Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol–Gel Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Powder X-ray Difraction (PXRD)
2.2. FT-IR Spectroscopy (FT-IR)
2.3. N2 Adsorption-Desorption Isotherms
2.4. Thermogravimetric and Differential Thermal Analysis (TG and DTA)
2.5. Photocatalytic Activity
2.6. Kinetics Study of Photocatalytic Degradation
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis Methods
Synthesis of Ti(OEt)4
3.2.2. Instrumentation
3.2.3. Photodegradation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Almeida, A.; Solé, M.; Soares, A.M.V.M.; Freitas, R. AnTi-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. Environ. Pollut. 2020, 263, 114442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folarin, O.S.; Otitoloju, A.A.; Amaeze, N.H. Comparative ecotoxicological assessment of acetaminophen and diclofenac using freshwater African catfish Clarias gariepinus (Burchell 1822). J. Appl. Sci. Environ. Manag. 2018, 22, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Rosi-Marshall, E.J.; Royer, T.V. Pharmaceutical Compounds and Ecosystem Function: An Emerging Research Challenge for Aquatic Ecologists. Ecosystems 2012, 15, 867–880. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Misna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avramescu, S.M.; Fierascu, I.; Fierascu, R.C.; Brazdis, R.I.; Nica, A.V.; Butean, C.; Olaru, E.A.; Ulinici, S.; Verziu, M.N.; Dumitru, A. Removal of Paracetamol from Aqueous Solutions by Photocatalytic Ozonation over TiO2-MexOy Thin Films. Nanomaterials 2022, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Barrios, R.L.; Severiche-Sierra, C.A.; Jaimes, J. Efectos tóxicos del paracetamol en la salud humana y el ambiente. Rev. Inv. Agr. Amb. 2017, 8, 139–149. [Google Scholar] [CrossRef]
- Koagouw, W.; Stewart, N.A.; Ciocan, C. Long-term exposure of marine mussels to paracetamol: Is time a healer or a killer? Environ. Sci. Pollut. Res. 2021, 28, 48823–48836. [Google Scholar] [CrossRef]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Pena, A. Assessment of Human Pharmaceuticals in Drinking Water Catchments, Tap and Drinking Fountain Waters. Appl. Sci. 2021, 11, 7062. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Novais, M.H.; Costa, M.J.; Montemurro, N.; Pérez, S.; López de Alda, M. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. Sci. Total Environ. 2020, 709, 136205. [Google Scholar] [CrossRef]
- Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645–4677. [Google Scholar] [CrossRef]
- Vilhunen, S.; Sillanpää, M. Recent developments in photochemical and chemical AOPs in water treatment: A mini-review. Rev. Environ. Sci. Bio/Tech. 2010, 9, 323–330. [Google Scholar] [CrossRef]
- Pillai, S.C.; McGuinness, N.B.; Byrne, C.; Han, C.; Lalley, J.; Nadagouda, M.; Falaras, P.; Kontos, A.G.; Gracia-Pinilla, M.A.; O’Shea, K.; et al. Photocatalysis as an effective advanced oxidation process. In Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications; Mihaela, I.S., Ed.; IWA: London, UK, 2017; Chapter 8. [Google Scholar]
- Qutob, M.; Rafatullah, M.; Qamar, M.; Alorfi, H.; Al-Romaizan, A.; Hussein, M. A review on heterogeneous oxidation of acetaminophen based on micro and nanoparticles catalyzed by different activators. Nanotech. Rev. 2022, 11, 497–525. [Google Scholar] [CrossRef]
- Tsang, C.H.A.; Li, K.; Zeng, Y.; Zhao, W.; Zhang, T.; Zhan, Y.; Xie, R.; Leung, D.Y.C.; Huang, H. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ. Int. 2019, 125, 200–228. [Google Scholar] [CrossRef] [PubMed]
- Peshawa, H.M.; Omid, A.; Ahmed, S.S.; Hama, J.R. Simple microwave synthesis of TiO2/NiS2 nanocomposite and TiO2/NiS2/Cu nanocomposite as an efficient visible driven photocatalyst. Ceram. Int. 2019, 45, 14167–14172. [Google Scholar]
- Rives, V. Morphology-Tailored Titania Nanoparticles. In New and Future Developments in Catalysis: Catalysis and Nanoparticles; Suib, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 8; pp. 189–211. [Google Scholar]
- Fernandes, A.; Makoś, P.; Wang, Z.; Boczkaj, G. Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem. Eng. J. 2020, 391, 123488. [Google Scholar] [CrossRef]
- Poulopoulos, S.G.; Yerkinova, A.; Ulykbanova, G.; Inglezakis, V.J. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(III). PLoS ONE 2019, 14, e0216745. [Google Scholar] [CrossRef]
- Mozzaquatro Pasini, S.; Alexsandra Valério, A.; Yin, G.; Wang, J.; Selene, M.A.; Ulson de Souza, G.; Hotza, D.; Ulson de Souza, A.A. An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. J. Water Proc. Eng. 2021, 40, 101827. [Google Scholar] [CrossRef]
- Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ge, M.Z.; Cao, C.Y.; Huang, J.Y.; Li, S.H.; Chen, Z.; Zhang, K.Q.; Al-Deyabd, S.S.; Lai, Y.K. Review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- López Zavala, M.A.; Lozano Morales, S.A.; Ávila-Santos, M. Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef] [PubMed]
- Elizalde-González, M.P.; Lozano-Morales, S.A. Composite functioning as trap of photoproducts: TiO2 nanobelts anchored to carbon particles. Mater. Chem. Phys. 2019, 228, 15–26. [Google Scholar] [CrossRef]
- Rimoldi, L.; Meroni, D.; Falletta, E.; Ferretti, A.M.; Gervasini, G.A.; Cappelletti, G.; Ardizzone, S. The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Appl. Surf. Sci. 2017, 424, 198–205. [Google Scholar] [CrossRef]
- Jallouli, N.; Elghniji, K.; Trabelsi, H.; Ksibi, M. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab. J. Chem. 2017, 10, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, M.A.; Mane, V.B.; Kumbhar, G.B. Degradation of paracetamol using photo catalysis with TiO2 nanoparticles. Int. J. Innov. Emerg. Res. Eng. 2016, 3, 57–60. [Google Scholar]
- Lozano-Morales, S.A.; Morales, G.; López Zavala, M.Á.; Arce-Sarria, A.; Machuca-Martínez, F. Photocatalytic Treatment of Paracetamol Using TiO2 Nanotubes: Effect of pH. Processes 2019, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Thakur, I.; Verma, A.; Barman, S. Degradation of pharmaceutical drug paracetamol via UV irradiation using Fe-TiO2 composite photocatalyst: Statistical analysis and parametric optimization. Environ. Sci. Pollut. Res. 2021, 28, 47327–47341. [Google Scholar] [CrossRef]
- Covaliu-Mierlă, C.I.; Matei, E.; Stoian, O.; Covaliu, L.; Constandache, A.-C.; Iovu, H.; Paraschiv, G. TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes 2022, 12, 236. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Gao, C.; Cao, L. The synthesis of nanosized TiO2 powder using a sol–gel method with TiCl4 as a precursor. J. Mat. Sci. 2000, 35, 4049–4054. [Google Scholar] [CrossRef]
- Masolo, E.; Senes, N.; Pellicer, E.; Baró, M.D.; Enzo, S.; Pilo, M.I.; Mulas, G.; Garroni, S. Evaluation of the anatase/rutile phase composition influence on the photocatalytic performances of mesoporous TiO2 powders. Int. J. Hydrog. Energy 2015, 40, 14483–14491. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, M.; Wang, L.; Wang, F.; Yang, L.; Li, X.; Wang, C. Plasmonic Ag-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. Appl. Catal. B Environ. 2017, 204, 67–77. [Google Scholar] [CrossRef]
- Mendoza-Anaya, D.; Salas, P.; Ángeles-Chávez, C.; Pérez-Hernández, R.; Castaño, V.M. Caracterización microestructural y morfología de TiO2 para aplicaciones termoluminiscentes. Rev. Mex. Física 2004, 50, 12–16. [Google Scholar]
- Hernández Enríquez, J.M.; García Serrano, L.A.; Zeifert Soares, B.H. Síntesis y caracterización de nanopartículas de N-TiO2-Anatasa. Superf. Vacío 2008, 21, 1–5. [Google Scholar]
- Ochoa, Y.; Ortegón, Y.; Vargas, M.; Rodríguez Páez, J.E. Síntesis de TiO2, fase anatasa, por el método Pechini. Rev. Latinoam. Metal. Mater. 2009, 1, 931–937. [Google Scholar]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B.C.; De Boer, J.H. Studies on Pore Systems in Catalysts. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Omer, R.A.; Hughes, A.; Hama, J.R.; Wang, W.; Tai, H. Hydrogels from dextran and soybean oil by UV photo-polymerization. J. Appl. Polym. Sci. 2015, 132, 41446. [Google Scholar] [CrossRef]
- Lin, Y.; Weng, C.; Hsu, H.; Lin, Y.; Shiesh, C. The Synergistic Effect of Nitrogen Dopant and Calcination Temperature on the Visible-Light-Induced Photoactivity of N-Doped TiO2. Int. J. Photoenergy 2013, 2013, 268723. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fu, X.; Han, Y.; Chang, E.; Wu, H.; Wang, H.; Li, K.; Qi, X. Preparation, Characterization, and Photocatalytic Activity of TiO2/ZnO Nanocomposites. J. Nanomat. 2013, 2013, 321459. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Ortiz, B.R.; Díaz-Jiménez, L.; Cortés-Hernández, D.A.; Múzquiz-Ramos, E.M. Catalizadores de TiO2 utilizados en procesos Claus: Causas de desactivación y actividad catalítica. Rev. Mex. Ing. Quím. 2017, 16, 229–236. [Google Scholar]
- Barrera, M.C.; Viniegra, M.; Escobar, J.; de Los Reyes, J.A. Control de las propiedades texturales de ZrO2-TiO2 sol-gel. Efecto de los parámetros de síntesis. Rev. Soc. Quím. Méx. 2002, 46, 73–78. [Google Scholar]
- So, W.W.; Park, S.B.; Kim, K.J.; Shin, C.H.; Moon, S.J. The crystalline phase stability of titania particles prepared at room temperature by the sol–gel method. J. Mat. Sci. 2001, 36, 4299–4305. [Google Scholar] [CrossRef]
- Moctezuma, E.; Leyva, E.; Aguilar, C.A.; Luna, R.A.; Montalvo, C. Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. J. Hazard. Mater. 2012, 243, 130–138. [Google Scholar] [CrossRef]
- Solís-Casados, D.A.; Alcantara-Cobos, A.; Gómez-Oliván, L.; Klimova, T.; Escobar-Alarcón, L. Síntesis de catalizadores basados en TiO2 modificados con Sn: Caracterización y evaluación de su desempeño fotocatalítico en la degradación de AINEs presentes en aguas residuales. Superf. Vacío 2016, 29, 24–31. [Google Scholar]
- He, Z.; Cai, Q.; Fang, H.; Situ, G.; Qiu, J.; Song, S.; Chen, J. Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. J. Environ. Sci. 2013, 25, 2460–2468. [Google Scholar] [CrossRef]
- Siah, W.R.; Lintang, H.O.; Shamsuddin, M.; Yuliati, L. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. Mat. Sci. Eng. 2016, 107, 012005. [Google Scholar]
- Houas, A.; Lachhe, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.; Ke, Q.; Yang, Y.; Yuan, J. Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J. Photochem. Photobiol. A Chem. 2002, 149, 169–174. [Google Scholar] [CrossRef]
- Mahmouda, M.A.; Poncherib, A.; Badrc, Y.; Abd El Wahe, M.G. Photocatalytic degradation of methyl red dye. S. Afr. J. Sci. 2009, 105, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Trujillano, R.; Nájera, C.; Rives, V. Activity in the Photodegradation of 4-Nitrophenol of a Zn,Al Hydrotalcite-Like Solid and the Derived Alumina-Supported ZnO. Catalysts 2020, 10, 702. [Google Scholar] [CrossRef]
SBET (m2/g) | St (m2/g) | Volumepore (cm3/g) | Sizepore (Å) | |
---|---|---|---|---|
TiEt400 | 66 | 68 | 0.212 | 102 |
TiPr400 | 84 | 83 | 0.321 | 103 |
P25 | 48 | 48 | 0.094 | 77 |
TiEt400 | TiPr400 | TiO2-P25 | |
---|---|---|---|
k (min−1) | 0.0041 | 0.0056 | 0.0024 |
t1/2 (min) | 169 | 124 | 289 |
Formula | Chemical Name | Supplier |
---|---|---|
TiO2 (P25) | Titanium dioxide | Degussa |
Paracetamol | N-(4-hydroxy phenyl) acetamide | Kern Pharma |
TiCl4 | Titanium (IV) Chloride | Merck KGaA |
CH3CH2OH | Ethanol absolute | Panreac |
CH3CH2CH2OH | 1-propanol (99.5%) | Panreac |
KBr | Potasium bromide (for FTIR spectroscopy) | Panreac |
N2 (liquid) | Liquid nitrogen | L’Air Liquide España S.A. |
N2 | Nitrogen gas, N-35 (99.95%) | L’Air Liquide España S.A. |
O2 | Oxygen N-45 (99.995%) | L’Air Liquide España S.A. |
He | Helium, N-48 (99.998%) | L’Air Liquide España S.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillano, R.; Rives, V.; García, I. Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol–Gel Method. Molecules 2022, 27, 2904. https://doi.org/10.3390/molecules27092904
Trujillano R, Rives V, García I. Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol–Gel Method. Molecules. 2022; 27(9):2904. https://doi.org/10.3390/molecules27092904
Chicago/Turabian StyleTrujillano, Raquel, Vicente Rives, and Inés García. 2022. "Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol–Gel Method" Molecules 27, no. 9: 2904. https://doi.org/10.3390/molecules27092904
APA StyleTrujillano, R., Rives, V., & García, I. (2022). Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol–Gel Method. Molecules, 27(9), 2904. https://doi.org/10.3390/molecules27092904