The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium
Abstract
:1. Introduction
2. Methods
2.1. QCE Theory
2.2. Modified Partition Functions
2.3. Systems Investigated
2.4. Quantum-Chemical Calculations
3. Results and Discussion
3.1. Variation in the QCE Parameters
3.2. Ionic Product Dependence on mRRHO
3.3. Clausius–Clapeyron Analysis
3.4. Entropy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cukierman, S. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 876–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotthuss, C.J.T.d. Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 871–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauliukaite, R.; Juodkazytė, J.; Ramanauskas, R. Theodor von Grotthuss’ Contribution to Electrochemistry. Electrochim. Acta 2017, 236, 28–32. [Google Scholar] [CrossRef]
- Clausius, R. Ueber die Elektricitätsleitung in Elektrolyten. Ann. Phys. 1857, 177, 338–360. [Google Scholar] [CrossRef] [Green Version]
- Danneel, H. Notiz über Ionengeschwindigkeiten. Ber. Bunsen-Ges. Phys. Chem. 1905, 11, 249–252. [Google Scholar] [CrossRef]
- Ädelroth, P. Special issue on proton transfer in biological systems. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 867–870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, M.; Tang, K.; Verpoort, F.; Sun, T. Polymer-Based Stimuli-Responsive Recyclable Catalytic Systems for Organic Synthesis. Small 2014, 10, 32–46. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules 2019, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Qu, S.; Suo, Z.; Yang, W. Functional hydrogel coatings. Natl. Sci. Rev. 2020, 8, nwaa254. [Google Scholar] [CrossRef]
- Dai, S.; Ravi, P.; Tam, K.C. pH-Responsive polymers: Synthesis, properties and applications. Soft Matter 2008, 4, 435–449. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2016, 8, 144–176. [Google Scholar] [CrossRef]
- Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 1995, 103, 150–161. [Google Scholar] [CrossRef]
- Marx, D.; Tuckerman, M.E.; Hutter, J.; Parrinello, M. The nature of the hydrated excess proton in water. Nature 1999, 397, 601–604. [Google Scholar] [CrossRef]
- Geissler, P.L.; Voorhis, T.V.; Dellago, C. Potential energy landscape for proton transfer in (H2O)3H+: Comparison of density functional theory and wavefunction-based methods. Chem. Phys. Lett. 2000, 324, 149–155. [Google Scholar] [CrossRef]
- Geissler, P.L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in Liquid Water. Science 2001, 291, 2121–2124. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, B. Eigen or Zundel Ion: News from Calculated and Experimental Photoelectron Spectroscopy. ChemPhysChem 2007, 8, 41–43. [Google Scholar] [CrossRef]
- Hassanali, A.; Prakash, M.K.; Eshet, H.; Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl. Acad. Sci. USA 2011, 108, 20410–20415. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.; Dellago, C.; Geissler, P. Wired-up water. Nat. Chem. 2012, 4, 245–247. [Google Scholar] [CrossRef]
- Sakti, A.W.; Nishimura, Y.; Chou, C.P.; Nakai, H. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases. J. Phys. Chem. A 2018, 122, 33–40. [Google Scholar] [CrossRef]
- Perlt, E.; von Domaros, M.; Kirchner, B.; Ludwig, R.; Weinhold, F. Predicting the ionic product of water. Sci. Rep. 2017, 7, 10244. [Google Scholar] [CrossRef] [Green Version]
- Sprik, M. Computation of the pK of liquid water using coordination constraints. Chem. Phys. 2000, 258, 139–150. [Google Scholar] [CrossRef]
- Himmel, D.; Goll, S.K.; Leito, I.; Krossing, I. Bulk Gas-Phase Acidity. Chem. Eur. J. 2012, 18, 9333–9340. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Hirata, F. Theoretical Study for Autoionization of Liquid Water: Temperature Dependence of the Ionic Product (pK w). J. Phys. Chem. A 1998, 102, 2603–2608. [Google Scholar] [CrossRef]
- Sato, H.; Hirata, F. Ab Initio Study on Molecular and Thermodynamic Properties of Water: A Theoretical Prediction of pK w over a Wide Range of Temperature and Density. J. Phys. Chem. B 1999, 103, 6596–6604. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Diedenhofen, M.; Beck, M.E. First Principles Calculations of Aqueous pK a Values for Organic and Inorganic Acids Using COSMO–RS Reveal an Inconsistency in the Slope of the pK a Scale. J. Phys. Chem. A 2003, 107, 9380–9386. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Ishizuka, R.; Sato, H.; Hirata, F. Ab Initio Theoretical Study of Temperature and Density Dependence of Molecular and Thermodynamic Properties of Water in the Entire Fluid Region: Autoionization Processes. J. Phys. Chem. B 2006, 110, 8451–8458. [Google Scholar] [CrossRef]
- Pereira, R.W.; Ramabhadran, R.O. pK-Yay: A Black-Box Method Using Density Functional Theory and Implicit Solvation Models to Compute Aqueous pK a Values of Weak and Strong Acids. J. Phys. Chem. A 2020, 124, 9061–9074. [Google Scholar] [CrossRef]
- Pongratz, T.; Kibies, P.; Eberlein, L.; Tielker, N.; Hölzl, C.; Imoto, S.; Erlach, M.B.; Kurrmann, S.; Schummel, P.H.; Hofmann, M.; et al. Pressure-dependent electronic structure calculations using integral equation-based solvation models. Biophys. Chem. 2020, 257, 106258. [Google Scholar] [CrossRef]
- Weinhold, F. Quantum cluster equilibrium theory of liquids: General theory and computer implementation. J. Chem. Phys. 1998, 109, 367–372. [Google Scholar] [CrossRef]
- Weinhold, F. Quantum cluster equilibrium theory of liquids: Illustrative application to water. J. Chem. Phys. 1998, 109, 373–384. [Google Scholar] [CrossRef]
- Blasius, J.; Ingenmey, J.; Perlt, E.; von Domaros, M.; Hollóczki, O.; Kirchner, B. Predicting mole-fraction-dependent dissociation for weak acids. Angew. Chem. Int. Ed. 2019, 58, 3212–3216. [Google Scholar] [CrossRef] [PubMed]
- Blasius, J.; Ingenmey, J.; Perlt, E.; von Domaros, M.; Hollóczki, O.; Kirchner, B. Dissoziation schwacher Säuren über den gesamten Molenbruchbereich. Angew. Chem. 2019, 131, 3245–3249. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, B. Cooperative versus dispersion effects: What is more important in an associated liquid such as water? J. Chem. Phys. 2005, 123, 204116. [Google Scholar] [CrossRef]
- Kirchner, B.; Spickermann, C.; Lehmann, S.B.; Perlt, E.; Langner, J.; von Domaros, M.; Reuther, P.; Uhlig, F.; Kohagen, M.; Brüssel, M. What can clusters tell us about the bulk?: Peacemaker: Extended quantum cluster equilibrium calculations. Comput. Phys. Commun. 2011, 182, 1428–1446. [Google Scholar] [CrossRef]
- Brüssel, M.; Perlt, E.; Lehmann, S.B.C.; von Domaros, M.; Kirchner, B. Binary systems from quantum cluster equilibrium theory. J. Chem. Phys. 2011, 135, 194113. [Google Scholar] [CrossRef]
- von Domaros, M.; Perlt, E.; Ingenmey, J.; Marchelli, G.; Kirchner, B. Peacemaker2: Making clusters talk about binary mixtures and neat liquids. SoftwareX 2018, 7, 356–359. [Google Scholar] [CrossRef]
- Zaby, P.; Ingenmey, J.; Kirchner, B.; Grimme, S.; Ehlert, S. Calculation of improved enthalpy and entropy of vaporization by a modified partition function in quantum cluster equilibrium theory. J. Chem. Phys. 2021, 155, 104101. [Google Scholar] [CrossRef]
- McQuarrie, D.; Simon, J.; Cox, H.; Simon, D.; Choi, J. Physical Chemistry: A Molecular Approach; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Marchelli, G.; Ingenmey, J.; Hollóczki, O.; Chaumont, A.; Kirchner, B. Hydrogen Bonding and Vaporization Thermodynamics in Hexafluoroisopropanol-Acetone and-Methanol Mixtures. A Joined Cluster Analysis and Molecular Dynamic Study. ChemPhysChem 2021, 23, 50–62. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef]
- Perlt, E.; Friedrich, J.; von Domaros, M.; Kirchner, B. Importance of Structural Motifs in Liquid Hydrogen Fluoride. ChemPhysChem 2011, 12, 3474–3482. [Google Scholar] [CrossRef]
- Spickermann, C.; Perlt, E.; von Domaros, M.; Roatsch, M.; Friedrich, J.; Kirchner, B. Coupled Cluster in Condensed Phase. Part II: Liquid Hydrogen Fluoride from Quantum Cluster Equilibrium Theory. J. Chem. Theory Comput. 2011, 7, 868–875. [Google Scholar] [CrossRef]
- Marchelli, G.; Ingenmey, J.; Kirchner, B. Activity coefficients of binary methanol alcohol mixtures from cluster weighting. ChemistryOpen 2020, 9, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Ingenmey, J.; Blasius, J.; Marchelli, G.; Riegel, A.; Kirchner, B. A Cluster Approach for Activity Coefficients: General Theory and Implementation. J. Chem. Eng. Data 2019, 64, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.L.; Franck, E.U. Ion product of water substance, 0-1000 C, 1-10,000 bars. New International Formulation and its background. J. Phys. Chem. Ref. Data 1981, 10, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef] [Green Version]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Chase, M.W.J. NIST-JANAF Themochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data Monogr. 1998, 9, 1–1951. [Google Scholar]
- Giauque, W.F.; Archibald, R.C. The Entropy of Water from the Third Law of Thermodynamics. The Dissociation Pressure and Calorimetric Heat of the Reaction Mg(OH)2 = MgO + H2O. The Heat Capacities of Mg(OH)2 and MgO from 20 to 300°K. J. Am. Chem. Soc. 1937, 59, 561–569. [Google Scholar] [CrossRef]
- McBride, B.; Gordon, S. Thermodynamic functions of several triatomic molecules in the ideal gas state. J. Chem. Phys. 1961, 35, 2198–2206. [Google Scholar] [CrossRef]
- Kirchner, B. Theory of complicated liquids: Investigation of liquids, solvents and solvent effects with modern theoretical methods. Phys. Rep. 2007, 440, 1–111. [Google Scholar] [CrossRef]
- Ingenmey, J.; von Domaros, M.; Perlt, E.; Verevkin, S.P.; Kirchner, B. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory. J. Chem. Phys. 2018, 148, 193822. [Google Scholar] [CrossRef] [PubMed]
Method | Standard QCE | mRRHO50 | mRRHO100 | |||
---|---|---|---|---|---|---|
B3LYP/D3/gCP | 0.201 | 1.50 | 0.213 | 1.50 | 0.216 | 1.50 |
PBE0/D3/gCP | 0.192 | 1.52 | 0.205 | 1.50 | 0.207 | 1.50 |
PBEh-3c | 0.173 | 1.50 | 0.185 | 1.52 | 0.187 | 1.52 |
Cluster | # Modes | # Modes |
---|---|---|
W5p | 1 | 2 |
W5c | 2 | 2 |
W6c | 2 | 4 |
W7 | 3 | 4 |
W8p | 4 | 5 |
W8b | 4 | 4 |
W8c | − | 5 |
W9 | 6 | 5 |
W10 | − | 7 |
W5ip | − | 1 |
W8ip | 3 | 5 |
W8cip | − | 3 |
W10ip1 | 2 | 6 |
W10ip2 | − | 6 |
B3LYP/D3/gCP | PBE0/D3/gCP | PBEh-3c | Exp | |||||||
---|---|---|---|---|---|---|---|---|---|---|
mRRHO | − | 50 | 100 | − | 50 | 100 | − | 50 | 100 | |
43.74 | 45.89 | 45.93 | 43.57 | 45.61 | 46.26 | 46.31 | 48.20 | 49.03 | 41.58 | |
(298 K) | 128.69 | 131.21 | 130.68 | 123.45 | 129.70 | 129.92 | 131.47 | 132.82 | 133.90 | 118.76 |
(trs) | 115.78 | 121.46 | 121.73 | 115.64 | 121.21 | 122.37 | 122.97 | 128.62 | 130.51 | 109.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchner, B.; Ingenmey, J.; von Domaros, M.; Perlt, E. The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium. Molecules 2022, 27, 1286. https://doi.org/10.3390/molecules27041286
Kirchner B, Ingenmey J, von Domaros M, Perlt E. The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium. Molecules. 2022; 27(4):1286. https://doi.org/10.3390/molecules27041286
Chicago/Turabian StyleKirchner, Barbara, Johannes Ingenmey, Michael von Domaros, and Eva Perlt. 2022. "The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium" Molecules 27, no. 4: 1286. https://doi.org/10.3390/molecules27041286
APA StyleKirchner, B., Ingenmey, J., von Domaros, M., & Perlt, E. (2022). The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium. Molecules, 27(4), 1286. https://doi.org/10.3390/molecules27041286