Carbonic Anhydrase Activators for Neurodegeneration: An Overview
Abstract
:1. Introduction
1.1. Carbonic Anhydrases Activation
1.2. Potential Therapeutic Applications of CAAs
2. Carbonic Anhydrase Activators (CAAs)
2.1. Amino Acids and Amines
2.2. Histamine-Based Compounds
2.2.1. Replacement of the Imidazole Ring
2.2.2. Derivatization of the Primary Amino Group
2.2.3. Insertion of Halogens
2.2.4. Insertion of Another Imidazole Ring
2.2.5. Histamine-Inspired Compounds
2.3. Histidine- and Carnosine-Based Derivatives
2.4. Gold Nanoparticles of Histamine, Histidine- and Carnosine Derivatives
2.5. Sulfur, Selenium and Tellurium Containing Amines
2.6. Drug Repurposing
2.7. Miscellaneous
2.7.1. Ureas and di-Ureas Incorporating 1,2,4-triazole Derivatives
2.7.2. Amino Alcohol Oxime Ethers
2.7.3. Imidazoline and Other Related Five-Membered N-heterocycle Derivatives
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
78 Clonidine | | hCA I: KA = 76.3 μM hCA VA: KA = 42.6 μM hCA VII: KA = 8.4 μM hCA XIII: KA = 7.8 μM | [70] |
79 | R1 = H, CH3; R2 = alkyl, alkylaryl X = NH, NCH3, S | hCA I: KA = 4.18- >100 μM hCA VA: KA = 0.9–52.7 μM hCA VII: KA = 0.9–46.7 μM hCA XIII: KA = 6.5- >100 μM | [70] |
79a | | hCA I: KA = 30.2 μM hCA VA: KA = 0.9 μM hCA VII: KA = 6.5 μM hCA XIII: KA = 17.4 μM | [70] |
79b | | hCA I: KA = 16.9 μM hCA VA: KA = 3.7 μM hCA VII: KA = 0.9 μM hCA XIII: KA = 19.1 μM | [70] |
80 | | hCA I: KA = 2.16 μM hCA VA: KA = 29.8 μM hCA VII: KA = 44.6 μM hCA XIII: KA > 100 μM | [71] |
81 | | hCA I: KA = 2.19 μM hCA VA: KA = 78.5 μM hCA VII: KA > 100 μM hCA XIII: KA > 100 μM | [71] |
82 | | hCA I: KA = 0.9 μM hCA VA: KA = 11.2 μM hCA VII: KA = 13.2 μM hCA XIII: KA > 100 μM | [71] |
2.7.4. Indazole, Pyrazole and Oxazole Derivatives Carrying Amino Acidic Tails
2.7.5. Indole-Based Derivatives
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Supuran, C.T. Structure and Function of Carbonic Anhydrases. Biochem. J. 2016, 473, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Scozzafava, A. Carbonic-Anhydrase Inhibitors and Their Therapeutic Potential. Expert. Opin. Ther. Pat. 2000, 10, 575–600. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic Anhydrase Activators. Future Med. Chem. 2018, 10, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.; Berrino, E.; Carradori, S.; Supuran, C.T.; Cirri, M.; Carta, F.; Costantino, G. Amine-and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules 2021, 26, 7331. [Google Scholar] [CrossRef]
- D’Ambrosio, K.; Di Fiore, A.; Buonanno, M.; Monti, S.M.; De Simone, G. η- and θ-Carbonic Anhydrases. In Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Academic Press: Cambridge, MA, USA, 2019; pp. 139–148. [Google Scholar]
- Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms? Chem. Rev. 2012, 112, 4421–4468. [Google Scholar] [CrossRef] [Green Version]
- Bertucci, A.; Zoccola, D.; Tambutté, S.; Vullo, D.; Supuran, C.T. Carbonic Anhydrase Activators. The First Activation Study of a Coral Secretory Isoform with Amino Acids and Amines. Bioorg. Med. Chem. 2010, 18, 2300–2303. [Google Scholar] [CrossRef]
- Temperini, C.; Scozzafava, A.; Vullo, D.; Supuran, C.T. Carbonic Anhydrase Activators. Activation of Isozymes I, II, IV, VA, VII, and XIV with L- and D-Histidine and Crystallographic Analysis of Their Adducts with Isoform II: Engineering Proton-Transfer Processes within the Active Site of an Enzyme. Chem. A Eur. J. 2006, 12, 7057–7066. [Google Scholar] [CrossRef]
- Ciccone, L.; Cerri, C.; Nencetti, S.; Orlandini, E. Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021, 26, 6380. [Google Scholar] [CrossRef]
- Nishimori, I.; Onishi, S.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Activators: The First Activation Study of the Human Secretory Isoform VI with Amino Acids and Amines. Bioorg. Med. Chem. 2007, 15, 5351–5357. [Google Scholar] [CrossRef]
- Licsandru, E.; Tanc, M.; Kocsis, I.; Barboiu, M.; Supuran, C.T. A Class of Carbonic Anhydrase I–Selective Activators. J. Enzym. Inhib. Med. Chem. 2017, 32, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma Carbonic Anhydrase Inhibitors: A Patent Review. Expert. Opin. Ther. Pat. 2013, 23, 705–716. [Google Scholar] [CrossRef]
- Supuran, C.T. Structure-Based Drug Discovery of Carbonic Anhydrase Inhibitors. J. Enzym. Inhib. Med. Chem. 2012, 27, 759–772. [Google Scholar] [CrossRef]
- Scozzafava, A.; Supuran, C.T.; Carta, F. Antiobesity Carbonic Anhydrase Inhibitors: A Literature and Patent Review. Expert. Opin. Ther. Pat. 2013, 23, 725–735. [Google Scholar] [CrossRef]
- Miao-Kun, S.; Alkon, D.L. Pharmacological Enhancement of Synaptic Efficacy, Spatial Learning, and Memory through Carbonic Anhydrase Activation in Rats. J. Pharmacol. Exp. Ther. 2001, 297, 961–967. [Google Scholar]
- Schmidt, S.D.; Nachtigall, E.G.; Marcondes, L.A.; Zanluchi, A.; Furini, C.R.G.; Passani, M.B.; Supuran, C.T.; Blandina, P.; Izquierdo, I.; Provensi, G.; et al. Modulation of Carbonic Anhydrases Activity in the Hippocampus or Prefrontal Cortex Differentially Affects Social Recognition Memory in Rats. Neuroscience 2022, in press. [Google Scholar] [CrossRef]
- Canto de Souza, L.; Provensi, G.; Vullo, D.; Carta, F.; Scozzafava, A.; Costa, A.; Schmidt, S.D.; Passani, M.B.; Supuran, C.T.; Blandina, P. Carbonic Anhydrase Activation Enhances Object Recognition Memory in Mice through Phosphorylation of the Extracellular Signal-Regulated Kinase in the Cortex and the Hippocampus. Neuropharmacology 2017, 118, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.K.; Alkon, D.L. Carbonic Anhydrase Gating of Attention: Memory Therapy and Enhancement. Trends Pharmacol. Sci. 2002, 23, 83–89. [Google Scholar] [CrossRef]
- Meier-Ruge, W.; Iwangoff, P.; Reichlmeier, K. Neurochemical Enzyme Changes in Alzheimer’s and Pick’s Disease. Arch. Gerontol. Geriatr. 1984, 3, 161–165. [Google Scholar] [CrossRef]
- Sultana, R.; Butterfield, D.A. Identification of the Oxidative Stress Proteome in the Brain. Free Radic. Biol. Med. 2011, 50, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Lemon, N.; Canepa, E.; Ilies, M.A.; Fossati, S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front. Aging Neurosci. 2021, 13, 785. [Google Scholar] [CrossRef]
- Chesler, M. Regulation and Modulation of PH in the Brain. Physiol. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef] [PubMed]
- Ruusuvuori, E.; Kaila, K. Carbonic Anhydrases and Brain PH in the Control of Neuronal Excitability. Subcell. Biochem. 2014, 75, 271–290. [Google Scholar] [PubMed]
- Pasternack, M.; Voipio, J.; Kaila, K. Intracellular Carbonic Anhydrase Activity and Its Role in GABA-Induced Acidosis in Isolated Rat Hippocampal Pyramidal Neurones. Acta Physiol. Scand. 1993, 148, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Makani, S.; Chen, H.Y.; Esquenazi, S.; Shah, G.N.; Waheed, A.; Sly, W.S.; Chesler, M. NMDA Receptor-Dependent Afterdepolarizations Are Curtailed by Carbonic Anhydrase 14: Regulation of a Short-Term Postsynaptic Potentiation. J. Neurosci. 2012, 32, 16754–16762. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, A.; Mondal, U.K.; Supuran, C.T.; Ilies, M.A.; McKenna, R. Crystal Structure of Carbonic Anhydrase II in Complex with an Activating Ligand: Implications in Neuronal Function. Mol. Neurobiol. 2018, 55, 7431–7437. [Google Scholar] [CrossRef]
- Sun, M.K.; Zhao, W.Q.; Nelson, T.J.; Alkon, D.L. Theta Rhythm of Hippocampal CA1 Neuron Activity: Gating by GABAergic Synaptic Depolarization. J. Neurophysiol. 2001, 85, 269–279. [Google Scholar] [CrossRef]
- Blandina, P.; Provensi, G.; Passsani, M.B.; Capasso, C.; Supuran, C.T. Carbonic Anhydrase Modulation of Emotional Memory. Implications for the Treatment of Cognitive Disorders. J. Enzym. Inhib. Med. Chem. 2020, 35, 1206–1214. [Google Scholar] [CrossRef]
- Sun, Y.J.; Chen, Y.; Pang, C.; Wu, N.; Li, J. Acetazolamide Attenuates Chemical-Stimulated but Not Thermal-Stimulated Acute Pain in Mice. Acta Pharmacol. Sin. 2013, 35, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Schröder, H.C.; Schlossmacher, U.; Neufurth, M.; Feng, Q.; Diehl-Seifert, B.; Müller, W.E.G. Modulation of the Initial Mineralization Process of SaOS-2 Cells by Carbonic Anhydrase Activators and Polyphosphate. Calcif. Tissue Int. 2013, 94, 495–509. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Schröder, H.C.; Schlossmacher, U.; Grebenjuk, V.A.; Ushijima, H.; Wang, X. Induction of Carbonic Anhydrase in SaOS-2 Cells, Exposed to Bicarbonate and Consequences for Calcium Phosphate Crystal Formation. Biomaterials 2013, 34, 8671–8680. [Google Scholar] [CrossRef]
- Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C.T. Carbonic Anhydrase Activators: X-Ray Crystallographic and Spectroscopic Investigations for the Interaction of Isozymes I and II with Histamine. Biochemistry 1997, 36, 10384–10392. [Google Scholar] [CrossRef]
- Temperini, C.; Scozzafava, A.; Vullo, D.; Supuran, C.T. Carbonic Anhydrase Activators. Activation of Isoforms I, II, IV, VA, VII, and XIV with L- and D-Phenylalanine and Crystallographic Analysis of Their Adducts with Isozyme II: Stereospecific Recognition within the Active Site of an Enzyme and Its Consequenc. J. Med. Chem. 2006, 49, 3019–3027. [Google Scholar] [CrossRef]
- Temperini, C.; Scozzafava, A.; Puccetti, L.; Supuran, C.T. Carbonic Anhydrase Activators: X-ray Crystal Structure of the Adduct of Human Isozyme II with L-Histidine as a Platform for the Design of Stronger Activators. Bioorg. Med. Chem. Lett. 2005, 15, 5136–5141. [Google Scholar] [CrossRef]
- Temperini, C.; Innocenti, A.; Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Activators: Kinetic and X-Ray Crystallographic Study for the Interaction of D- and L-Tryptophan with the Mammalian Isoforms I-XIV. Bioorg. Med. Chem. 2008, 16, 8373–8378. [Google Scholar] [CrossRef]
- Temperini, C.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Carbonic Anhydrase Activators: L-Adrenaline Plugs the Active Site Entrance of Isozyme II, Activating Better Isoforms I, IV, VA, VII, and XIV. Bioorg. Med. Chem. Lett. 2007, 17, 628–635. [Google Scholar] [CrossRef]
- Khalifah, R.G. The Carbon Dioxide Hydration Activity of Carbonic Anhydrase. I. Stop-Flow Kinetic Studies on the Native Human Isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Supuran, C.T.; Barboiu, M.; Luca, C.; Pop, E.; Brewster, M.E.; Dinculescu, A. Carbonic Anhydrase Activators. Part 14. Syntheses of Mono and Bis Pyridinium Salt Derivatives of 2-Amino-5-(2-Aminoethyl)- and 2-Amino-5-(3-Aminopropyl)-1,3,4-Thiadiazole and Their Interaction with Isozyme II. Eur. J. Med. Chem. 1996, 31, 597–606. [Google Scholar] [CrossRef]
- Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Activators—Part 21. Novel Activators of Isozymes I, II and IV Incorporating Carboxamido and Ureido Histamine Moieties. Eur. J. Med. Chem. 2000, 35, 31–39. [Google Scholar] [CrossRef]
- Briganti, F.; Scozzafava, A.; Supuran, C.T. Novel Carbonic Anhydrase Isozymes I, II and IV Activators Incorporating Sulfonyl-Histamino Moieties. Bioorg. Med. Chem. Lett. 1999, 9, 2043–2048. [Google Scholar] [CrossRef]
- Supuran, C.T.; Scozzafava, A. Carbonic Anhydrase Activators: Amino Acyl/Dipeptidyl Histamine Derivatives Bind with High Affinity to Isozymes I, II and IV and Act as Efficient Activators. Bioorg. Med. Chem. 1999, 7, 2915–2923. [Google Scholar] [CrossRef]
- Dave, K.; Ilies, M.A.; Scozzafava, A.; Temperini, C.; Vullo, D.; Supuran, C.T. An Inhibitor-like Binding Mode of a Carbonic Anhydrase Activator within the Active Site of Isoform II. Bioorg. Med. Chem. Lett. 2011, 21, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- Dave, K.; Scozzafava, A.; Vullo, D.; Supuran, C.T.; Ilies, M.A. Pyridinium Derivatives of Histamine Are Potent Activators of Cytosolic Carbonic Anhydrase Isoforms I, II and VII. Org. Biomol. Chem. 2011, 9, 2790–2800. [Google Scholar] [CrossRef] [PubMed]
- Rami, M.; Winum, J.Y.; Supuran, C.T.; Melnyk, P.; Yous, S. (Hetero)Aryl Substituted Thiazol-2,4-Yl Scaffold as Human Carbonic Anhydrase I, II, VII and XIV Activators. J. Enzym. Inhib. Med. Chem. 2019, 34, 224–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saada, M.C.; Vullo, D.; Montero, J.L.; Scozzafava, A.; Winum, J.Y.; Supuran, C.T. Carbonic Anhydrase I and II Activation with Mono- and Dihalogenated Histamine Derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 4884–4887. [Google Scholar] [CrossRef]
- Saada, M.C.; Vullo, D.; Montero, J.L.; Scozzafava, A.; Supuran, C.T.; Winum, J.Y. Mono- and Di-Halogenated Histamine, Histidine and Carnosine Derivatives Are Potent Carbonic Anhydrase I, II, VII, XII and XIV Activators. Bioorg. Med. Chem. 2014, 22, 4752–4758. [Google Scholar] [CrossRef]
- Draghici, B.; Vullo, D.; Akocak, S.; Walker, E.A.; Supuran, C.T.; Ilies, M.A. Ethylene Bis-Imidazoles Are Highly Potent and Selective Activators for Isozymes VA and VII of Carbonic Anhydrase, with a Potential Nootropic Effect. Chem. Commun. 2014, 50, 5980–5983. [Google Scholar] [CrossRef] [Green Version]
- Mollica, A.; Macedonio, G.; Stefanucci, A.; Carradori, S.; Akdemir, A.; Angeli, A.; Supuran, C.T. Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators. Molecules 2017, 22, 2178. [Google Scholar] [CrossRef] [Green Version]
- Akocak, S.; Lolak, N.; Bua, S.; Nocentini, A.; Karakoc, G.; Supuran, C.T. α-Carbonic Anhydrases Are Strongly Activated by Spinaceamine Derivatives. Bioorg. Med. Chem. 2019, 27, 800–804. [Google Scholar] [CrossRef]
- Akocak, S.; Lolak, N.; Bua, S.; Nocentini, A.; Supuran, C.T. Activation of Human α-Carbonic Anhydrase Isoforms I, II, IV and VII with Bis-Histamine Schiff Bases and Bis-Spinaceamine Substituted Derivatives. J. Enzym. Inhib. Med. Chem. 2019, 34, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.; Kondeti, B.; Tu, C.; Maupin, C.M.; Silverman, D.N.; McKenna, R. Structural Insight into Activity Enhancement and Inhibition of H64A Carbonic Anhydrase II by Imidazoles. IUCrJ 2014, 1, 129–135. [Google Scholar] [CrossRef]
- Akocak, S.; Lolak, N.; Vullo, D.; Durgun, M.; Supuran, C.T. Synthesis and Biological Evaluation of Histamine Schiff Bases as Carbonic Anhydrase I, II, IV, VII, and IX Activators. J. Enzym. Inhib. Med. Chem. 2017, 32, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Activators: High Affinity Isozymes I, II, and IV Activators, Incorporating a β-Alanyl-Histidine Scaffold. J. Med. Chem. 2001, 45, 284–291. [Google Scholar] [CrossRef]
- Abdo, M.R.; Vullo, D.; Saada, M.C.; Montero, J.L.; Scozzafava, A.; Winum, J.Y.; Supuran, C.T. Carbonic Anhydrase Activators: Activation of Human Isozymes I, II and IX with Phenylsulfonylhydrazido l-Histidine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 2440–2443. [Google Scholar] [CrossRef]
- Vistoli, G.; Aldini, G.; Fumagalli, L.; Dallanoce, C.; Angeli, A.; Supuran, C.T. Activation Effects of Carnosine- and Histidine-Containing Dipeptides on Human Carbonic Anhydrases: A Comprehensive Study. Int. J. Mol. Sci. 2020, 21, 1761. [Google Scholar] [CrossRef] [Green Version]
- Cararo, J.H.; Streck, E.L.; Schuck, P.F.; Ferreira, G.d.C. Carnosine and Related Peptides: Therapeutic Potential in Age-Related Disorders. Aging Dis. 2015, 6, 369–379. [Google Scholar]
- Saada, M.C.; Montero, J.L.; Vullo, D.; Scozzafava, A.; Winum, J.Y.; Supuran, C.T. Carbonic Anhydrase Activators: Gold Nanoparticles Coated with Derivatized Histamine, Histidine, and Carnosine Show Enhanced Activatory Effects on Several Mammalian Isoforms. J. Med. Chem. 2011, 54, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Tanini, D.; Capperucci, A.; Supuran, C.T.; Angeli, A. Sulfur, Selenium and Tellurium Containing Amines Act as Effective Carbonic Anhydrase Activators. Bioorg. Chem. 2019, 87, 516–522. [Google Scholar] [CrossRef]
- Angeli, A.; Vaiano, F.; Mari, F.; Bertol, E.; Supuran, C.T. Psychoactive Substances Belonging to the Amphetamine Class Potently Activate Brain Carbonic Anhydrase Isoforms VA, VB, VII, and XII. J. Enzym. Inhib. Med. Chem. 2017, 32, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Ikeda, H.; Tsukamoto, H.; Kihira, K.; Ishioka, M.; Hirose, J.; Hata, T.; Fujioka, H.; Ono, Y. Timolol Activates the Enzyme Activities of Human Carbonic Anhydrase I and II. Biol. Pharm. Bull. 2010, 33, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Casini, A.; Caccia, S.; Scozzafava, A.; Supuran, C.T. Carbonic Anhydrase Activators. The Selective Serotonin Reuptake Inhibitors Fluoxetine, Sertraline and Citalopram Are Strong Activators of Isozymes I and II. Bioorg. Med. Chem. Lett. 2003, 13, 2765–2768. [Google Scholar] [CrossRef]
- Abdülkadir Coban, T.; Beydemir, Ş.; Gücin, I.; Ekinci, D.; Innocenti, A.; Vullo, D.; Supuran, C.T. Sildenafil Is a Strong Activator of Mammalian Carbonic Anhydrase Isoforms I–XIV. Bioorg. Med. Chem. 2009, 17, 5791–5795. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.K.; Ludwig, P.A.; Christianson, D.W. Two-Site Binding of Phenol in the Active Site of Human Carbonic Anhydrase II: Structural Implications for Substrate Association. J. Am. Chem. Soc. 2002, 116, 3659–3660. [Google Scholar] [CrossRef]
- Mincione, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma Carbonic Anhydrase Inhibitors as Ophthalomologic Drugs. In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; Wiley: Hoboken, NJ, USA, 2009; pp. 139–153. [Google Scholar]
- Forray, A.; Sofuoglu, M. Future Pharmacological Treatments for Substance Use Disorders. Br. J. Clin. Pharmacol. 2014, 77, 382–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provensi, G.; Nocentini, A.; Passani, M.B.; Blandina, P.; Supuran, C.T. Activation of Carbonic Anhydrase Isoforms Involved in Modulation of Emotional Memory and Cognitive Disorders with Histamine Agonists, Antagonists and Derivatives. J. Enzym. Inhib. Med. Chem. 2021, 36, 719–726. [Google Scholar] [CrossRef]
- Le Duc, Y.; Licsandru, E.; Vullo, D.; Barboiu, M.; Supuran, C.T. Carbonic Anhydrases Activation with 3-Amino-1H-1,2,4-Triazole-1-Carboxamides: Discovery of Subnanomolar Isoform II Activators. Bioorg. Med. Chem. 2017, 25, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Nocentini, A.; Cuffaro, D.; Ciccone, L.; Orlandini, E.; Nencetti, S.; Nuti, E.; Rossello, A.; Supuran, C.T. Activation of Carbonic Anhydrases from Human Brain by Amino Alcohol Oxime Ethers: Towards Human Carbonic Anhydrase VII Selective Activators. J. Enzym. Inhib. Med. Chem. 2021, 36, 48–57. [Google Scholar] [CrossRef]
- Ilies, M.; Supuran, C.T.; Scozzafava, A. Carbonic Anhydrase Activators. In Carbonic Anhydrase—Its Inhibitors and Activators; CRC Press: Boca Raton, FL, USA, 2004; pp. 317–352. [Google Scholar]
- Chiaramonte, N.; Maach, S.; Biliotti, C.; Angeli, A.; Bartolucci, G.; Braconi, L.; Dei, S.; Teodori, E.; Supuran, C.T.; Romanelli, M.N. Synthesis and Carbonic Anhydrase Activating Properties of a Series of 2-Amino-Imidazolines Structurally Related to Clonidine1. J. Enzym. Inhib. Med. Chem. 2020, 35, 1003–1010. [Google Scholar] [CrossRef]
- Chiaramonte, N.; Gabellini, A.; Angeli, A.; Bartolucci, G.; Braconi, L.; Dei, S.; Teodori, E.; Supuran, C.T.; Romanelli, M.N. New Histamine-Related Five-Membered N-Heterocycle Derivatives as Carbonic Anhydrase I Activators. Molecules 2022, 27, 545. [Google Scholar] [CrossRef]
- Maccallini, C.; Di Matteo, M.; Vullo, D.; Ammazzalorso, A.; Carradori, S.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Pandolfi, A.; Supuran, C.T.; et al. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases. ChemMedChem 2016, 11, 1695–1699. [Google Scholar] [CrossRef]
- Barresi, E.; Ravichandran, R.; Germelli, L.; Angeli, A.; Baglini, E.; Salerno, S.; Marini, A.M.; Costa, B.; Da Pozzo, E.; Martini, C.; et al. Carbonic Anhydrase Activation Profile of Indole-Based Derivatives. J. Enzym. Inhib. Med. Chem. 2021, 36, 1783–1797. [Google Scholar] [CrossRef]
- Taliani, S.; Da Settimo, F.; Martini, C.; Laneri, S.; Novellino, E.; Greco, G. Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets. Molecules 2020, 25, 2331. [Google Scholar] [CrossRef]
- Gomes, C.; Ferreira, R.; George, J.; Sanches, R.; Rodrigues, D.I.; Gonçalves, N.; Cunha, R.A. Activation of Microglial Cells Triggers a Release of Brain-Derived Neurotrophic Factor (BDNF) Inducing Their Proliferation in an Adenosine A2A Receptor-Dependent Manner: A2A Receptor Blockade Prevents BDNF Release and Proliferation of Microglia. J. Neuroinflamm. 2013, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Mizui, T.; Ishikawa, Y.; Kumanogoh, H.; Lume, M.; Matsumoto, T.; Hara, T.; Yamawaki, S.; Takahashi, M.; Shiosaka, S.; Itami, C.; et al. BDNF Pro-Peptide Actions Facilitate Hippocampal LTD and Are Altered by the Common BDNF Polymorphism Val66Met. Proc. Natl. Acad. Sci. USA 2015, 112, E3067–E3074. [Google Scholar] [CrossRef] [Green Version]
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
1 Phenylalanine | | hCA I (L-): KA = 70 nM hCA I (D-): KA = 86 μM hCA II (L-): KA = 13 nM hCA II (D-): KA = 35 nM hCA XIV (L-): KA = 0.24 μM hCA XIV (D-): KA = 7.21 μM | [33] |
2 Histidine | | hCA I (L-): KA = 30 nM hCA I (D-): KA = 90 nM hCA VII (L-): KA = 0.92 μΜ hCA VII (D-): KA = 0.71 μΜ hCA VA (D-): KA = 0.12 μΜ | [34] |
3 DOPA | | hCA VA (L-): KA = 36 nM hCA VB (L-): KA = 63 nM hCA XIII (D-): KA = 0.81 μM | [4] |
4 Tryptophan | | hCA XIII (L-): KA = 0.81 μM | [35] |
5 Tyrosine | | [3,4] | |
6 4-NH2-L-Phe | | [3] | |
7 Histamine | | hCA VA: KA = 10 nM hCA XIV: KA = 10 nM | [3,4] |
8 Dopamine | | hCA VA: KA = 0.13 μM hCA VII: KA = 0.89 μM | [3,4] |
9 Serotonine | | [3,4] | |
10n = 1 11 n = 2 | | [3,4] | |
12 X = NH 13 X = O | | hCA (13): KA = 0.13–0.43 μM (except for hCA VB and VII) | [3,4] |
14 Adrenaline | | hCA I: KA = 90 nM hCA XII: KA = 0.41 μM | [36] |
Compound n | Structure | CA Activation | Ref. |
---|---|---|---|
15 | | hCA II (R = CH3; n = 2): 147% activation rate at 10 μM | [38] |
16 | | hCA II (n = 2): 163% activation rate at 10 μM | [38] |
17 | R = alkyl, aryl; n = 2,3 | hCA II (R = CH3; n = 2): 184% activation rate at 10 μM | [38] |
18 | | hCA I: KA = 4.0 nM–0.27 μM hCA II: KA = 0.10–0.86 μM bCA IV: KA = 20 nM–21 μM | [39] |
19 | X = O, S | hCA I: KA = 4.0 nM–36 μM hCA II: KA = 80 nM–16 μM bCA IV: KA = 20 nM–12 μM hCA II: KA > 200 μM | [11,39] |
20 | | hCA I: KA = 6.0 nM–0.28 μM hCA II: KA = 80 nM–34 μM bCA IV: KA = 10 nM–7.0 μM | [40] |
21 | | hCA I: KA = 3.0–6.0 nM hCA II: KA = 80 nM–0.15 μM bCA IV: KA = 10–30 nM | [40] |
22 | | hCA I: KA = 6.0 nM hCA II: KA = 0.12 μM bCA IV: KA = 30 nM | [39] |
23 | | hCA I: KA = 1.0 nM–0.21 μM hCA II: KA = 10 nM–11 μM bCA IV: KA = 3.0 nM–4.6 μM | [41] |
24 | | hCA I: KA = 0.73–3.4 μM hCA II: KA > 200 μM | [11] |
24a | | hCA I: KA = 0.73 μM | [11] |
25 | | hCA II: 156% activation rate at 20 μM | [42] |
26 | | hCA I: KA = 0.5 nM–93 μM hCA II: KA = 9 nM–78 μM hCA VII: KA = 0.8 nM–1.16 μM | [43] |
27 | X, Y = CH, N | [44] | |
28 | | hCA I: KA = 63.4 μM hCA II: KA = 68.1 μM hCA VII: KA = 7.5 μM | [44] |
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
29 | X = Cl, Br, I | hCA I: KA = 0.7–21 nM hCA II: KA = 1.0–115 nM | [45] |
30 | X = Cl, Br, I | hCA I: KA = 0.7–21 nM hCA II: KA = 1.0–115 nM | [45] |
31 | X = Cl, Br, I | hCA I: KA = 5.4–29.3 μM hCA II: KA = 13.6–50.2 μM | [45] |
32 | X = Cl, Br, I | hCA I: KA = 5.4–29.3 μM hCA II: KA = 13.6–50.2 μM | [45] |
33 | R = H, Me, Et, i-Pr, Ph | hCA VA: KA = 9.0–131 nM hCA VII: KA = 15–89 nM | [47] |
34 | | [48] | |
35 | | [48] | |
36 | | [48] | |
37 L-(+)-Ergothioneine | | [48] | |
38 Melatonin | | [48] | |
39 Spinacine | | [48] | |
40 | R = Aryl, furyl | hCA VII selective: KA = 82–840 nM | [49] |
41 | | hCA VII selective: KA = 32–39 nM | [50] |
42 | | hCA I, II, IV, VII: KA = 3.28–42.1 μM hCA VII (42d selective): KA = 85 nM | [50] |
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
43 Carnosine | | [53] | |
44 | X = 4-F, 2-Me R1, R2 = amino acidic residues | hCA I, bCA IV: KA = 1.0–20 nM hCA II: KA = 10–40 nM | [53] |
45 | | hCA II: KA = 0.21 μM | [54] |
46 | X1 = Cl, Br; X2 = H, Cl, Br, I R = H, Butyloxycarbonyl (Boc) | [46] | |
47 | X1 = Cl, Br; X2 = H, Cl, Br, I R = H, Butyloxycarbonyl (Boc) | [46] | |
46a | | hCA I: KA = 0.9 nM hCA II: KA = 12 nM | [46] |
46b | | hCA I: KA = 1.2 nM hCA II: KA = 0.32 μM | [46] |
46c | | hCA I: KA = 1.5 nM hCA II: KA = 13 nM | [46] |
46d | | hCA VII: KA = 9.7 μM | [46] |
47a | | hCA I: KA = 4.3 μM hCA II: KA = 5.2 μM hCA VII: KA = 0.81 μM | [46] |
47b | | hCA VII: KA = 8.1 nM | [46] |
47c | | hCA VII: KA = 4.0 μM | [46] |
48 | X = H, CH3; R1 = H, acetyl, Gly; R = H, COOH, CONH2, CH2OH; n = 1, 2, 3 | [55] | |
48a D-Carnosinamide | | hCA I: KA = 16.6 μM | [55] |
48b Carnicine | | hCA I: KA = 16.6 μM hCA VA: KA = 6.4 μM | [55] |
48c L-Anserine | | hCA IX: KA = 1.14 μM | [55] |
Compound n | Structure | CA Activation | Ref. |
---|---|---|---|
49 | | KA = 1–7 nM (details in Table 6) | [57] |
50 | | KA = 1–8 nM (details in Table 6) | [57] |
51 | | KA = 1–9 nM (details in Table 6) | [57] |
52 | | hCA I: KA = 7.7–13.5 μM hCA VA: KA = 10.2–43.7 μM hCA VII: KA = 11.4–23.4 μM | [58] |
53 | | hCA I: KA = 5.2–22.1 μM hCA VA: KA = 6.6–20.9 μM hCA VII: KA = 10.1–23.3 μM | [58] |
54 | | hCA I: KA = 4.6–13.3 μM hCA VA: KA = 3.3–20.2 μM hCA VII: KA = 8.9–44.9 μM | [58] |
Isoform/ Compound | KA (μM) | |||||
---|---|---|---|---|---|---|
hCA I | hCA II | hCA IV | hCA VA | hCA VII | hCA XIV | |
Histamine (7) | 2.1 | 125 | 25.3 | 0.010 | 37.5 | 0.010 |
49 | 0.005 | 0.002 | 0.001 | 0.001 | 0.003 | 0.007 |
L-His (2) | 0.03 | 10.9 | 7.3 | 1.34 | 0.92 | 0.90 |
L-His-OMe | 0.02 | 10.4 | 6.8 | 1.86 | 0.88 | 0.93 |
50 | 0.002 | 0.008 | 0.001 | 0.002 | 0.003 | 0.001 |
L-carnosine (43) | 1.1 | 33 | 19 | 1.54 | 0.75 | 0.64 |
L-carnosine-OMe | 10.9 | 32 | 18 | 1.36 | 0.84 | 0.71 |
51 | 0.009 | 0.007 | 0.002 | 0.002 | 0.001 | 0.001 |
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
55 Timolol | | hCA I: KA = 12 μM hCA II: KA = 9.3 μM | [60] |
56 Fluoxetine | | hCA I: 175% activation rate at 1 μM hCA II: 165% activation rate at 1 μM | [61] |
57 Sertraline | | hCA I: 145% activation rate at 1 μM hCA II: 140% activation rate at 1 μM | [61] |
58 Citalopram | | hCA I: 134% activation rate at 1 μM hCA II: 170% activation rate at 1 μM | [61] |
59 Sildenafil | | hCA I: KA = 1.08 μM hCA VB: KA = 6.54 μM hCA VI: KA = 2.37 μM | [62] |
60 Amphetamine | | hCA IV: KA = 94 nM hCA VA: KA = 0.81 μM hCA VB: KA = 2.56 μM hCA VII: KA = 0.91 μM | [59] |
61 Methamphetamine | | hCA IV: KA = 51 nM hCA VA: KA = 0.92 μM hCA VB: KA = 0.78 μM hCA VII: KA = 0.93 μM | [59] |
62 Phentermine | | hCA IV: KA = 74 nM hCA VA: KA = 0.53 μM hCA VB: KA = 0.62 μM hCA VII: KA = 0.89 μM | [59] |
63 Mephentermine | | hCA IV: KA = 1.03 μM hCA VA: KA = 0.37 μM hCA VB: KA = 0.24 μM hCA VII: KA = 0.64 μM | [59] |
64 Chlorphenteramine | | hCA IV: KA = 55 nM hCA VA: KA = 0.31 μM hCA VB: KA = 0.75 μM hCA VII: KA = 98 nM | [59] |
Compound n/Name | Structure | CA Activation | Ref. |
---|---|---|---|
65 α-methyl histamine | | hCA I: KA = 0.12 μM hCA II: KA = 82 nM hCA VII: KA = 1.25 μM | [66] |
66 4-methyl histamine | | hCA I: KA = 0.36 μM hCA II: KA = 5.4 μM hCA VII: KA = 0.39 μM | [66] |
67 1-methyl histamine | | hCA I: KA = 52 nM hCA II: KA = 0.57 μM hCA VII: KA = 0.19 μM | [66] |
68 2-(2-aminoethyl) thiazole | | hCA I: KA = 0.87 μM hCA II: KA = 7.45 μM hCA VII: KA = 0.7 μM | [66] |
69 Burimamide | | hCA I: KA = 0.88 μM hCA II: KA = 8.39 μM hCA VII: KA = 0.43 μM | [66] |
70 Metiamide | | hCA I: KA = 0.98 μM hCA II: KA = 8.75 μM hCA VII: KA = 1.01 μM | [66] |
71 Impromidine | | hCA I: KA = 0.72 μM hCA II: KA = 2.14 μM hCA VII: KA = 0.10 μM | [66] |
72 Methimmepip | | hCA I: KA = 3.16 μM hCA II: KA = 5.24 μM hCA VII: KA = 0.12 μM | [66] |
73 Proxyfan | | hCA I: KA = 3.15 μM hCA II: KA = 7.66 μM hCA VII: KA = 0.52 μM | [66] |
74 Ciproxyfan | | hCA I: KA = 4.29 μM hCA II: KA = 9.9 μM hCA VII: KA = 0.11 μM | [66] |
Compound n | Structure | CA Activation | Ref. |
---|---|---|---|
75 | R, R′ = alkyl, aryl Y = NH2, H Z = H, NH2, COOH | [67] | |
76 | R, R′ = alkyl, aryl Y = NH2, H Z = H, NH2, COOH | [67] | |
75a | | hCA I: KA = 6.1 nM hCA II: KA = 1.7 nM | [67] |
76a | | hCA I: KA = 0.81 nM hCA II: KA = 14.4 nM | [67] |
76b | | hCA I: KA = 0.94 nM hCA II: KA = 0.05 nM | [67] |
76c | | hCA I: KA = 65 nM hCA II: KA = 0.12 nM | [67] |
77 | R1 = aryl, cicloalkyl R2 = i-propyl, t-butyl | [68] | |
77a | | hCA I: KA = 7.10 μM hCA II: KA = 79 nM hCA IV: KA = 6.01 μM hCA VII: KA = 0.42 μM | [68] |
77b | | hCA I: KA = 12.1 μM hCA II: KA = 2.50 μM hCA IV: KA = 7.73 μM hCA VII: KA = 82 nM | [68] |
77c | | hCA I: KA = 8.15 μM hCA II: KA = 1.94 μM hCA IV: KA = 1.08 μM hCA VII: KA = 91 nM | [68] |
Compound n | Structure | CA Activation | Ref. |
---|---|---|---|
83a–c | a: R = CH3 (Ala) b: R = p-OH-C6H4 (Tyr) c: R = CH2CH2COOH (Glu) | [72] | |
84a–c | a: R = CH3 (Ala) b: R = p-OH-C6H4 (Tyr) c: R = CH2CH2COOH (Glu) | [72] | |
85a–c | a: R = CH3 (Ala) b: R = p-OH-C6H4 (Tyr) c: R = CH2CH2COOH (Glu) | [72] | |
86a–c | a: R = CH3 (Ala) b: R = p-OH-C6H4 (Tyr) c: R = CH2CH2COOH (Glu) | [72] | |
87a–c | a: R = CH3 (Ala) b: R = p-OH-C6H4 (Tyr) c: R = CH2CH2COOH (Glu) | [72] | |
84b | | hCA I: KA = 9.0 nM hCA VII: KA = 0.69 μM | [72] |
85a | | hCA I: KA = 6.39 nM hCA VII: KA = 0.59 μM | [72] |
85b | | hCA I: KA = 15 nM hCA VII: KA = 10.8 μM | [72] |
85c | | hCA I: KA = 4.12 μM hCA VII: KA = 0.51 μM | [72] |
Compound n/ | Structure | CA Activation | Ref. |
---|---|---|---|
88 | R1 = CH2CH2OH, CH2CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2, CH2Ph R2 = CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2 | [73] | |
89 | R1 = CH2CH2OH, CH2CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2, CH2Ph R2 = CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2 | [73] | |
90 | R1 = CH2CH2OH, CH2CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2, CH2Ph R2 = CH2CH2OH, CH2CH2N(CH3)2, CH2CH2N(C2H5)2, CH2CH2CH2N(CH3)2 | [73] | |
89a | | hCA VII: KA = 7.5 μM | [73] |
90a | | hCA VII: KA = 7.2 μM | [73] |
90b | | hCA VII: KA = 8.2 μM | [73] |
Compound | Class | In Vitro Activity | Other Correlate Activities | Ref. | |
---|---|---|---|---|---|
hCA Activation Activity (KA) | Selectivity | ||||
21 | Arylsulfonylureido derivatives of histamine | 3–6 nM | hCA I | - | [40] |
22 | Histamine dimers | 6 nM | hCA I | - | [39] |
29–30 | Histamine-based halogenated compounds | 0.7–21 nM 1.0–115 nM | dual hCA I/ hCA II | - | [45] |
41 | Histamine inspired-compounds | 32–39 nM | hCA VII | - | [49] |
42d | Histamine inspired-compounds | 85 nM | hCA VII | - | [49] |
44 | Carnosine-based derivatives | 1–20 nM 10–40 nM | dual hCA I/ hCA II | Enhancement of red cell CA activity | [53] |
46a | Histidine-based derivatives | 0.9 nM | hCA I | - | [46] |
47b | Carnosine-based derivatives | 8.1 nM | hCA VII | - | [46] |
49–51 | Gold nanoparticles of histamine, histidine, carnosine derivatives | 1–9 nM | no-selectivity (I, II, IV, VA, VII, IVX) | - | [45] |
53–54 | Selenium and tellurium containing amines | 3.3–44.9 μM | no-selectivity (I, VA, VII) | ROS inhibition | [58] |
76b | Di-ureas incorporating 1,2,4-triazole derivatives | 0.05 nM | hCA II | - | [67] |
77a | Amino alcohol oxime ethers | 79 nM | hCA II | - | [68] |
77b | Amino alcohol oxime ethers | 82 nM | hCA VII | - | [68] |
85b | Indazole derivartives | 15 nM | hCA I | nNOS inhibitor | [72] |
89a | Indole-based derivatives | 7.5 μM | hCA VII | BDNF production | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggetti, V.; Salerno, S.; Baglini, E.; Barresi, E.; Da Settimo, F.; Taliani, S. Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Molecules 2022, 27, 2544. https://doi.org/10.3390/molecules27082544
Poggetti V, Salerno S, Baglini E, Barresi E, Da Settimo F, Taliani S. Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Molecules. 2022; 27(8):2544. https://doi.org/10.3390/molecules27082544
Chicago/Turabian StylePoggetti, Valeria, Silvia Salerno, Emma Baglini, Elisabetta Barresi, Federico Da Settimo, and Sabrina Taliani. 2022. "Carbonic Anhydrase Activators for Neurodegeneration: An Overview" Molecules 27, no. 8: 2544. https://doi.org/10.3390/molecules27082544
APA StylePoggetti, V., Salerno, S., Baglini, E., Barresi, E., Da Settimo, F., & Taliani, S. (2022). Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Molecules, 27(8), 2544. https://doi.org/10.3390/molecules27082544