Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pasting Properties of Flour Gum Blends
2.2. Dough Mixing Properties of Flour Gum Blends
2.3. Dough Extensibility Properties of Flour Gum Blends
2.4. Solvent Retention Capacity (SRC) of Flour Gum Blends
2.5. Textural and Physical Properties of the Cookies
2.6. Color Parameters of the Cookies
2.7. Sensory Evaluation of the Cookies
3. Materials and Methods
3.1. Collection and Preparation of Raw Materials
3.2. Preparation of Flour Gum Blends
3.3. Pasting Properties of Flour Gum Blends
3.4. Dough Mixing Properties
3.5. Dough Extensibility Properties
3.6. Solvent Retention Capacity of Flour Gum Blends
3.7. Preparation of Cookies
3.8. Physical Evaluation of Cookies
3.9. Texture Analysis of Cookies
3.10. Color Parameters of the Cookies
3.11. Sensory Evaluation of Cookies
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.; Choi, I.; Kim, Y. Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. LWT-Food Sci. Technol. 2015, 63, 660–666. [Google Scholar] [CrossRef]
- Rao, B.D.; Kulkarni, D.B.; Kavitha, C. Study on evaluation of starch, dietary fiber and mineral composition of cookies developed from 12 sorghum cultivars. Food Chem. 2018, 238, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Samakradhamrongthai, R.S.; Maneechot, S.; Wangpankhajorn, P.; Jannu, T.; Renaldi, G. Polydextrose and guar gum as a fat substitute in rice cookies and its physical, textural, and sensory properties. Food Chem. Adv. 2022, 1, 100058. [Google Scholar] [CrossRef]
- Yang, B.; Guo, M.; Zhao, Z. Incorporation of wheat malt into a cookie recipe and its effect on the physicochemical properties of the corresponding dough and cookies. LWT 2020, 117, 108651. [Google Scholar] [CrossRef]
- Goswami, M.; Sharma, B.; Mendiratta, S.; Pathak, V. Quality evaluation of functional carabeef cookies incorporated with guar gum (Cyamopsis tetragonoloba) as fat replacer. Nutr. Food Sci. 2018, 49, 432–440. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alamri, M.S.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Effect of Ziziphus and Cordia Gums on Dough Properties and Baking Performance of Cookies. Molecules 2022, 27, 3066. [Google Scholar] [CrossRef]
- Lee, S.; Inglett, G.E.; Palmquist, D.; Warner, K. Flavor and texture attributes of foods containing β-glucan-rich hydrocolloids from oats. LWT-Food Sci. Technol. 2009, 42, 350–357. [Google Scholar] [CrossRef]
- Zouari, R.; Besbes, S.; Ellouze-Chaabouni, S.; Ghribi-Aydi, D. Cookies from composite wheat–sesame peels flours: Dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chem. 2016, 194, 758–769. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Gujral, H.S.; Sharma, A.; Singh, N. Effect of hydrocolloids, storage temperature, and duration on the consistency of tomato ketchup. Int. J. Food Prop. 2002, 5, 179–191. [Google Scholar] [CrossRef]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Gheribi, R.; Khwaldia, K. Cactus mucilage for food packaging applications. Coatings 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Ibraheem, M.A.; Qasem, A.A.A.; Alsulami, T.; Ababtain, I.A. Effect of Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums on the Pasting, Thermal, Textural, and Rheological Properties of Corn, Sweet Potato, and Turkish Bean Starches. Molecules 2022, 27, 701. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Alamri, M.S.; Mohamed, A.A.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Exploring the Role of Acacia (Acacia seyal) and Cactus (Opuntia ficus-indica) Gums on the Dough Performance and Quality Attributes of Breads and Cakes. Foods 2022, 11, 1208. [Google Scholar] [CrossRef]
- Rosland Abel, S.; Yusof, Y.; Chin, N.; Chang, L.; Mohd Ghazali, H.; Manaf, Y. Characterisation of physicochemical properties of gum arabic powder at various particle sizes. Food Res. 2019, 4, 107–115. [Google Scholar] [CrossRef]
- Ali, B.H.; Ziada, A.; Blunden, G. Biological effects of gum arabic: A review of some recent research. Food Chem. Toxicol. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Maier, H.; Anderson, M.; Karl, C.; Magnuson, K.; Whistler, R. Guar, locust bean, tara, and fenugreek gums. In Industrial Gums; Elsevier: Amsterdam, The Netherlands, 1993; pp. 181–226. [Google Scholar]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef]
- Singh, A.; Geveke, D.J.; Yadav, M.P. Improvement of rheological, thermal and functional properties of tapioca starch by using gum arabic. LWT 2017, 80, 155–162. [Google Scholar] [CrossRef]
- Alamri, M.S.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Hakeem, M.J.; Ababtain, I.A. Functionality of Cordia and Ziziphus Gums with Respect to the Dough Properties and Baking Performance of Stored Pan Bread and Sponge Cakes. Foods 2022, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Alamri, M.S.; Abdellatif, M.A.; Hussain, S.; Qasem, A.A.A. Wheat flour and gum cordia composite system: Pasting, rheology and texture studies. Food Sci. Technol. 2018, 38, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Alamri, M.S.; Mohamed, A.A.; Hussain, S. Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocoll. 2013, 30, 541–551. [Google Scholar] [CrossRef]
- Kiprop, V.J.; Omwamba, M.N.; Mahungu, S.M. Influence of Gum Arabic from Acacia Senegal var. kerensis on the Modifications of Pasting and Textural Properties of Cassava and Corn Starches. Food Nutr. Sci. 2021, 12, 1098–1115. [Google Scholar]
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A. Pasting, rheology, antioxidant and texture profile of gluten free cookies with added seed gum hydrocolloids. Food Sci. Technol. Int. 2021, 27, 649–659. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, G.; Huang, Y.-B.; Zeng, Q.-H.; Song, G.-S.; Hou, Y.; Li, L.; Hu, S.-Q. Role of N-terminal domain of HMW 1Dx5 in the functional and structural properties of wheat dough. Food Chem. 2016, 213, 682–690. [Google Scholar] [CrossRef]
- Chen, M.; Wang, L.; Qian, H.; Zhang, H.; Li, Y.; Wu, G.; Qi, X. The effects of phosphate salts on the pasting, mixing and noodle-making performance of wheat flour. Food Chem. 2019, 283, 353–358. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.J.; Chen, Y.; Wei, N.; Hou, Y.; Bai, W.; Hu, S.-Q. Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities. Food Chem. 2020, 317, 126452. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Fauconnier, M.L. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem. 2018, 239, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Mu, T.-H.; Zhang, M. Effects of hydrocolloids and proteins on dough rheology and in vitro starch digestibility of sweet potato-wheat bread. LWT 2021, 142, 110970. [Google Scholar] [CrossRef]
- Al-Dalain, S.Y.; Morsy, M.K. Effect of Pullulan and Hydrocolloids on Rheological Properties and Quality Parameters of Wheat-Soy Baladi Bread. Food Nutr. Sci. 2018, 9, 32–45. [Google Scholar] [CrossRef]
- Mohamed, A.; Hussain, S.; Alamri, M.S.; Ibraheem, M.A.; Qasem, A.A.A.; Ababtain, I.A. Physicochemical Properties of Starch Binary Mixtures with Cordia and Ziziphus Gums. Processes 2022, 10, 180. [Google Scholar] [CrossRef]
- Mahmood, K.; Alamri, M.; Mohamed, A.; Hussain, S.; Abdu Qasem, A. Gum cordia: Physico-functional properties and effect on dough rheology and pan bread quality. Qual. Assur. Saf. Crops Foods 2015, 7, 569–579. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.; Jha, A.; Rasane, P.; Gautam, A.K. Optimization of a process for high fibre and high protein biscuit. J. Food Sci. Technol. 2015, 52, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Tebben, L.; Li, Y. Effect of xanthan gum on dough properties and bread qualities made from whole wheat flour. Cereal Chem. 2019, 96, 263–272. [Google Scholar] [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT 2020, 124, 109155. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B. Effect of flour particle size and damaged starch on the quality of cookies. J. Food Sci. Technol. 2014, 51, 1342–1348. [Google Scholar] [CrossRef] [Green Version]
- Duyvejonck, A.E.; Lagrain, B.; Pareyt, B.; Courtin, C.M.; Delcour, J.A. Relative contribution of wheat flour constituents to solvent retention capacity profiles of European wheats. J. Cereal Sci. 2011, 53, 312–318. [Google Scholar] [CrossRef]
- Collar, C.; Santos, E.; Rosell, C. Assessment of the rheological profile of fibre-enriched bread doughs by response surface methodology. J. Food Eng. 2007, 78, 820–826. [Google Scholar] [CrossRef]
- Li, J.; Yadav, M.P.; Li, J. Effect of different hydrocolloids on gluten proteins, starch and dough microstructure. J. Cereal Sci. 2019, 87, 85–90. [Google Scholar] [CrossRef]
- Gaines, C. Collaborative study of methods for solvent retention capacity profiles (AACC Method 56-11). Cereal Foods World 2000, 45, 303–306. [Google Scholar]
- Mariotti, M.; Lucisano, M.; Pagani, M.A.; Ng, P.K. Effects of dispersing media and heating rates on pasting profiles of wheat and gluten-free samples in relation to their solvent retention capacities and mixing properties. LWT-Food Sci. Technol. 2016, 66, 201–210. [Google Scholar] [CrossRef]
- Lou, W.; Zhou, H.; Li, B.; Nataliya, G. Rheological, pasting and sensory properties of biscuits supplemented with grape pomace powder. Food Sci. Technol. 2021, 42, e78421. [Google Scholar] [CrossRef]
- Sudha, M.; Srivastava, A.; Vetrimani, R.; Leelavathi, K. Fat replacement in soft dough biscuits: Its implications on dough rheology and biscuit quality. J. Food Eng. 2007, 80, 922–930. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Effect of composition of gluten proteins and dough rheological properties on the cookie-making quality. Br. Food J. 2013, 15, 564–574. [Google Scholar] [CrossRef]
- Pareyt, B.; Delcour, J.A. The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef]
- Abbastabar, B.; Azizi, M.H.; Adnani, A.; Abbasi, S. Determining and modeling rheological characteristics of quince seed gum. Food Hydrocoll. 2015, 43, 259–264. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Maghsoudlou, Y.; Aalami, M.; Jafari, S.M.; Raeisi, M.; Nishinari, K.; Rostamabadi, H. Application of Multi-Criteria Decision-Making for optimizing the formulation of functional cookies containing different types of resistant starches: A physicochemical, organoleptic, in-vitro and in-vivo study. Food Chem. 2022, 393, 133376. [Google Scholar] [CrossRef]
- Shahzad, S.A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Qasem, A.A.A.; Ibraheem, M.A.; Almaiman, S.A.M.; El-Din, M.F.S. Gluten-free cookies from sorghum and Turkish beans; effect of some non-conventional and commercial hydrocolloids on their technological and sensory attributes. Food Sci. Technol. 2020, 41, 15–24. [Google Scholar] [CrossRef]
- Dangi, P.; Chaudhary, N.; Khatkar, B. Rheological and microstructural characteristics of low molecular weight glutenin subunits of commercial wheats. Food Chem. 2019, 297, 124989. [Google Scholar] [CrossRef]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Improvement of whole wheat dough and bread properties by emulsifiers. Grain Oil Sci. Technol. 2022, 5, 59–69. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; Amer Assn of Cereal Chemists: St. Paul, MN, USA, 2000; Volume 1. [Google Scholar]
- Hussain, S.; Anjum, F.M.; Butt, M.S.; Khan, M.I.; Asghar, A. Physical and sensoric attributes of flaxseed flour supplemented cookies. Turk. J. Biol. 2006, 30, 87–92. [Google Scholar]
- Alamri, M.S. Okra-gum fortified bread: Formulation and quality. J. Food Sci. Technol. 2014, 51, 2370–2381. [Google Scholar] [CrossRef] [PubMed]
- Cauvain, S.P.; Young, L.S. The Chorleywood Bread Process; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar]
PV (cP) | FV (cP) | Breakdown (cP) | SB (cP) | Peak time (min) | Pasting Temp (PT) (°C) | |
---|---|---|---|---|---|---|
Control (100% WF) | 1888 ± 43.10 b | 2056 ± 2.10 a | 734 ± 26.50 a | 902 ± 14.50 a | 5.83 ± 0.04 b | 69.40 ± 0.05 b |
3% Cactus gum | 1846 ± 13.50 b | 1992 ± 16.23 b | 702 ± 2.10 b | 847 ± 0.50 b | 6.07 ± 0.01 a | 68.55 ± 0.03 c |
6% Cactus gum | 1939 ± 8.10 a | 2028 ± 9.12 b | 749 ± 2.50 a | 838.5 ± 3.5 c | 6.10 ± 0.03 a | 68.90 ± 0.40 c |
3% Acacia gum | 1453 ± 8.10 c | 1592 ± 31.50 c | 567 ± 11.50 c | 706 ± 12.2 d | 5.56 ± 0.04 c | 84.05 ± 0.80 a |
6% Acacia gum | 1119 ± 16.20 d | 2028 ± 9.15 b | 445 ± 6.10 d | 588 ± 4.10 e | 5.51 ± 0.03 c | 84.90 ± 0.02 a |
WA (%) | DDT (min) | Stability (min) | Softening (FU) | MTI (FU) | Quality Number | |
---|---|---|---|---|---|---|
Control (100% WF) | 61.47 ± 0.36 a | 1.60 ± 0.08 e | 5.70 ± 0.22 b | 91.67 ± 2.36 d | 35.67 ± 4.19 e | 61.23 ± 0.95 a |
Cactus 3% | 58.93 ± 0.09 b | 3.93 ± 0.09 d | 3.40 ± 0.08 c | 146.63 ± 1.73 b | 111.00 ± 2.94 b | 40.97 ± 1.19 d |
Cactus 6% | 56.50 ± 0.24 c | 4.63 ± 0.05 c | 2.73 ± 0.05 d | 152.80 ± 2.36 a | 117.33 ± 2.05 a | 37.87 ± 0.61 e |
Acacia 3% | 58.63 ± 0.12 b | 5.57 ± 0.26 b | 7.40 ± 0.16 a | 99.67 ± 0.47 c | 52.33 ± 2.05 d | 56.43 ± 0.39 b |
Acacia 6% | 56.00 ± 0.16 d | 6.10 ± 0.15 a | 5.40 ± 0.22 b | 75.00 ± 4.08 e | 62.00 ± 0.78 c | 49.93 ± 1.28 c |
Hardness (grams) | Fracturability (mm) | Thickness (mm) | Diameter (mm) | Spread Ratio | |
---|---|---|---|---|---|
Control (100% WF) | 2443.76 ± 83.35 d | 0.37 ± 0.02 e | 9.34 ± 0.10 b | 54.56 ± 0.16 c | 5.84 ± 0.05 d |
3% Cactus gum | 2668.76 ± 83.35 c | 0.39 ± 0.02 d | 8.81 ± 0.09 c | 53.53 ± 0.10 d | 6.01 ± 0.06 b |
6% Cactus gum | 5110.25 ± 126.47 a | 0.45 ± 0.01 c | 8.42 ± 0.01 d | 52.06 ± 0.34 e | 6.18 ± 0.05 a |
3% Acacia gum | 2408.37 ± 76.74 d | 0.54 ± 0.02 b | 9.45 ± 0.10 b | 55.63 ± 0.23 b | 5.92 ± 0.08 c |
6% Acacia gum | 3354.77 ± 99.48 b | 0.65 ± 0.05 a | 10.07 ± 0.04 a | 56.37 ± 0.26 a | 5.60 ± 0.02 e |
L* | a* | b* | |
---|---|---|---|
Control (100% WF) | 79.64 ± 0.22 b | −0.72 ± 0.06 d | 28.06 ± 0.69 a |
3% Cactus gum | 78.57 ± 1.15 c | −2.37 ± 0.84 b | 27.59 ± 0.95 a |
6% Cactus gum | 76.71 ± 0.57 d | −2.91 ± 0.20 a | 25.51 ± 0.23 b |
3% Acacia gum | 80.43 ± 0.62 a | −2.46 ± 0.55 b | 25.48 ± 0.80 b |
6% Acacia gum | 78.61 ± 0.14 c | −1.80 ± 0.18 c | 25.78 ± 0.56 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Alamri, M.S.; Mohamed, A.A.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums. Molecules 2022, 27, 7217. https://doi.org/10.3390/molecules27217217
Hussain S, Alamri MS, Mohamed AA, Ibraheem MA, Qasem AAA, Shamlan G, Ababtain IA. Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums. Molecules. 2022; 27(21):7217. https://doi.org/10.3390/molecules27217217
Chicago/Turabian StyleHussain, Shahzad, Mohamed Saleh Alamri, Abdellatif A. Mohamed, Mohamed Abdrabo Ibraheem, Akram A. Abdo Qasem, Ghalia Shamlan, and Ibrahim A. Ababtain. 2022. "Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums" Molecules 27, no. 21: 7217. https://doi.org/10.3390/molecules27217217
APA StyleHussain, S., Alamri, M. S., Mohamed, A. A., Ibraheem, M. A., Qasem, A. A. A., Shamlan, G., & Ababtain, I. A. (2022). Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia ficus-indica) and Acacia (Acacia seyal) Gums. Molecules, 27(21), 7217. https://doi.org/10.3390/molecules27217217