Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Appearance and Color Parameters of Powders from Micronized Spinach Leaves and Stems
2.2. Characteristics of the Particle Sizes of the Micronized Spinach Leaf and Stem Powders
2.3. GC-MS Identification of Phenolic Compounds in the Micronized Spinach Leaf and Stem Powders
2.4. Total Phenolic Content (TPC) and AA of the Micronized Spinach Leaf and Stem Powders
3. Materials and Methods
3.1. Materials
3.2. Micronization of the Spinach Leaves and Stems
3.3. Color Measurements
3.4. Particle Size Analysis
3.5. Extraction and Derivatization of the Phenolic Compounds
3.6. Separation and Detection of Phenolic Compounds by GC-MS Method
3.7. Preparation of the Extracts for Further Research on the Phenols and Antioxidants
3.8. Assessment of the Total Phenolics and AA
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dhiman, A.; Prabhakar, P.K. Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J. Food Eng. 2021, 292, 110248. [Google Scholar] [CrossRef]
- Dziki, D.; Tarasiuk, W.; Gawlik-Dziki, U. Micronized oat husk: Particle size distribution, phenolic acid profile and antioxidant properties. Materials 2021, 14, 5443. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Extraction and natural bioactive molecules characterization in spinach, kale and purslane: A comparative study. Molecules 2021, 26, 2515. [Google Scholar] [CrossRef]
- Roberts, J.L.; Moreau, R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef]
- Collins, K.; Zhao, K.; Jiao, C.; Xu, C.; Cai, X.; Wang, X.; Ge, C.; Dai, S.; Wang, Q.; Wang, Q.; et al. SpinachBase: A central portal for spinach genomics. Database 2019, 2019, baz072. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.; Kumar, R.; Raib, A.K. Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy. J. Appl. Spectrosc. 2016, 83, 872–877. [Google Scholar] [CrossRef]
- Qin, J.; Shi, A.; Mou, B.; Grusak, M.A.; Weng, Y.; Ravelombola, W.; Bhattarai, G.; Dong, L.; Yang, W. Genetic diversity and association mapping of mineral element concentrations in spinach leaves. BMC Genom. 2017, 18, 941. [Google Scholar] [CrossRef] [Green Version]
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT 2021, 150, 112058. [Google Scholar] [CrossRef]
- El-Sayed, S.M. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon 2020, 6, e03278. [Google Scholar] [CrossRef]
- Waseem, M.; Akhtar, S.; Manzoor, M.F.; Mirani, A.A.; Ali, Z.; Ismail, T.; Ahmad, N.; Karrar, E. Nutritional characterization and food value addition properties of dehydrated spinach powder. Food Sci. Nutr. 2021, 9, 1213–1221. [Google Scholar] [CrossRef]
- Doymaz, I. Thin-layer drying of spinach leaves in a convective dryer. J. Food Process Eng. 2009, 32, 1213–1221. [Google Scholar] [CrossRef]
- Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach. LWT 2022, 155, 112892. [Google Scholar] [CrossRef]
- Çalışkan Koç, G.; Nur Dirim, S. Spray Drying of Spinach Juice: Characterization, Chemical Composition, and Storage. J. Food Sci. 2017, 82, 13970. [Google Scholar] [CrossRef] [PubMed]
- Dadali, G.; Demirhan, E.; Özbek, B. Color change kinetics of spinach undergoing microwave drying. Dry. Technol. 2007, 25, 1713–1723. [Google Scholar] [CrossRef]
- Bajgai, T.R.; Hashinaga, F. Drying of spinach with a high electric field. Dry. Technol. 2001, 19, 2331–2341. [Google Scholar] [CrossRef]
- Song, J.; Zhang, H.Y.; Yuan, J.; Zeng, C.Z.; Mu, Y.W.; Kang, S.J.; Li, Y.X.; Gou, L.N. Comparison of Physicochemical Properties of Spinach Powder Using Different Drying Methods. Mod. Food Sci. Technol. 2021, 37, 207–215. [Google Scholar]
- Ozkan, I.A.; Akbudak, B.; Akbudak, N. Microwave drying characteristics of spinach. J. Food Eng. 2007, 78, 577–583. [Google Scholar] [CrossRef]
- Yamakage, K.; Yamada, T.; Takahashi, K.; Takaki, K.; Komuro, M.; Sasaki, K.; Aoki, H.; Kamagata, J.; Koide, S.; Orikasa, T. Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innov. Food Sci. Emerg. Technol. 2021, 68, 102615. [Google Scholar] [CrossRef]
- Watanabe, T.; Orikasa, T.; Shono, H.; Koide, S.; Ando, Y.; Shiina, T.; Tagawa, A. The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. J. Food Eng. 2016, 168, 113–118. [Google Scholar] [CrossRef]
- Sahin, F.H.; Acikgoz, F.E.; Eremkere, M.; Aktas, T. Physical and mechanical properties and influence of drying techniques on drying characteristics and some quality parameters of malabar spinach (Basella alba L.). Fresenius Environ. Bull. 2019, 28, 4340–4352. [Google Scholar]
- Lefsrud, M.; Kopsell, D.; Sams, C.; Wills, J.; Both, A.J. Dry matter content and stability of carotenoids in kale and spinach during drying. HortScience 2008, 43, 1731. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, T.; Zheng, Q.; Hu, X.; Zhang, Y.; Liao, X. Effects of high hydrostatic pressure on color of spinach purée and related properties. J. Sci. Food Agric. 2012, 92, 4719. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulou, E.; Varzakas, T. Effect of temperature in color changes of green vegetables. Curr. Res. Nutr. Food Sci. 2016, 4, 12944. [Google Scholar] [CrossRef]
- Bartos, C.; Szabó-Révész, P.; Bartos, C.; Katona, G.; Jójárt-Laczkovich, O.; Ambrus, R. The Effect of an Optimized Wet Milling Technology on the Crystallinity, Morphology and Dissolution Properties of Micro- and Nanonized Meloxicam. Molecules 2016, 21, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Extraction, identification, and potential health benefits of spinach flavonoids: A review. In Advances in Plant Phenolics: From Chemistry to Human Health; ACS Symposium Series; ACS Publications: New York, NY, USA, 2018; Volume 1286. [Google Scholar]
- Speroni, C.S.; Bender, A.B.B.; Stiebe, J.; Ballus, C.A.; Ávila, P.F.; Goldbeck, R.; Morisso, F.D.P.; da Silva, L.P.; Emanuelli, T. Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT 2020, 130, 109526. [Google Scholar] [CrossRef]
- Różyło, R.; Szymańska-Chargot, M.; Gawlik-Dziki, U.; Dziki, D. Spectroscopic, mineral, and antioxidant characteristics of blue colored powders prepared from cornflower aqueous extracts. Food Chem. 2021, 346, 128889. [Google Scholar] [CrossRef]
- Sobaszek, P.; Różyło, R.; Dziki, L.; Gawlik-Dziki, U.; Biernacka, B.; Panasiewicz, M. Evaluation of color, texture, sensory and antioxidant properties of gels composed of freeze-dried maqui berries and agave sugar. Processes 2020, 8, 1294. [Google Scholar] [CrossRef]
- Ziemichód, A.; Różyło, R.; Dziki, D. Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread. Processes 2020, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Isidorov, V.A.; Smolewska, M.; Purzyńska-Pugacewicz, A.; Tyszkiewicz, Z. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter. Biogeosciences 2010, 7, 2785–2794. [Google Scholar] [CrossRef] [Green Version]
- Różyło, R.; Piekut, J.; Wójcik, M.; Kozłowicz, K.; Smolewska, M.; Krajewska, M.; Szmigielski, M.; Bourekoua, H. Black cumin pressing waste material as a functional additive for starch bread. Materials 2021, 14, 4560. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J. Colorimetry of Total Phenolics With Phosphomolybdic. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
D [3;2] (µm) | D [4;3] (µm) | Dv10 (µm) | Dv50 (µm) | Dv90 (µm) | |
---|---|---|---|---|---|
CL | 65.6 ± 3.27 e | 315.3 ± 70.22 e | 33.7 ± 1.2 e | 182.3 ± 10.69 e | 666.3 ± 26.31 e |
CS | 74.5 ± 5.80 f | 313.0 ± 16.46 e | 41.5 ± 4.9 f | 210.7 ± 18.34 f | 743.7 ± 29.69 f |
WML | 27.5 ± 3.02 c | 121.4 ± 13.35 c | 14.5 ± 1.4 c | 84.6 ± 16.79 c | 252.7 ± 11.64 c |
WMS | 40.0 ± 5.24 d | 155.7 ± 10.79 d | 20.8 ± 2.1 d | 112.5 ± 13.85 d | 353.0 ± 3.61 d |
DML | 6.4 ± 0.15 b | 28.1 ± 1.18 b | 3.7 ± 0.1 b | 19.5 ± 0.26 b | 62.1 ± 3.56 b |
DMS | 3.3 ± 0.08 a | 16.7 ± 1.71 a | 1.6 ± 0.0 a | 10.1 ± 0.28 a | 40.8 ± 2.66 a |
Kind of Sample | 3-Hydroxyphenylacetic Acid (mg/kg) | 4-Hydroxyphenylacetic Acid (mg/kg) | o-Coumaric Acid (mg/kg) | p-Coumaric Acid (mg/kg) | Gallic Acid (mg/kg) | Ferulic Acid (mg/kg) | Caffeic Acid (mg/kg) |
---|---|---|---|---|---|---|---|
CL | 2.08 ± 0.15 d | 0.99 ± 0.03 a | 8.01 ± 0.19 b | 3.05 ± 0.09 a | 12.32 ± 0.18 b | 40.33 ± 0.30 c | 33.97 ± 0.08 d |
CS | 1.01 ± 0.12 a | 2.78 ± 0.10 b | 8.37 ± 0.14 c | 3.24 ± 0.11 b | 8.19 ± 0.13 a | 22.87 ± 0.22 a | 2.52 ± 0.21 b |
WML | 4.69 ± 0.12 f | 3.79 ± 0.10 d | 7.82 ± 0.08 ab | 3.56 ± 0.12 c | 17.47 ± 0.21 d | 43.00 ± 0.09 d | 25.05 ± 0.28 c |
WMS | 2.84 ± 0.09 e | 5.32 ± 0.13 e | 7.56 ± 0.21 a | 4.05 ± 0.10 d | 19.75 ± 0.31 e | 40.38 ± 0.13 c | 1.68 ± 0.11 a |
DML | 1.49 ± 0.10 c | 1.15 ± 0.08 a | 8.71 ± 0.14 d | 3.16 ± 0.12 ab | 14.02 ± 0.16 c | 40.77 ± 0.31 c | 35.19 ± 0.13 e |
DMS | 1.29 ± 0.06 b | 3.25 ± 0.11 c | 9.51 ± 0.10 e | 3.50 ± 0.13 c | 12.43 ± 0.25 b | 31.81 ± 0.37 b | 2.60 ± 0.05 b |
TPC (mg GAE/g DM) | EC50 DPPH (mg DM/mL) | EC50 ABTS (mg DM/mL) | |
---|---|---|---|
CL | 0.38 ± 0.04 a | 273.79 ± 8.39 b | 333.48 ± 2.93 d |
CS | 0.37 ± 0.03 ab | 759.25 ± 28.67 d | 528.53 ± 17.95 e |
WML | 0.35 ± 0.02 ab | 384.79 ± 13.17 c | 254.92 ± 1.64 c |
WMS | 0.30 ± 0.03 b | 898.45 ± 17.29 e | 888.30 ± 4.16 f |
DML | 0.42 ± 0.02 a | 189.43 ± 0.72 a | 168.90 ± 3.02 b |
DMS | 0.67 ± 0.04 c | 185.79 ± 2.43 a | 139.45 ± 4.13 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różyło, R.; Piekut, J.; Dziki, D.; Smolewska, M.; Gawłowski, S.; Wójtowicz, A.; Gawlik-Dziki, U. Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules 2022, 27, 8174. https://doi.org/10.3390/molecules27238174
Różyło R, Piekut J, Dziki D, Smolewska M, Gawłowski S, Wójtowicz A, Gawlik-Dziki U. Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules. 2022; 27(23):8174. https://doi.org/10.3390/molecules27238174
Chicago/Turabian StyleRóżyło, Renata, Jolanta Piekut, Dariusz Dziki, Marzena Smolewska, Sławomir Gawłowski, Agnieszka Wójtowicz, and Urszula Gawlik-Dziki. 2022. "Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems" Molecules 27, no. 23: 8174. https://doi.org/10.3390/molecules27238174
APA StyleRóżyło, R., Piekut, J., Dziki, D., Smolewska, M., Gawłowski, S., Wójtowicz, A., & Gawlik-Dziki, U. (2022). Effects of Wet and Dry Micronization on the GC-MS Identification of the Phenolic Compounds and Antioxidant Properties of Freeze-Dried Spinach Leaves and Stems. Molecules, 27(23), 8174. https://doi.org/10.3390/molecules27238174