Lead/Drug Discovery from Natural Resources
Abstract
:1. Introduction
2. Selected Bioactive Natural Products and Analogs
2.1. Antitumor Drugs/Agents
Entry | Ref # | IC50 (µM, Unless Specified) (Average ± SD) Cell Line | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2780 | A549 | BGC-823 | Hep3B | HepG-2 | HCT-116 | KB | KB-Vin | MCF7 | MDA-MB-231 | NCI-H1650 | ||
1 | [33] | NR | 0.2 ± 0.01 | NR | NR | NR | NR | 0.09 ± 0.02 | 8.9 ± 0.4 | 0.12 ± 0.04 | 0.06 ± 0.02 | NR |
2 | [35] | NR | 0.064 | NR | NR | NR | NR | 0.228 | 0.241 | 0.413 | 0.264 | NR |
4 | [58] | NR | 0.63 ± 0.02 | NR | NR | NR | NR | 4 ± 3 | 0.9 ± 0.1 | 2.2 ± 0.4 | 3.5 ± 0.5 | NR |
5 | [58] | NR | 0.60 ± 0.03 | NR | NR | NR | NR | 5 ± 4 | 0.38 ± 0.08 | 4.7 ± 0.5 | 5.4 ± 0.5 | NR |
6 | [60] | NR | 5.4 ± 0.2 nM | NR | NR | NR | NR | 21 ± 5 nM | 0.14 ± 0.03 | 0.07 ± 0.01 | 0.12 ± 0.02 | NR |
7 | [60] | NR | 6.9 ± 0.8 nM | NR | NR | NR | NR | 0.10 ± 0.05 | 20 ± 1 nM | 35 ± 8 nM | 0.08 ± 0.01 | NR |
8 | [61] | NR | 9.9 ± 0.4 nM | NR | NR | NR | NR | 70 ± 2 nM | 67.0 ± 0.8 | 77 ± 5 nM | 0.3 ± 0.1 | NR |
9 | [61] | NR | 8.72 ± 0.03 nM | NR | NR | NR | NR | 47 ± 6 nM | 0.10 ± 0.02 | 81 ± 4 nM | 0.24 ± 0.03 | NR |
10 | [62] | NR | 4 ± 3 nM | NR | 2.3 ± 0.0 nM | NR | NR | 24 ± 9 mM | 0.05 ± 0.04 | 42 ± 1 nM | NR | NR |
11 | [63] | NR | 8.1 | NR | NR | NR | NR | 20.3 | 5.4 | 6.8 | 20.8 | NR |
12 | [64] | NR | 5.7 | NR | NR | NR | NR | 12.6 | 5.3 | 8.1 | 8.2 | NR |
15 | [67] | 1.12 | NR | 4.1 ± 0.0 | NT | 2.28 | 0.76 | NR | NR | NR | NR | 1.2 ± 0.0 |
16 | [67] | 2.08 | NR | 9.4 ± 0.0 | NT | 2.11 | 0.86 | NR | NR | NR | NR | 1.3 ± 0.0 |
17 | [67] | 2.03 | NR | 2.7 ± 0.0 | NT | 3.03 | 2.15 | NR | NR | NR | NR | 1.6 ± 0.0 |
18 | [68] | NR | 6.1 ± 0.4 | NR | NR | NR | NR | 6.5 ± 0.3 | 7.0 ± 0.6 | 9.2 ± 0.9 | 11.0 ± 0.9 | NR |
18a | [68] | NR | 5.6 ± 0.4 | NR | NR | NR | NR | 6.7 ± 0.5 | 6.7 ± 0.0 | 15.3 ± 0.6 | 9.0 ± 0.2 | NR |
18b | [68] | NR | 4.5 ± 0.3 | NR | NR | NR | NR | 6.1 ± 0.5 | 6.0 ± 0.3 | 14.4 ± 1.1 | 12.4 ± 0.3 | NR |
19 | [69] | NR | 0.4 ± 0.1 | NR | NR | NR | NR | 0.53 ± 0.03 | 0.8 ± 0.3 | 1.0 ± 0.2 | 0.59 ± 0.06 | NR |
2.2. Antiviral Agents
Entry | Ref # | EC50 (µM) | SI | IC50 (nM) | CC50 (µM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E138K | IIIB | K103 N | L100I | NL4-3 (nM) | RES056 | Y181C | Y188L | F227L + V106A | IIIB | RES056 | ||||
22 | [76] | 0.015 ± 0.003 | 0.020 ± 0.005 | 0.25 ± 0.03 | 1.1 ± 0.2 | NR | 2.3 ± 0.6 | 0.089 ± 0.004 | 2.24 ± 0.07 | 0.3 ± 0.2 | 2044 | 17 | NR | 40.15 |
23 | [76] | 0.014 ± 0.001 | 0.020 ± 0.005 | 0.270 ± 0.006 | 1.0 ± 0.1 | NR | 1.4 ± 0.3 | 0.09 ± 0.02 | 1.48 ± 0.08 | 0.240 ± 0.008 | 2897 | 41 | NR | 58.09 |
24 | [76] | 0.027 ± 0.001 | 0.020 ± 0.009 | 0.38 ± 0.05 | 6.1 ± 0.2 | NR | 16 ± 7 | 0.24 ± 0.09 | 7.2 ± 0.5 | 0.610 ± 0.007 | 9279 | 12 | NR | 180.9 |
26 | [83] | NR | NR | NR | NR | 8 ± 2 | NR | NR | NR | NR | NR | NR | >34 | NR |
27 | [83] | NR | NR | NR | NR | 1.5 ± 0.4 | NR | NR | NR | NR | NR | NR | >34 | NR |
28 | [83] | NR | NR | NR | NR | 2.2 ± 0.8 | NR | NR | NR | NR | NR | NR | >34 | NR |
29 | [83] | NR | NR | NR | NR | 1.9 ± 0.4 | NR | NR | NR | NR | NR | NR | >34 | NR |
30 | [83] | NR | NR | NR | NR | 1.6 ± 0.5 | NR | NR | NR | NR | NR | NR | >34 | NR |
31 | [83] | NR | NR | NR | NR | 5 ± 1 | NR | NR | NR | NR | NR | NR | >34 | NR |
32 | [83] | NR | NR | NR | NR | 4 ± 1 | NR | NR | NR | NR | NR | NR | >34 | NR |
33 | [83] | NR | NR | NR | NR | 1.9 ± 0.5 | NR | NR | NR | NR | NR | NR | >34 | NR |
34 | [83] | NR | NR | NR | NR | 2.3 ± 0.5 | NR | NR | NR | NR | NR | NR | >34 | NR |
35 | [40] | NR | NR | NR | NR | 0.16 ± 0.06 | NR | NR | NR | NR | NR | NR | >25 | NR |
36 | [40] | NR | NR | NR | NR | 0.25 ± 0.06 | NR | NR | NR | NR | NR | NR | >25 | NR |
38 | [42] | NR | NR | NR | NR | 25 ± 9.5 | NR | NR | NR | NR | NR | NR | NR | >20 |
2.3. Antibacterial Drug Discovery
2.4. Antimalarial Drugs
2.5. Marine Bioactive Natural Products
3. Computational Methodology for Natural-Product-Based Drug Discovery
3.1. Structure-Based Drug Discovery (SBDD)
3.2. Ligand-Based Drug Discovery (LBDD)
3.3. Literature-Wide Association Studies (LWAS)
3.4. Network-Wide Association Studies (NWAS)
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Başaran, N.; Paslı, D.; Başaran, A.A. Unpredictable adverse effects of herbal products. Food Chem. Toxicol. 2022, 159, 112762. [Google Scholar] [CrossRef]
- Gastona, T.E.; Mendrickb, D.L.; Painec, M.F.; Roed, A.L.; Yeung, C.K. “Natural” is not synonymous with “Safe”: Toxicity of natural products alone and in combination with pharmaceutical agents. Regul. Toxicol. Pharmacol. 2020, 113, 104642. [Google Scholar] [CrossRef] [PubMed]
- Brewer, C.T.; Chen, T. Hepatotoxicity of herbal supplements mediated by modulation of cytochrome P450. Int. J. Mol. Sci. 2017, 18, 2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakyea, G.F.; Jiméneza, J.; Jiméneza, J.A.; Aschner, M. Atropa belladonna neurotoxicity: Implications to neurological disorders. Food Chem. Toxicol. 2018, 116, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.; Akram, M.; Yaniv-Bachrach, Z.; Daniyal, M. Is it safe to consume traditional medicinal plants during pregnancy? Phytother. Res. 2021, 35, 1908–1924. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem. Toxicol. 2016, 92, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Kharchoufa, L.; Merrouni, I.A.; Yamani, A.; Elachouri, M. Profile on medicinal plants used by the people of North Eastern Morocco: Toxicity concerns. Toxicon 2018, 154, 90–113. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Liang, k.; An, R.; Wang, W. The path towards FDA approval: A challenging journey for traditional Chinese medicine. Pharmacol. Res. 2022, 182, 106314. [Google Scholar] [CrossRef]
- Drug Approval Package: Veregen NDA #021902. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021902s000TOC.cfm (accessed on 19 November 2022).
- Mytesi (crofelemer) FDA Approval History. Available online: https://www.drugs.com/history/mytesi.html (accessed on 19 November 2022).
- Batta, A.; Kalra, B.S.; Khirasaria, R. Trends in FDA drug approvals over last 2 decades: An observational study. Fam. Med. Prim. Care Rev. 2020, 9, 105–114. [Google Scholar] [CrossRef]
- Sneader, W. Drug Prototypes and Their Exploitation; John Wiley and Sons Ltd.: Chichester, UK, 1996. [Google Scholar]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2016. An analysis of FDA drug approvals from a perspective of the molecule type. Molecules 2017, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2017. An analysis of FDA drug approvals from a perspective of molecules. Molecules 2018, 23, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2018. An analysis of FDA drug approvals from a perspective of molecules. Molecules 2019, 24, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from a perspective of molecules. Molecules 2020, 25, 745. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from a perspective of molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2021. An analysis of FDA drug approvals from a perspective of molecules. Molecules 2022, 27, 1075. [Google Scholar] [CrossRef] [PubMed]
- New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. Available online: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products (accessed on 19 November 2022).
- Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef] [Green Version]
- Hughes1, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug Discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, D.; Xian, J.; Glicksman, M.A.; Cuny, G.D.; Stein, R.L.; Higgins, J.M.G. Identification of small molecule inhibitors of the mitotic kinase haspin by high-throughput screening using a homogeneous time-resolved fluorescence resonance energy transfer assay. J. Biomol. Screen. 2008, 13, 1025–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Z.; Yao, C.; Zhu, J.; Xie, Y.; Ye, X.-Y.; Bai, R.; Xie, T. Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules 2021, 26, 1499. [Google Scholar] [CrossRef]
- Fischer, T.; Riedl, R. Paracelsus′ legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov. 2022, 27, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Jin, K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med. Res. Rev. 2020, 40, 753–810. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity-an update and forward Look. Molecules 2021, 26, 1836. [Google Scholar] [CrossRef]
- Wada, K.; Goto, M.; Shimizu, T.; Kusanagi, N.; Mizukami, M.; Suzuki, Y.; Li, K.-P.; Lee, K.-H.; Yamashita, H. Structure–activity relationships and evaluation of esterified diterpenoid alkaloid derivatives as antiproliferative agents. J. Nat. Med. 2019, 73, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.-F.; Yang, C.-J.; Morris-Natschke, S.L.; Li, J.-C.; Yin, X.-D.; Liu, Y.-Q.; Guo, X.; Peng, J.-W.; Goto, M.; Zhang, J.-Y.; et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020, 40, 2212–2289. [Google Scholar] [CrossRef] [PubMed]
- Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021, 32, 115973. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Leong, S.W.; Wang, J.; Wu, Q.; Ghauri, M.A.; Sarwar, A.; Su, Q.; Zhang, Y. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis. 2021, 12, 490. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Ullah, N.; Nawaz, T.; Aziz, T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anti-Cancer Agents Med. Chem. 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. 2008, 13, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Saito, Y.; Goto, M.; Miyake, K.; Newman, D.J.; O’Keefe, B.R.; Lee, K.-H.; Nakagawa-Goto, K. Antiproliferative alkaloids from Alangium longiflorum, an Endangered tropical plant species. J. Nat. Prod. 2018, 81, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Goto, M.; Oda, A.; Hsu, P.-L.; Guo, L.-L.; Fu, Y.-H.; Morris-Natschke, S.L.; Hamel, E.; Lee, K.-H.; Hao, X.-J. Antiproliferative aspidosperma-type monoterpenoid indole alkaloids from Bousigonia mekongensis inhibit tubulin polymerization. Molecules 2019, 24, 1256. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Saito, Y.; Goto, M.; Newman, D.J.; O’Keefe, B.R.; Lee, K.-H.; Nakagawa-Goto, K. (−)-Neocaryachine, an antiproliferative pavine alkaloid from cryptocarya laevigata, induces DNA double-strand breaks. J. Nat. Prod. 2017, 80, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H.; Miyao1, M.; Hiramori1, K.; Kobayashi1, D.; Suzuki1, Y.; Mizukami1, M.; Goto, M.; Lee, K.-H.; Wada, K. Cytotoxic diterpenoid alkaloid from Aconitum japonicum subsp. subcuneatum. J. Nat. Med. 2020, 74, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, Y.-X.; Goto, M.; Guo, L.-L.; Li, X.-N.; Morris-Natschke, S.L.; Lee, K.-H.; Hao, X.-J. Taburnaemines A–I, cytotoxic vobasinyl-iboga-type bisindole alkaloids from Tabernaemontana corymbose. J. Nat. Prod. 2018, 81, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, P.-Y.; Hsieh, K.-Y.; Hsu, P.-L.; Goto, M.; Morris-Natschke, S.L.; Harnb, H.-J.; Lee, K.-H. Design, synthesis and structure–activity relationships of (±)-isochaihulactone derivatives. Med. Chem. Commun. 2017, 8, 2040–2049. [Google Scholar] [CrossRef]
- Zhou, K.-S.; Yi, P.; Yang, T.; Tian, W.; Yang, F.-M.; Lee, K.-H.; Zhao, B.-Y.; Wang, Y.-H.; Tan, C.-J. Ochrocephalamines B–D, three alkaloids from Oxytropis ochrocephala Bunge. Org. Lett. 2019, 21, 5051–5054. [Google Scholar] [CrossRef]
- Otsuki, K.; Li, W.; Asada, Y.; Chen, C.-H.; Lee, K.-H.; Koike, K. Daphneodorins A–C, anti-HIV gnidimacrin related macrocyclic daphnane orthoesters from Daphne odora. Org. Lett. 2020, 22, 11–15. [Google Scholar] [CrossRef]
- Rahim, A.; Saito, Y.; Miyake, K.; Goto, M.; Chen, C.-H.; Alam, G.; Morris-Natschke, S.L.; Lee, K.-H.; Nakagawa-Goto, K. Kleinhospitine E and cycloartane triterpenoids from Kleinhovia hospita. J. Nat. Prod. 2018, 81, 1619–1627. [Google Scholar] [CrossRef]
- Wu, H.; Ma, G.; Yang, Q.; Zhu, Y.; Huang, L.; Tian, Y.; Yang, X.; Zhang, M.; Chen, C.-H.; Morris-Natschke, S.L.; et al. Discovery and synthesis of novel beesioside I derivatives with potent anti-HIV activity. Eur. J. Med. Chem. 2019, 166, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yao, S.; Zhao, W.; Zhang, Y.; Liu, J.; Shao, Q.; Wang, Q.; Li, M.; Xie, H.; Shang, W.; et al. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 2021, 12, 3623. [Google Scholar] [CrossRef]
- Du, R.; Cooper, L.; Chen, Z.; Lee, H.; Rong, L.; Cui, Q. Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CL. Antivir. Res. 2021, 190, 105075. [Google Scholar] [CrossRef]
- Cheung-Lee, W.L.; Parry, M.E.; Zong, C.; Cartagena, A.J.; Darst, S.A.; Connell, N.D.; Russo, R.; Link, A.J. Discovery of ubonodin, an antimicrobial lasso peptide active against members of the Burkholderia cepacia complex. ChemBioChem 2020, 21, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Merten, C.; Kaiser, M.; Tasdemir, D. Bifurcatriol, a new antiprotozoal acyclic diterpene from the brown alga Bifurcaria bifurcate. Mar. Drugs 2017, 15, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney-Jones, A.M.; Gagaring, K.; Antonova-Koch, J.; Zhou, H.; Mojib, N.; Soapi, K.; Skolnick, J.; McNamara, C.W.; Kubanek, J. Antimalarial peptide and polyketide natural products from the Fijian marine cyanobacterium Moorea producens. Mar. Drugs 2020, 18, 167. [Google Scholar] [CrossRef] [PubMed]
- Meesala, S.; Gurung, P.; Karmodiya, K.; Subrayan, P.; Watve, M.G. Isolation and structure elucidation of halymeniaol, a new antimalarial steroid derivative from the red alga Halymenia floresii. J. Asian Nat. Prod. Res. 2017, 20, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.S.; Dimri, M.; Maithani, A.; Kush, L. Anti-COVID-19 natural products are spotlights for drug discovery and development. Asian J. Pharm. Res. Dev. 2020, 8, 88–90. [Google Scholar]
- Ashhurst, A.S.; Tang, A.H.; Fajtova, P.; Yoon, M.; Aggarwal, A.; Stoye, A.; Larance, M.; Beretta, L.; Drelich, A.; Skinner, D.; et al. Potent anti-SARS-CoV-2 activity by the natural product gallinamide A and analogues via inhibition of Cathepsin L. J. Med. Chem. 2022, 65, 2956–2970. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, C.M.; Wong, C.Y.; Ononye, S.; Lopez, D.D.; Engene, N.; McPhail, K.L.; Gerwick, W.H.; Balunus, M.J. Santacruzamate A, a Potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J. Nat. Prod. 2013, 76, 2026–2033. [Google Scholar] [CrossRef] [Green Version]
- Mascuch, S.J.; Boudreau, P.D.; Carland, T.M.; Pierce, N.T.; Olson, J.; Hensler, M.E.; Choi, H.; Campanale, J.; Hamdoun, A.; Nizet, V.; et al. Marine natural product honaucin A attenuates inflammation by activating the Nrf2-ARE pathway. J. Nat. Prod. 2018, 81, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F.; et al. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. BioMed Res. Int. 2022, 2022, 5425485. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Law, L.N.-S.; Letchumanan, V.; Tan, L.T.-H.; Wong, S.H.; Chan, K.-G.; Ab Mutalib, N.-S.; Lee, L.-H. Anticancer drug discovery from microbial sources: The unique mangrove streptomycetes. Molecules 2020, 25, 5365. [Google Scholar] [CrossRef] [PubMed]
- Changa, Y.-T.; Linb, Y.-C.; Sund, L.; Liaoa, W.-C.; Wange, C.C.N.; Chouf, C.-Y.; Morris-Natschkeh, S.L.; Lee, K.-H.; Hung, C.-C. Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein. Phytomedicine 2020, 71, 153239. [Google Scholar] [CrossRef]
- Yang, C.-J.; Song, Z.-L.; Goto, M.; Liu, Y.-Q.; Hsieh, K.-Y.; Morris-Natschke, S.L.; Zhao, Y.-L.; Zhang, J.-X.; Lee, K.-H. Design, synthesis, and cytotoxic activity of novel 7-substituted camptothecin derivatives incorporating piperazinyl-sulfonylamidine moieties. Bioorg. Med. Chem. Lett. 2017, 27, 3959–3962. [Google Scholar] [CrossRef]
- Song, Z.-L.; Wang, M.-J.; Li, L.; Wu, D.; Wang, Y.-H.; Yan, L.-T.; Morris-Natschke, S.L.; Liu, Y.-Q.; Zhao, Y.-L.; Wang, C.-Y.; et al. Design, synthesis, cytotoxic activity and molecular docking studies of new 20(S)-sulfonylamidine camptothecin derivatives. Eur. J. Med. Chem. 2016, 115, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.-X.; Cheng, P.-L.; Goto, M.; Zhang, N.; Morris-Natschke, S.L.; Hsieh, K.-Y.; Yang, G.-Z.; Yang, Q.-R.; Liu, Y.-Q.; Chen, H.-L.; et al. Design, synthesis and potent cytotoxic activity of novel 7-(N-[(substituted-sulfonyl)piperazinyl]-methyl)-camptothecin derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 1750–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-J.; Song, Z.-L.; Goto, M.; Hsu, P.-L.; Zhang, X.-S.; Yang, Q.-R.; Liu, Y.-Q.; Wang, M.-J.; Morris-Natschke, S.L.; Shang, X.-F.; et al. Design, semisynthesis and potent cytotoxic activity of novel 10-fluorocamptothecin derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 4694–4697. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-J.; Li, B.; Zhang, Z.-J.; Gao, J.-M.; Wang, M.-J.; Zhao, X.-B.; Song, Z.-L.; Liu, Y.-Q.; Li, H.; Chen, Y.; et al. Design, synthesis and antineoplastic activity of novel 20(S)-acylthiourea derivatives of camptothecin. Eur. J. Med. Chem. 2020, 187, 111971. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Chen, Y.-F.; Tseng, L.-S.; Lee, Y.-H.; Morris-Natschke, S.L.; Kuo, S.-C.; Yang, N.-S.; Lee, K.-H.; Huang, L.-J. Synthesis and structure-activity relationship studies of novel 3,9-substituted a-carboline derivatives with high cytotoxic activity against colorectal cancer cells. Eur. J. Med. Chem. 2016, 110, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Aimaiti, S.; Saito, Y.; Fukuyoshi, S.; Goto, M.; Miyake, K.; Newman, D.J.; O’Keefe, B.R.; Lee, K.-H.; Nakagawa-Goto, K. Isolation, structure elucidation, and antiproliferative activity of butanolides and lignan glycosides from the fruit of Hernandia nymphaeifolia. Molecules 2019, 24, 4005. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.-Y.; Nakagawa-Goto, K.; Lee, K.-H.; Shyur, L.-F. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget 2017, 8, 56942–56958. [Google Scholar] [CrossRef]
- Hsieh, M.-T.; Chang, L.-C.; Hung, H.-Y.; Lin, H.-Y.; Shih, M.-H.; Tsai, C.-H.; Kuo, S.-C.; Lee, K.-H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. Eur. J. Med. Chem. 2017, 131, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Yan, L.; Lai, F.; Chen, X.; Goto, M.; Lee, K.-H.; Xiao, Z. Design, synthesis and biological evaluation of novel indolin-2-ones as potent anticancer compounds. Bioorg. Med. Chem. Lett. 2017, 27, 3326–3331. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chang, L.-C.; Hsiehb, K.-Y.; Hsub, P.-L.; Capuzzic, S.J.; Zhang, Y.-C.; Lib, K.-P.; Morris-Natschkeb, S.L.; Gotob, M.; Lee, K.-H. Design, synthesis and evaluation of antiproliferative activity of fluorinated betulinic acid. Bioorg. Med. Chem. 2019, 27, 2871–2882. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Hsu, P.-L.; Li, Y.; Zhu, W.; Yang, Y.; Morris-Natschke, S.L.; Lee, K.-H.; et al. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur. J. Med. Chem. 2020, 204, 112610. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Chang, C.-C.; Huang, H.-C.; Zhang, L.-J.; Liaw, C.-C.; Lin, Y.-C.; Nguyen, N.-L.; Vo, T.-H.; Cheng, Y.-Y.; Morris-Natschke, S.L.; et al. New Dammarane-Type Saponins from Gynostemma pentaphyllum. Molecules 2019, 24, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Duan, H.; Tong, X.; Hsu, P.; Han, L.; Morris-Natschke, S.L.; Yang, S.; Liu, W.; Lee, K.-H. Cytotoxicity, hemolytic toxicity, and mechanism of action of pulsatilla saponin D and its synthetic derivatives. J. Nat. Prod. 2018, 81, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018, 32, 811–822. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef]
- HIV. Available online: https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids (accessed on 19 November 2022).
- Yang, J.-H.; Wang, X.-Y.; Zhou, Y.-P.; Lu, R.; Chen, C.-H.; Zhang, M.-H.; Cheng, Y.-Y.; Morris-Natschke, S.L.; Lee, K.-H.; Wang, Y.-S. Carbazole alkaloids from Clausena anisum-olens: Isolation, characterization, and anti-HIV Evaluation. Molecules 2020, 25, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Liu, Z.; Liu, J.; Huang, B.; Kang, D.; Zhang, H.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Lee, K.-H.; et al. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur. J. Med. Chem. 2018, 151, 339–350. [Google Scholar] [CrossRef]
- Dang, Z.; Zhu, L.; Lai, W.; Bogerd, H.; Lee, K.-H.; Huang, L.; Chen, C.-H. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med. Chem. Lett. 2016, 7, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.S.; Lu, Y.; Chen, C.H.; Lee, K.-H.; Chen, D.F. Potent anti-HIV ingenane diterpenoids from Euphorbia ebracteolata. J. Nat. Prod. 2019, 82, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-R.; Cheng, Y.-Y.; Zhao, L.; Huang, X.-L.; Jiang, X.-G.; Cui, Y.-D.; Morris-Natschke, S.L.; Goto, M.; Chen, C.-H.; Lee, K.-H.; et al. New phorbol ester derivatives as potent anti-HIV agents. Bioorg. Med. Chem. Lett. 2021, 50, 128319. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, Y.-S.; Chen, C.-H.; Akiyama, T.; Morris-Natschkeb, S.L.; Cheng, Y.-Y.; Chend, I.-S.; Yange, S.-Z.; Chen, D.-F.; Lee, K.-H. Anti-HIV tigliane diterpenoids from Reutealis trisperma. Phytochemistry 2020, 174, 112360. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, K.; Zhang, M.; Yamamoto, A.; Tsuji, M.; Tejima, M.; Bai, Z.-S.; Zhou, D.; Huang, L.; Chen, C.-H.; Lee, K.-H.; et al. Anti-HIV tigliane diterpenoids from Wikstroemia scytophylla. J. Nat. Prod. 2020, 83, 3584–3590. [Google Scholar] [CrossRef]
- Zhang, M.; Otsuki, K.; Kikuchi, T.; Bai, Z.-S.; Zhou, D.; Huang, L.; Chen, C.-H.; Morris-Natschke, S.L.; Lee, K.-H.; Li, N.; et al. LC-MS identification, isolation, and structural elucidation of anti-HIV tigliane diterpenoids from Wikstroemia lamatsoensis. J. Nat. Prod. 2021, 84, 2366–2373. [Google Scholar] [CrossRef]
- Otsuki, K.; Li, W.; Miura, K.; Asada, Y.; Huang, L.; Chen, C.-H.; Lee, K.-H.; Koike, K. Isolation, structural elucidation, and anti-HIV activity of daphnane diterpenoids from Daphne odora. J. Nat. Prod. 2020, 83, 3270–3277. [Google Scholar] [CrossRef]
- Zhao, H.-D.; Lu, Y.; Yan, M.; Chen, C.-H.; Morris-Natschke, S.L.; Lee, K.-H.; Chen, D.-F. Rapid recognition and targeted isolation of anti-HIV daphnane diterpenes from Daphne genkwa Guided by UPLC-MSn. J. Nat. Prod. 2020, 83, 134–141. [Google Scholar] [CrossRef]
- Liu, Q.; Li, W.; Huang, L.; Asada, Y.; Morris-Natschke, S.L.; Chen, C.-H.; Lee, K.-H.; Koike, K. Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui. Eur. J. Med. Chem. 2018, 156, 618–627. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, Y.-Y.; Li, W.; Huang, L.; Asada, Y.; Hsieh, M.-T.; Morris-Natschke, S.L.; Chen, C.-H.; Koike, K.; Lee, K.-H. Synthesis and structure–activity relationship correlations of gnidimacrin derivatives as potent HIV-1 inhibitors and HIV latency reversing agents. J. Med. Chem. 2019, 62, 6958–6971. [Google Scholar] [CrossRef]
- Wu, H.-F.; Morris-Natschke, S.L.; Xu, X.-D.; Yang, M.-H.; Cheng, Y.-Y.; Yu, S.-S.; Lee, K.-H. Recent advances in natural anti-HIV triterpenoids and analogs. Med. Res. Rev. 2020, 40, 2339–2385. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Zheng, L.; Huang, X.; Wang, Y.; Chen, C.-H.; Cheng, Y.-Y.; Morris-Natschke, S.L.; Lee, K.-H. Novel betulinic acid–nucleoside hybrids with potent anti-HIV activity. ACS Med. Chem. Lett. 2020, 11, 2290–2293. [Google Scholar] [CrossRef]
- Weekly epidemiological update on COVID-19 - 2 November 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---2-november-2022 (accessed on 5 November 2022).
- Zendehdel, A.; Bidkhori, M.; Ansari, M.; Jamalimoghaddamsiyahkali, S.; Asoodeh, A. Efficacy of oseltamivir in the treatment of patients infected with Covid-19. Ann. Med. Surg. 2022, 77, 103679. [Google Scholar] [CrossRef]
- Khare, P.; Sahu, U.; Pandey, S.C.; Samant, M. Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection. Virus Res. 2020, 290, 198169. [Google Scholar] [CrossRef] [PubMed]
- Ghoran, S.H.; El-Shazly, M.; Sekeroglu, N.; Kijjoa, A. Natural products from medicinal plants with anti-human coronavirus activities. Molecules 2021, 26, 1754. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Morris-Natschke, S.L.; Cheng, Y.-Y.; Lee, K.-H.; Li, R.-T. Development of anti-influenza agents from natural products. Med. Res. Rev. 2020, 40, 2290–2338. [Google Scholar] [CrossRef] [PubMed]
- First Global and Regional Estimates of HIV Infections Attributable to HSV-2 Infection. Available online: https://www.who.int/news/item/19-11-2019-first-global-and-regional-estimates-of-hiv-infections-attributable-to-hsv-2-infection (accessed on 5 November 2022).
- Treml, J.; Gazdova, M.; Smejkal, K.; Sudomova, M.; Kubatka, P.; Hassan, S.T.S. Natural products-derived chemicals: Breaking barriers to novel anti-HSV drug development. Viruses 2020, 12, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Shinu, P.; Al Mouslem, A.K.; Nair, A.B.; Venugopala, K.N.; Attimarad, M.; Singh, V.A.; Nagaraja, S.; Alotaibi, G.; Deb, P.K. Progress report: Antimicrobial drug discovery in the resistance era. Pharmaceuticals. 2022, 15, 413. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Barrett, J.F. Empirical antibacterial drug discovery—Foundation in natural products. Biochem. Pharmacol. 2006, 71, 1006–1015. [Google Scholar] [CrossRef]
- Wohlleben, W.; Mast, Y.; Stegmann, E.; Ziemart, N. Antibiotic drug discovery. Microb. Biotechnol. 2016, 9, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.M.; Seiple, I.B.; Myers, A.G. The evolving role of chemical synthesis in antibacterial drug discovery. Angew. Chem. Int. Ed. Engl. 2014, 53, 8840–8869. [Google Scholar] [CrossRef] [Green Version]
- Dheman, N.; Mahoney, N.; Cox, E.M.; Farley, J.J.; Amini, T.; Lanthier, M.L. An analysis of antibacterial drug development trends in the United States, 1980–2019. Clin. Infect. Dis. 2021, 73, e4444–e4450. [Google Scholar] [CrossRef]
- Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salem, A.M.; Smarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev. 2021, 121, 3495–3560. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Samreen, F.A.Q.; Abulreesh, H.H.; Ahmad, S.; Rumbaugh, K.P. Antibacterial drug discovery: Perspective insights. Antibact. Drug Discov. Combat. MDR 2019, 1–24. [Google Scholar] [CrossRef]
- Kaur, R.; Rani, P.; Atanasov, A.G.; Alzaharani, Q.; Gupta, R.; Kapoor, B.; Gulati, M.; Chawla, P. Discovery and development of antibacterial agents: Fortuitous and designed. Mini-Rev. Med. Chem. 2022, 22, 984–1029. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Outterson, K. A shot in the arm for new antibiotics. Nat. Biotechnol. 2019, 37, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Rex, J.H.; Outterson, K. Antibacterial R&D at a crossroads: We’ve pushed as hard as we can … Now we need to start pulling! Clin. Infect. Dis. 2021, 73, e4451–e4453. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Gigante, V.; Sati, H.; Paulin, S.; Al-Sulaiman, L.; Rex, J.H.; Fernandes, P.; Arias, C.A.; Paul, M.; Thwaites, G.E.; et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: Despite progress, more action Is needed. Antimicrob. Agents Chemother. 2022, 66, e01991–e019921. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Paterson, D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. 2020, 73, 329–364. [Google Scholar] [CrossRef]
- Fukusawa, M.; Sumita, Y.; Harabe, E.T.; Tanio, T.; Nouda, H.; Kohzuki, T.; Okuda, T.; Matsumura, H.; Sunagawa, M. Stability of meropenem and effect of 1β-methyl substitution on its stability in the presence of renal dehydropeptidase I. Antimicrob. Agents Chemother. 1992, 36, 1577–1579. [Google Scholar] [CrossRef] [Green Version]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antinicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef]
- Morrison, C. Fresh from the biotech pipeline—2019. Nat. Biotechnol. 2020, 38, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Dillon, C.; Guarascio, A.J.; Covvey, J.R. Lefamulin: A promising new pleuromutilin antibiotic in the pipeline. Expert Rev. Anti-Infect. 2019, 17, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, L. FDA new drug approvals in Q3 2019. Nat. Rev. Drug Discov. 2019, 18, 816. [Google Scholar] [CrossRef]
- Honeyman, L.; Ismail, M.; Nelson, M.L.; Bhatia, B.; Bowser, T.E.; Chen, J.; Mechiche, R.; Ohemeng, K.; Verma, A.K.; Cannon, E.P.; et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother. 2015, 59, 7044–7053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Myers, A.G. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Curr. Opin. Chem. Biol. 2016, 32, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.K.; Steenbergen, J.; Villano, S. Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic. Bioorg. Med. Chem. 2016, 24, 6409–6419. [Google Scholar] [CrossRef] [Green Version]
- Schimana, J.; Gephardt, K.; Holtzel, A.; Schmid, D.G.; Sussmuth, R.; Muller, J.; Pukall, R.; Fiedler, H.-P. Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tu 6075. I. Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 2002, 55, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.A.; Koehler, M.F.T.; Girgis, H.S.; Yan, D.; Chen, Y.; Chen, Y.; Ceawford, J.J.; Durk, M.R.; Higuchi, R.I.; Kang, J.; et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 2018, 561, 189–194. [Google Scholar] [CrossRef]
- Culp, E.J.; Waglechner, N.; Wang, W.; Fiebig-Comyn, A.A.; Hsu, Y.-P.; Koteva, K.; Sychantha, D.; Coombes, B.K.; Van Nieuwenhze, M.S.; Brun, Y.; et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodeling. Nature 2020, 578, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Brotz-Oesterhelt, H.; Sass, P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 2010, 5, 1553–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talib, W.H.; Alsalhat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-Derived natural products in cancer research: Extraction, mechanism of Actions, and drug formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products and combinatorial chemistry: Back to the future. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 yeas from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021; License: CC BY-NC-SA 3.0 IGO.
- Tiwari, M.K.; Chaudhary, S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med. Res. Rev. 2020, 40, 1220–1275. [Google Scholar] [CrossRef]
- Kingston, D.G.I.; Cassera, M.B. Antimalarial Natural Products; Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, J.-K., Dirsch, V.M., Eds.; Progress in the Chemistry of Organic Natural Products, Volume 117; Springer: Cham, Switzerland, 2022; pp. 1–106. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpitthakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Fairhurst, R.M.; Nayyar, G.M.L.; Breman, J.G.; Hallett, R.; Vennerstrom, J.L.; Duong, S.; Ringwald, P.; Wellems, T.E.; Plowe, C.V.; Dondorp, A.M. Artemisinin-resistant malaria: Research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg. 2012, 87, 231–241. [Google Scholar] [CrossRef]
- Lu, F.; Culleton, R.; Zhang, M.; Ramaprasad, A.; von Seidlein, L.; Zhou, H.; Zhu, G.; Tang, J.; Liu, Y.; Wang, W.; et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N. Eng. J. Med. 2017, 376, 991–993. [Google Scholar] [CrossRef] [Green Version]
- Drug Resistance in the Malaria-Endemic World. Centers for Disease Control. Available online: https://www.cdc.gov/malaria/malaria_worldwide/reduction/drug_resistance.html (accessed on 21 November 2022).
- Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem. 2009, 17, 3229–3256. [Google Scholar] [CrossRef]
- Menezes, J.C.J.M.D.S.; Campos, V.R. Natural bioflavonoids as potential therapeutic agents against microbial diseases. Sci. Total Environ. 2021, 769, 145168–145188. [Google Scholar] [CrossRef]
- Weniger, C.; Vonthron-Sénéscheau, C.; Brun, R.; Anton, R. Comparativee antiplasmodial, leishmanicidal and antitrypanosomal activities of several bioflavonoids. Phytomedicine 2006, 13, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Kunert, O.; Swarmy, R.C.; Kaiser, M.; Presser, A.; Buzzi, S.; Rao, A.A.; Schühly, W. Antiplasmodial and leishmanicidal activity of bioflavonoids from Indian Selaginella bryopteris. Phytochem. Lett. 2008, 1, 171–174. [Google Scholar] [CrossRef]
- Muhamad, A.; Anis, I.; Ali, Z.; Awadekarim, S.; Khan, A.; Khalid, A.; Shah, M.R.; Balal, H.; Khan, I.A.; Choudhary, M.I. Methylenebissantin: A rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Bioorg. Med. Chem. Lett. 2012, 22, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Konziase, B. Protective activity of bifalvanones form Garcinai kola against Plasmodium infection. J. Ethnopharmacol. 2015, 172, 214–218. [Google Scholar] [CrossRef]
- Yang, H.L.; Balich, A.; Xu, J.W.; Sun, X.D.; Lin, Z.R.; Zhou, Y.M.; Zhoa, X.T.; Lv, Q.; Xu, S.Y.; Chen, Q.Y. Malaria: Elimination tale from Yunnan Province of China and new challenges for reintroduction. Infect. Dis. Poverty 2021, 10, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Parra, L.L.; Bertonha, A.F.; Severo, I.R.M.; Aguiar, A.C.C.; DeSouza, G.E.; Oliva, G.; Guido, R.V.; Grazzia, N.; Costa, T.R.; Miguel, D.C.; et al. Isolation, derivative synthesis and structure-activity relationships of aniparasitic bromopyrolle alkaloids from the marine sponge Tedania brasiliensis. J. Nat. Prod. 2018, 81, 188–202. [Google Scholar] [CrossRef]
- Ju, E.; Latif, A.; Kong, C.-S.; Seo, Y.; Lee, Y.-J.; Dalal, S.R.; Cassera, M.B.; Kingston, D.G. Antiamalrial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Z. fur Naturforschung C 2018, 73, 397–400. [Google Scholar] [CrossRef]
- Shao, C.L.; Mou, X.F.; Coa, F.; Spadafora, C.; Clukhov, E.; Gerwick, L.; Wang, C.Y.; Gerwick, W.H. Bastimolide B, an antimalaria 24-membered marine macrolide possessing a tert-butyl group. J. Nat. Prod. 2018, 81, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Murtihapsari, M.; Salam, S.; Kurnia, D.; Darwati, D.; Kadarusman, K.; Abdullah, F.F.; Hrlina, T.; Husna, M.H.; Awang, K.; Shiono, Y.; et al. A new antiplasmodial sterol from Indonesian marine sponge, Xestospongia sp. Nat. Prod. Res. 2021, 35, 937–944. [Google Scholar] [CrossRef] [PubMed]
- e Silva, L.F.; Montoia, A.; Amorim, R.C.N.; Melo, M.R.; Henrique, M.C.; Nunomura, S.M.; Costa, M.R.F.; Neto, V.A.; Costa, D.S.; Dantas, G.; et al. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine 2012, 20, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.L.; Trachtmann, N.; Becker, J.; Lohananth, A.F.; Blotenberg, J.; Bolten, C.J.; Korneli, C.; de Souza Lima, A.O.; Porto, L.M.; Sprenger, G.A.; et al. Systems metabolic engineering of Engineering of Escherichia coli for production of antitumor cells violacein and deoxylviolacein. Metab. Eng. 2013, 20, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Fernadez, L.S.; Buchanan, M.S.; Carroll, A.R.; Feng, Y.J.; Quinn, R.J.; Avery, V.M. Flinderoles a-c: Antimalaria bis-indole alkaloids from flindersia species. Org. Lett. 2009, 11, 329–332. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Lai, H.-E.; Freemont, P.S.; Baum, J. A biosynthetic platform for antimalarial drug discovery. Antimicrob. Agents Chemother. 2020, 64, e02129-19. [Google Scholar] [CrossRef] [Green Version]
- Taglialatela-Scafati, O. New Hopes for Drugs against COVID-19 Come from the Sea. Drugs 2021, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021, 371, 926–931. [Google Scholar] [CrossRef]
- Tan, L.T.; Phyo, M.Y. Marine cyanobacteria: A source of lead compounds and their clinically-relevant molecular targets. Molecules 2020, 25, 2197. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Taori, K.; Kim, H.; Hong, J.; Luesch, H. Total synthesis and molecular target of Largazole, a histone deacetylase inhibitor. J. Am. Chem. Soc. 2008, 130, 8455–8459. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.R.; Kale, A.J.; Fenley, A.T.; Byrum, T.; Debonsi, H.M.; Gilson, M.K.; Valeriote, F.A.; Moore, B.S.; Gerwick, W.H. The carmaphycins, new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium. ChemBioChem 2012, 13, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Linington, R.G.; Clark, B.R.; Trimble, E.E.; Almanza, A.; Urena, L.D.; Kyle, D.E.; Gerwick, W.H. Antimalarial peptides from marine cyanobacteria: Isolation and structural elucidation of Gallinamide A. J. Nat. Prod. 2009, 72, 14–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, J.C.; Eksioglu, E.A.; Liu, C.; Paul, V.J.; Luesch, H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J. Med. Chem. 2009, 52, 5732–5747. [Google Scholar] [CrossRef] [Green Version]
- Al-Awadhi, F.H.; Ratnayake, R.; Paul, V.J.; Luesch, H. Tasiamide F, a potent inhibitor of cathepsins D and E from a marine cyanobacterium. Bioorg. Med. Chem. 2016, 24, 3276–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, W.; Li, L.; Salvador, L.A.; Chen, T.; Chen, W.; Felsenstein, K.M.; Ladd, T.B.; Price, A.R.; Golde, T.E.; et al. Cyanobacterial peptides as a prototype for the design of potent β-secretase inhibitors and the development of selective chemical probes for other aspartic proteases. J. Med. Chem. 2012, 55, 10749–10765. [Google Scholar] [CrossRef] [PubMed]
- Paatero, A.O.; Kellosalo, J.; Dunyak, B.M.; Almaliti, J.; Gestwicki, J.E.; Gerwick, W.H.; Taunton, J.; Paavilainen, V.O. Apratoxin Kills Cells by Direct Blockade of the Sec61 Protein Translocation Channel. Cell Chem. Biol. 2016, 23, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Mascuch, S.J.; Villa, F.A.; Byrum, T.; Teasdale, M.E.; Smith, J.E.; Preskitt, L.B.; Rowley, D.C.; Gerwick, L.; Gerwick, W.H. Honaucins A–C, Potent Inhibitors of Eukaryotic Inflammation and Bacterial Quorum Sensing: Synthetic Derivatives and Structure-Activity Relationships. Chem. Biol. 2012, 19, 589–598. [Google Scholar] [CrossRef]
- Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Jin, C.; Dong, X.; Dixon, M.S.; Williams, K.P.; Zheng, W. Literature-Wide Association Studies (LWAS) for a Rare Disease: Drug Repurposing for Inflammatory Breast Cancer. Molecules 2020, 25, 3933. [Google Scholar] [CrossRef] [PubMed]
- Morton, K.; Wang, P.; Bizon, C.; Cox, S.; Balhoff, J.; Kebede, Y.; Fecho, K.; Tropsha, A. ROBOKOP: An abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 2019, 35, 5382–5384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perutz, M.F.; Rossmann, M.G.; Cullis, A.F.; Muirhead, H.; Will, G.; North, A.C. Structure of haemoglobin: A three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 1960, 185, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958, 181, 662–666. [Google Scholar] [CrossRef] [PubMed]
- PDB Statistics: Growth of Structures from X-ray Crystallography Experiments Released per Year. Available online: https://www.rcsb.org/stats/growth/growth-xray (accessed on 19 November 2022).
- Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269–288. [Google Scholar] [CrossRef]
- Temml, V.; Schuster, D. Molecular docking for natural product investigations: Pitfalls and ways to overcome them. In Molecular Docking for Computer-Aided Drug Design; Coumar, M.S., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 391–405. [Google Scholar]
- Nakagawa-Goto, K.; Taniguchi, Y.; Watanabe, Y.; Oda, A.; Ohkoshi, E.; Hamel, E.; Lee, K.H.; Goto, M. Triethylated chromones with substituted naphthalenes as tubulin inhibitors. Bioorg. Med. Chem. 2016, 24, 6048–6057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Zhang, M.J.; An, R.F.; Zhou, J.; Liu, W.; Morris-Natschke, S.L.; Cheng, Y.Y.; Lee, K.H.; Huang, X.F. Diosgenin Derivatives as Potential Antitumor Agents: Synthesis, Cytotoxicity, and Mechanism of Action. J. Nat. Prod. 2021, 84, 616–629. [Google Scholar] [CrossRef]
- Iwasa, J.; Fujita, T.; Hansch, C. Substituent Constants for Aliphatic Functions Obtained from Partition Coefficients. J. Med. Chem. 1965, 8, 150–153. [Google Scholar] [CrossRef]
- Scikit-learn: Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 5 November 2022).
- Ferreira, L.T.; Borba, J.V.B.; Moreira-Filho, J.T.; Rimoldi, A.; Andrade, C.H.; Costa, F.T.M. QSAR-Based Virtual Screening of Natural Products Database for Identification of Potent Antimalarial Hits. Biomolecules 2021, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.D.; Tatonetti, N.P. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front. Genet. 2019, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wei, L.; Bastow, K.; Zheng, W.; Brossi, A.; Lee, K.H.; Tropsha, A. Antitumor agents 252. Application of validated QSAR models to database mining: Discovery of novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided. Mol. Des. 2007, 21, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Xiao, Y.D.; Feng, J.; Golbraikh, A.; Tropsha, A.; Lee, K.H. Antitumor agents. 213. Modeling of epipodophyllotoxin derivatives using variable selection k nearest neighbor QSAR method. J. Med. Chem. 2002, 45, 2294–2309. [Google Scholar] [CrossRef]
- Cho, S.J.; Tropsha, A.; Suffness, M.; Cheng, Y.C.; Lee, K.H. Antitumor agents. 163. Three-dimensional quantitative structure-activity relationship study of 4’-O-demethylepipodophyllotoxin analogs using the modified CoMFA/q2-GRS approach. J. Med. Chem. 1996, 39, 1383–1395. [Google Scholar] [CrossRef]
- Shergis, J.L.; Wu, L.; May, B.H.; Zhang, A.L.; Guo, X.; Lu, C.; Xue, C.C. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics. Chron. Respir. Dis. 2015, 12, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017, 8, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, C.; Jin, C.; Dong, X.; Abrar, S.; Zheng, W.; Chirkova, R.Y.; Tropsha, A. Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses. J. Biomed. Inform. 2021, 119, 103838. [Google Scholar] [CrossRef]
- Gütebier, L.; Bleimehl, T.; Henkel, R.; Munro, J.; Müller, S.; Morgner, A.; Laenge, J.; Pachauer, A.; Erdl, A.; Weimar, J.; et al. CovidGraph: A graph to fight COVID-19. Bioinformatics 2022, 38, 4843–4845. [Google Scholar] [CrossRef] [PubMed]
- Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. 2019, 53, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Bordoloi, D.; Sailo, B.L.; Roy, N.K.; Thakur, K.K.; Banik, K.; Shakibaei, M.; Gupta, S.C.; Aggarwal, B.B. Cancer drug development: The missing links. Exp. Biol. Med. 2019, 244, 663–689. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chang, F.-R.; Wang, H.; Kashiwada, Y.; Mcphail, A.T.; Bastow, K.F.; Tachibana, Y.; Cosentino, M.; Lee, K.-H. Anti-HIV Agents 45 and Antitumor Agents 205. Two New Sesquiterpenes and the Cytotoxic and Anti-HIV Principles from Leitneria floridana. J. Nat. Prod. 2000, 63, 1712–1715. [Google Scholar] [CrossRef]
- Oyama, M.; Xu, Z.; Lee, K.-H.; Spitzer, T.D.; Kitrinos, P.; McDonald, O.B.; Jones, R.R.J.; Garvey, E.P. Fungal Metabolites as potent protein kinase inhibitors: Identification of a novel metabolite and novel activities of known metabolites. Lett. Drug Des. Discov. 2004, 1, 24–29. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Yang, Y.; Adelstein, S.J.; Kassis, A.I. Target discovery from data mining approaches. Drug Discov. 2009, 14, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, Y.; Zhou, H.; Chen, Y.; Wang, J.; Zhang, X.; Yu, R.; Liang, X. Integration of micro-fractionation, high-performance liquid chromatography-ultraviolet detectorcharged aerosol detector-mass spectrometry analysis and cellular dynamic mass redistribution assay to accelerate alkaloid drug discovery. J. Chromatogr. A 2020, 1616, 460779. [Google Scholar] [CrossRef] [PubMed]
- Muchiri, R.N.; van Breemen, R.B. Affinity selection–mass spectrometry for the discovery of pharmacologically active compounds from combinatorial libraries and natural products. J. Mass. Spectrom. 2021, 56, e4647. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.M.; Hassan, M.H.A.; Alhadrami, H.A.; Hassan, H.M.; Goodfellow, M.; Rateb, M.E. Extreme environments: Microbiology leading to specialized metabolites. J. Appl. Microbiol. 2020, 128, 630–657. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Zhang, Y. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov. 2022, 27, 1936–1944. [Google Scholar] [CrossRef]
- Nguyen-Vo, T.-H.; Nguyen, L.; Do, N.; Nguyen, T.-N.; Trinh, K.; Cao, H.; Le, L. Plant metabolite databases: From herbal medicines to modern drug discovery. J. Chem. Inf. Model. 2020, 60, 1101–1110. [Google Scholar] [CrossRef]
- Sukmarini, L. Recent advances in discovery of lead structures from microbial natural products: Genomics- and metabolomics-guided acceleration. Molecules 2021, 26, 2542. [Google Scholar] [CrossRef] [PubMed]
Compound | Structure Type | Ref # | New Bioactivity | Discovery Year | Source |
---|---|---|---|---|---|
8-Hydroxytubulosine | Alkaloid | [33] | Antitumor | 2018 | Alangium longiflorum |
3α-Acetonyl-tabersonine | Alkaloid | [34] | Anti-drug-resistant (DR) tumor | 2019 | Bousigonia mekongensis |
14,15-α-Epoxy-11-methoxytabersonine | Alkaloid | [34] | Anti-DR tumor | 2019 | Bousigonia mekongensis |
Lochnerinine | Alkaloid | [34] | Anti-DR tumor | 2019 | Bousigonia mekongensis |
19-I-Acetoxy-11-hydroxytabersonine | Alkaloid | [34] | Anti-DR tumor | 2019 | Bousigonia mekongensis |
(−)-Neocaryachine | Alkaloid | [35] | Anti-DR tumor | 2017 | Cryptocarya laevigata |
Lipojesaconitine | Diterpene/ alkaloid | [36] | Anti-tumor | 2020 | Aconitum japonicum |
Taburnaemine A | Alkaloid | [37] | Anti-DR tumor | 2018 | Tabernaemontana corymbosa |
Isochaihulactone | Lignan | [38] | Anti-DR tumor | 2017 | Bupleurum scorzonerifolium |
Ochrocephalamines B-D | Alkaloid | [39] | Anti-HBV | 2019 | Oxytropis ochrocephala |
Daphneodorins A & B | Diterpene | [40] | Anti-HIV | 2020 | Daphne odora |
Kleinhospitine E | Triterpene | [41] | Antitumor/HIV | 2018 | Kleinhovia hospital |
Beesioside | Triterpene | [42] | Anti-HIV | 2019 | Souliea vaginata |
Myricetin | Flavonoid | [43] | Anti-SARS-CoV-2 | 2021 | Foods |
Chebulagic acid | Polyphenol | [44] | Anti-SARS-CoV-2 | 2021 | Terminalia chebula |
Punicalagin | Polyphenol | [44] | Anti-SARS-CoV-2 | 2021 | Pomegranates |
Ubonodin | Lasso peptide | [45] | Anti-Gram-negative bacteria | 2020 | Burkholderia Ubonensis |
Bifucatriol | Diterpene | [46] | Antimalarial | 2017 | Bifurcaria bifurcate |
Kakeromamide | Cyclic peptide | [47] | Antimalarial | 2020 | Moorea producens |
Halymeniaol | Sterol derivative | [48] | Antimalarial | 2017 | Halymenia floresii |
5,7,3′,4′-Tetrahydroxy-2′-(3,3-dimethylallyl)isoflavone | Isoflavone | [49] | Anti-SARS-CoV-2 | 2020 | Psorothamnus arborescens |
Gallinamide A | Depsipeptide | [50] | Anti-SARS-CoV-2 | 2020 | Cyanobacteria Schizothrix and Symploca |
Santacruzamate A | Amide | [51] | Histone deacetylase inhibitor | 2013 | Cyanobacteria Symploca |
Honaucin A | Lactone | [52] | Anti-inflammatory | 2012 | Leptolyngbya crossbyana |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Eichler, B.; Klausner, E.A.; Duffy-Matzner, J.; Zheng, W. Lead/Drug Discovery from Natural Resources. Molecules 2022, 27, 8280. https://doi.org/10.3390/molecules27238280
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules. 2022; 27(23):8280. https://doi.org/10.3390/molecules27238280
Chicago/Turabian StyleXu, Zhihong, Barrett Eichler, Eytan A. Klausner, Jetty Duffy-Matzner, and Weifan Zheng. 2022. "Lead/Drug Discovery from Natural Resources" Molecules 27, no. 23: 8280. https://doi.org/10.3390/molecules27238280