vibro-mechanical properties of wood used for violins. J. Mater. Sci. 2019, 54, 8063–8095. [Google Scholar] [CrossRef]
- Puskar, L.; Schade, U. The IRIS THz/Infrared beamline at BESSY II. J. Large-Scale Res. Facil. 2016, 2, A95. [Google Scholar] [CrossRef]
- Pouyet, E.; Lluveras-Tenorio, A.; Nevin, A.; Saviello, D.; Sette, F.; Cotte, M. Preparation of thin-sections of painting fragments: Classical and innovative strategies. Anal. Chim. Acta 2014, 822, 51–59. [Google Scholar] [CrossRef]
Model System | Preparation Layer Type | Preparation Layer Composition | Varnish Layer Type |
---|---|---|---|
1 | water soluble | K2Cr2O7 | oil based |
2 | K2Cr2O7 + NaHCO3 | spirit-based | |
3 | cherry gum | ||
4 | gamboge + saffron | ||
5 | ethyl alcohol soluble | dragon’s blood | oil based |
6 | sandalwood | spirit-based |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odlyha, M.; Lucejko, J.J.; Lluveras-Tenorio, A.; di Girolamo, F.; Hudziak, S.; Strange, A.; Bridarolli, A.; Bozec, L.; Colombini, M.P. Violin Varnishes: Microstructure and Nanomechanical Analysis. Molecules 2022, 27, 6378. https://doi.org/10.3390/molecules27196378
Odlyha M, Lucejko JJ, Lluveras-Tenorio A, di Girolamo F, Hudziak S, Strange A, Bridarolli A, Bozec L, Colombini MP. Violin Varnishes: Microstructure and Nanomechanical Analysis. Molecules. 2022; 27(19):6378. https://doi.org/10.3390/molecules27196378
Chicago/Turabian StyleOdlyha, Marianne, Jeannette J. Lucejko, Anna Lluveras-Tenorio, Francesca di Girolamo, Stephen Hudziak, Adam Strange, Alexandra Bridarolli, Laurent Bozec, and Maria Perla Colombini. 2022. "Violin Varnishes: Microstructure and Nanomechanical Analysis" Molecules 27, no. 19: 6378. https://doi.org/10.3390/molecules27196378
APA StyleOdlyha, M., Lucejko, J. J., Lluveras-Tenorio, A., di Girolamo, F., Hudziak, S., Strange, A., Bridarolli, A., Bozec, L., & Colombini, M. P. (2022). Violin Varnishes: Microstructure and Nanomechanical Analysis. Molecules, 27(19), 6378. https://doi.org/10.3390/molecules27196378