Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance: A Computational-Based Study
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Pfdhps Mutations
2.2. Haplotype Frequencies
2.3. Establishment of the Complete Protein Structure of Wild-Type and Mutant Pfdhps
2.4. Physiochemical and Structural Properties between Wild-Type and Mutant Proteins
2.5. Evaluation of the Effect of Mutations on Sulfadoxine Binding
2.6. The Molecular Dynamics of SDX in Wild-Type and Mutant Dhps Binding Sites
2.7. Impact of Mutations on the Protein Backbone, Using C-Alpha RMSD
2.8. Impact of Mutations on Protein Compactness
2.9. Effect of Mutations on Per-Residue Fluctuation
3. Discussion
4. Materials and Methods
4.1. Plasmodium Falciparum Sequence Acquisition and Analysis
4.1.1. Study Data Retrieval and Preprocessing
4.1.2. Sequence Data Analyses and Statistics
4.2. Structure-Based Analysis
4.2.1. Wild-Type and Mutant Structure Retrieval and Assessment
4.2.2. Mutation Mapping and Molecular Docking
4.2.3. All-Atom Molecular Dynamics Simulations of Pfdhps WT and Mutant Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. World Malaria Report 2021. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/350147 (accessed on 15 October 2022).
- World Health Organization. World Malaria Report 2019. World Health Organization. Available online: https://www.who.int/publications/i/item/9789241565721 (accessed on 15 October 2022).
- Sibley, C.H.; Hyde, J.E.; Sims, P.F.G.; Plowe, C.V.; Kublin, J.G.; Mberu, E.K.; Cowman, A.F.; Winstanley, P.A.; Watkins, W.M.; Nzila, A.M. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: What next? Trends Parasitol. 2001, 17, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.; Duraisingh, M.T.; Warhurst, D.C. In vivo selection for a specific genotype of dihydropteroate synthase of Plasmodium falciparum by pyrimethanine-sulfadoxine but not chlorproguanil-dapsone treatment. J. Infect. Dis. 1998, 177, 1429–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosten, F.; White, N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 2007, 77, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Ofori, M.; Ansah, E.; Agyepong, I.; Ofori-Adjei, D.; Hviid, L.; Akanmori, B. Pregnancy-associated malaria in a rural community of ghana. Ghana Med. J. 2009, 43, 13–18. [Google Scholar]
- Henry, M.; Florey, L.; Youll, S.; Gutman, J.R. An analysis of country adoption and implementation of the 2012 WHO recommendations for intermittent preventive treatment for pregnant women in sub-Saharan Africa. Malar. J. 2018, 17, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Malaria Report 2018. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/275867 (accessed on 15 March 2022).
- Kayentao, K.; Garner, P.; Van Eijk, A.M.; Naidoo, I.; Roper, C.; Mulokozi, A.; MacArthur, J.R.; Luntamo, M.; Ashorn, P.; Doumbo, O.K.; et al. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in Africa: Systematic review and meta-analysis. JAMA—J. Am. Med. Assoc. 2013, 309, 594–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, N.J. Intermittent Presumptive Treatment for Malaria. PLoS Med. 2005, 2, e3. [Google Scholar] [CrossRef] [Green Version]
- Chitnumsub, P.; Jaruwat, A.; Talawanich, Y.; Noytanom, K.; Liwnaree, B.; Poen, S.; Yuthavong, Y. The structure of Plasmodium falciparum hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase reveals the basis of sulfa resistance. FEBS J. 2020, 287, 3273–3297. [Google Scholar] [CrossRef]
- Roland, S.; Ferone, R.; Harvey, R.J.; Styles, V.L.; Morrison, R.W. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J. Biol. Chem. 1979, 254, 10337–10345. [Google Scholar] [CrossRef]
- Cowman, A.F.; Morry, M.J.; Biggs, B.A.; Cross, G.A.M.; Foote, S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1988, 85, 9109–9113. [Google Scholar] [CrossRef] [Green Version]
- Koukouikila-Koussounda, F.; Bakoua, D.; Fesser, A.; Nkombo, M.; Vouvoungui, C.; Ntoumi, F. High prevalence of sulphadoxine-pyrimethamine resistance-associated mutations in Plasmodium falciparum field isolates from pregnant women in Brazzaville, Republic of Congo. Infect. Genet. Evol. 2015, 33, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, P.; Menard, S.; Iriart, X.; Nsango, S.E.; Tchioffo, M.T.; Abate, L.; Awono-Ambéné, P.H.; Morlais, I.; Berry, A. Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in pregnant women in Yaoundé Cameroon: Emergence of highly resistant pfdhfr/pfdhps alleles. J. Antimicrob. Chemother. 2015, 70, 2566–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Sun, H.; Wei, Q.; Li, J.; Xiao, T.; Kong, X.; Wang, Y.; Zhao, G.; Wang, L.; Liu, G.; et al. Mutation Profile of pfdhfr and pfdhps in Plasmodium falciparum among Returned Chinese Migrant Workers from Africa. Antimicrob. Agents Chemother. 2019, 63, e01927-18. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Chen, J.; Fu, H.; Wu, K.; Yao, Y.; Eyi, J.U.M.; Matesa, R.A.; Obono, M.M.O.; Du, W.; Tan, H.; et al. High prevalence of Pfdhfr-Pfdhps quadruple mutations associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Malar. J. 2019, 18, 101. [Google Scholar] [CrossRef] [PubMed]
- A-Elbasit, I.E.; Alifrangis, M.; Khalil, I.F.; Bygbjerg, I.C.; Masuadi, E.M.; Elbashir, M.I.; Giha, H.A. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics. Malar. J. 2007, 6, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngondi, J.M.; Ishengoma, D.S.; Doctor, S.M.; Thwai, K.L.; Keeler, C.; Mkude, S.; Munishi, O.M.; Willilo, R.A.; Lalji, S.; Kaspar, N.; et al. Surveillance for sulfadoxine-pyrimethamine resistant malaria parasites in the Lake and Southern Zones, Tanzania, using pooling and next-generation sequencing. Malar. J. 2017, 16, 236. [Google Scholar] [CrossRef] [Green Version]
- Gesase, S.; Gosling, R.D.; Hashim, R.; Ord, R.; Naldoo, I.; Madebe, R.; Mosha, J.F.; Joho, A.; Mandia, V.; Mrema, H.; et al. High resistance of Plasmodium falciparum to sulphadoxine/pyrimethamine in Northern Tanzania and the emergence of dhps resistance mutation at codon 581. PLoS ONE 2009, 4, e4569. [Google Scholar] [CrossRef]
- Grais, R.F.; Laminou, I.M.; Woi-Messe, L.; Makarimi, R.; Bouriema, S.H.; Langendorf, C.; Amambua-Ngwa, A.; D’Alessandro, U.; Guérin, P.J.; Fandeur, T.; et al. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger. Malar. J. 2018, 17, 98. [Google Scholar] [CrossRef]
- Myers-Hansen, J.L.; Abuaku, B.; Oyebola, M.K.; Mensah, B.A.; Ahorlu, C.; Wilson, M.D.; Awandare, G.; Koram, K.A.; Ngwa, A.A.; Ghansah, A. Assessment of antimalarial drug resistant markers in asymptomatic Plasmodium falciparum infections after 4 years of indoor residual spraying in Northern Ghana. PLoS ONE 2020, 15, e0233478. [Google Scholar] [CrossRef]
- Mensah, B.A.; Aydemir, O.; Myers-Hansen, J.L.; Opoku, M.; Hathaway, N.J.; Marsh, P.W.; Anto, F.; Bailey, J.; Abuaku, B.; Ghansah, A. Antimalarial drug resistance profiling of Plasmodium falciparum infections in Ghana using molecular inversion probes and next-generation sequencing. Antimicrob. Agents Chemother. 2020, 64, e01423-19. [Google Scholar] [CrossRef]
- Ahouidi, A.; Ali, M.; Almagro-Garcia, J.; Amambua-Ngwa, A.; Amaratunga, C.; Amato, R.; Amenga-Etego, L.; Andagalu, B.; Anderson, T.J.C.; Andrianaranjaka, V.; et al. An open dataset of Plasmodium falciparum genome variation in 7000 worldwide samples. Wellcome Open Res. 2021, 6, 42. [Google Scholar] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Deshpande, N.; Addess, K.J.; Bluhm, W.F.; Merino-Ott, J.C.; Townsend-Merino, W.; Zhang, Q.; Knezevich, C.; Xie, L.; Chen, L.; Feng, Z.; et al. The RCSB Protein Databa Bank: A redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 2005, 33, D233–D237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina. J. Comput. Chem. 2010, 31, 445–461. [Google Scholar]
- Xu, C.; Wei, Q.; Yin, K.; Sun, H.; Li, J.; Xiao, T.; Kong, X.; Wang, Y.; Zhao, G.; Zhu, S.; et al. Surveillance of Antimalarial Resistance Pfcrt, Pfmdr1, and Pfkelch13 Polymorphisms in African Plasmodium falciparum imported to Shandong Province, China. Sci. Rep. 2018, 8, 12951. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, L.S.; Ringwald, P. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies. Am. J. Trop. Med. Hyg. 2007, 77, 153–159. [Google Scholar] [CrossRef]
- Rupérez, M.; González, R.; Mombo-Ngoma, G.; Kabanywanyi, A.M.; Sevene, E.; Ouédraogo, S.; Kakolwa, M.A.; Vala, A.; Accrombessi, M.; Briand, V.; et al. Mortality, Morbidity, and Developmental Outcomes in Infants Born to Women Who Received Either Mefloquine or Sulfadoxine-Pyrimethamine as Intermittent Preventive Treatment of Malaria in Pregnancy: A Cohort Study. PLoS Med. 2016, 13, e1001964. [Google Scholar] [CrossRef] [Green Version]
- Braun, V.; Rempis, E.; Schnack, A.; Decker, S.; Rubaihayo, J.; Tumwesigye, N.M.; Theuring, S.; Harms, G.; Busingye, P.; Mockenhaupt, F.P. Lack of effect of intermittent preventive treatment for malaria in pregnancy and intense drug resistance in western Uganda. Malar. J. 2015, 14, 372. [Google Scholar] [CrossRef] [Green Version]
- Kaingona-Daniel, E.P.S.; Gomes, L.R.; Gama, B.E.; Almeida-De-Oliveira, N.K.; Fortes, F.; Ménard, D.; Daniel-Ribeiro, C.T.; Ferreira-Da-Cruz, M.D.F. Low-grade sulfadoxine-pyrimethamine resistance in Plasmodium falciparum parasites from Lubango, Angola. Malar. J. 2016, 15, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.; Cheng, W.; Yao, Y.; Tan, H.; Wu, K.; Li, J. Molecular surveillance of anti-malarial resistance Pfdhfr and Pfdhps polymorphisms in African and Southeast Asia Plasmodium falciparum imported parasites to Wuhan, China. Malar. J. 2020, 19, 209. [Google Scholar] [CrossRef] [PubMed]
- Ruh, E.; Bateko, J.P.; Imir, T.; Taylan-Ozkan, A. Molecular identification of sulfadoxine-pyrimethamine resistance in malaria infected women who received intermittent preventive treatment in the Democratic Republic of Congo. Malar. J. 2018, 17, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berzosa, P.; Esteban-Cantos, A.; García, L.; González, V.; Navarro, M.; Fernández, T.; Romay-Barja, M.; Herrador, Z.; Rubio, J.M.; Ncogo, P.; et al. Profile of molecular mutations in pfdhfr, pfdhps, pfmdr1, and pfcrt genes of Plasmodium falciparum related to resistance to different anti-malarial drugs in the Bata District (Equatorial Guinea). Malar. J. 2017, 16, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esu, E.; Tacoli, C.; Gai, P.; Berens-Riha, N.; Pritsch, M.; Loescher, T.; Meremikwu, M. Prevalence of the Pfdhfr and Pfdhps mutations among asymptomatic pregnant women in Southeast Nigeria. Parasitol. Res. 2018, 117, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Spalding, M.D.; Eyase, F.L.; Akala, H.M.; Bedno, S.A.; Prigge, S.T.; Coldren, R.L.; Moss, W.J.; Waters, N.C. Increased prevalence of the pfdhfr/phdhps quintuple mutant and rapid emergence of pfdhps resistance mutations at codons 581 and 613 in Kisumu, Kenya. Malar. J. 2010, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Amimo, F.; Lambert, B.; Magit, A.; Sacarlal, J.; Hashizume, M.; Shibuya, K. Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in Africa: A systematic analysis of national trends. BMJ Glob. Health 2020, 5, e003217. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Protein Function; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Gruber, S.; Löf, A.; Hausch, A.; Jöhr, R.; Obser, T.; König, G.; Schneppenheim, R.; Brehm, M.A.; Benoit, M.; Lipfert, J. A Conformational Transition of Von Willebrand Factor’s D’D3 Domain Primes It For Multimerization. Blood Adv. 2021, 6, 5198–5209. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, Q.; Wang, X.; Su, K.; Guan, P.; Hu, X. Inhibition Mechanisms of (−)-Epigallocatechin-3-gallate and Genistein on Amyloid-beta 42 Peptide of Alzheimer’s Disease via Molecular Simulations. ACS Omega 2022, 7, 19665–19675. [Google Scholar] [CrossRef]
- Amamuddy, O.S.; Musyoka, T.M.; Boateng, R.A.; Zabo, S.; Bishop, Ö.T. Determining the unbinding events and conserved motions associated with the pyrazinamide release due to resistance mutations of Mycobacterium tuberculosis pyrazinamidase. Comput. Struct. Biotechnol. J. 2020, 18, 1103–1120. [Google Scholar] [CrossRef]
- Boateng, R.A.; Bishop, Ö.T.; Musyoka, T.M. Characterisation of plasmodial transketolases and identification of potential inhibitors: An in silico study. Malar. J. 2020, 19, 442. [Google Scholar] [CrossRef] [PubMed]
- Amamuddy, O.S.; Baoteng, R.A.; Barozi, V.; Nyamai, D.W.; Bishop, Ö.T. Novel dynamic residue network analysis approaches to study homodimeric allosteric modulation in SARS-CoV-2 Mpro and in its evolutionary mutations. Comput. Struct. Biotechnol. J. 2021, 19, 6431–6455. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sali, A. MODELLER: A Program for Protein Structure Modeling Release 9.12, r9480. Rockefeller Univ. 2013. [Google Scholar]
- Hatherley, R.; Brown, D.K.; Glenister, M.; Bishop, Ö.T. PRIMO: An Interactive Homology Modeling Pipeline. PLoS ONE 2016, 11, e0166698. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT: Iterative Refinement and Additional Methods. Methods Mol. Biol. 2014, 1079, 131–146. [Google Scholar]
- Shen, M.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [Green Version]
- Accelrys Software Inc. Discovery Studio Modeling Environment, release 3.5.; Accelrys Softw. Inc.: San Diego, CA, USA, 2012. [Google Scholar]
- Schrödinger, L.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 12 April 2019).
- Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Landrum, G. RDKit: Open-Source Cheminformatics Software. 2021. Available online: http://www.rdkit.org/ (accessed on 10 May 2019).
- El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study. Methods Mol. Biol. 2017, 1598, 391–403. [Google Scholar]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Lemak, A.S.; Balabaev, N.K. On The Berendsen Thermostat. Mol. Simul. 1994, 13, 177–187. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995, 103, 3668. [Google Scholar] [CrossRef]
Region | Countries | Mutations, % (n/N) | ||||||
---|---|---|---|---|---|---|---|---|
A437G | K540E | K540N | A581G | A613S | A613T | I431V | ||
WAF | Ghana | 94.94 (1352/1424) | 2.4 (33/1374) | 0.07 (1/1374) | 2.18 (30/1374) | 14.3 (197/1376) | 0 (0/1376) | 1.4 (2/1374) |
Gambia | 74.64 (309/414) | 3.12 (13/417) | 0 (0/417) | 0 (0/421) | 6.19 (26/420) | 0 (0/420) | 0 (420) | |
Mali | 55.38 (247/446) | 0.89 (4/447) | 0 (0/447) | 0.22 (1/447) | 9.17 (41/447) | 0 (0/447) | 0 (0/447) | |
CAF | Cameroon | 95.8 (228/238) | 0 (0/239) | 0.42 (1/239) | 22.36 (53/237) | 29.11 (69/237) | 0 (0/237) | 19 (46/237) |
DR Congo | 96.72 (354/366) | 11.75 (43/366) | 0 (0/366) | 3.55 (13/366) | 0 (0/366) | 0 (0/366) | 0 (0/366) | |
EAF | Kenya | 93.55 (116/124) | 87.1 (108/124) | 0 (0/124) | 0.8 (1/125) | 1.59 (2/126) | 2.38 (3/126) | 0 (0/124) |
Tanzania | 90.77 (305/336) | 88.46 (299/338) | 0 (0/338) | 28.78 (97/337) | 0.89 (3/337) | 0 (0/337) | 0 (0/337) | |
Malawi | 100 (257/257) | 99.61 (257/258) | 0 (0/258) | 4.65 (12/258) | 0 (0/258) | 0 (0/258) | 0 (0/258) | |
SEA | Thailand | 99.79 (959/961) | 91.53 (865/945) | 6.88 (65/945) | 81.59 (780/956) | 0.1 (1/962) | 0.42 (4/962) | 0 (0/956) |
Cambodia | 93.03 (1055/1134) | 37.46 (418/1116) | 37.37 (417/1116) | 44.36 (503/1134) | 0.44 (5/1135) | 0.53 (6/1135) | 0 (0/1135) | |
Vietnam | 85.6 (214/250) | 41.9 (106/253) | 4.35 (11/253) | 14.57 (37/254) | 16.54 (42/254) | 0 (0/254) | 0 (0/254) | |
SAM | Colombia | 17.65 (3/17) | 0 (0/17) | 0 (0/17) | 0 (0/17) | 5.88 (1/17) | 0 (0/17) | 0 (0/17) |
Peru | 55.17 (16/29) | 13.79 (4/29) | 0 (0/29) | 31.03 (9/29) | 17.24 (5/29) | 0 (0/29) | 0 (0/29) |
WAF | CAF | EAF | SEA | SAM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ghana % (n/N) | Gambia % (n/N) | Mali % (n/N) | Cameroon % (n/N) | DR Congo % (n/N) | Kenya % (n/N) | Tanzania % (n/N) | Malawi % (n/N) | Thailand % (n/N) | Cambodia % (n/N) | Vietnam % (n/N) | Colombia % (n/N) | Peru % (n/N) | |
A437K540A581 A613 | 4.25 (58/1366) | 23.95 (97/405) | 42.60 (190/446) | 3.80 (9/237) | 3.28 (12/366) | 5.69 (7/123) | 8.90 (29/326) | 0 (0/257) | 0.21 (2/935) | 7.03 (77/1095) | 13.93 (34/244) | 82.35 (14/17) | 44.83 (13/29) |
A437K540A581 S613 | 0.81 (11/1366) | 0.99 (4/405) | 2.02 (9/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0.61 (2/326) | 0 (0/257) | 0 (0/935) | 0.09 (1/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
A437K540G581 S613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0.42 (1/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0 (0/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
A437E540A581 A613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 0.81 (1/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0 (0/1095) | 0.82 (2/244) | 0 (0/17) | 0 (0/29) |
G437E540A581 A613 | 2.27 (31/1366) | 2.96 (12/405) | 0.67 (3/446) | 0 (0/237) | 8.47 (31/366) | 85.37 (105/123) | 59.51 (194/326) | 94.94 (244/257) | 17.43 (163/935) | 32.97 (361/1095) | 17.21 (42/244) | 0 (0/17) | 0 (0/29) |
G437E540A581 S613 | 0.07 (1/1366) | 0.25 (1/405) | 0.22 (1/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0.31 (1/326) | 0 (0/257) | 0.11 (1/935) | 0.18 (2/1095) | 16.39 (40/244) | 0 (0/17) | 0 (0/29) |
G437E540A581 T613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0.43 (4/935) | 0.18 (2/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
G437E540G581 A613 | 0.07 (1/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 3.28 (12/366) | 0.81 (1/123) | 29.45 (96/326) | 4.67 (12/257) | 73.69 (689/935) | 4.38 (48/1095) | 7.38 (18/244) | 0 (0/17) | 13.79 (4/29) |
G437K540A581 A613 | 79.06 (1080/1366) | 66.67 (270/405) | 47.53 (212/446) | 66.67 (158/237) | 84.70 (310/366) | 3.25 (4/123) | 1.23 (4/326) | 0.39 (1/257) | 0 (0/935) | 15.16 (166/1095) | 38.11 (93/244) | 11.76 (2/17) | 6.90 (2/29) |
G437K540A581 S613 | 11.35 (155/1366) | 5.19 (21/405) | 6.73 (30/446) | 7.17 (17/237) | 0 (0/366) | 1.63 (2/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0.09 (1/1095) | 0 (0/244) | 5.88 (1/17) | 17.24 (5/29) |
G437K540A581 T613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 2.44 (3/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0.37 (4/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
G437K540G581 A613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0.27 (1/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 1.28 (12/935) | 2.01 (22/1095) | 1.64 (4/244) | 0 (0/17) | 17.24 (5/29) |
G437K540G581 S613 | 2.05 (28/1366) | 0 (0/405) | 0.22 (1/446) | 21.52 (51/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0 (0/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
G437N540A581 A613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0.21 (2/935) | 0.09 (1/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
G437N540G581 A613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0.42 (1/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 6.63 (62/935) | 37.35 (409/1095) | 4.51 (11/244) | 0 (0/17) | 0 (0/29) |
G437N540G581 S613 | 0.07 (1/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0 (0/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
G437Y540A581 A613 | 0 (0/1366) | 0 (0/405) | 0 (0/446) | 0 (0/237) | 0 (0/366) | 0 (0/123) | 0 (0/326) | 0 (0/257) | 0 (0/935) | 0.09 (1/1095) | 0 (0/244) | 0 (0/17) | 0 (0/29) |
Mutation | Physiochemical Changes | Location on Structure | Amino Acid Changes | Mutation Effect | Entropy Score |
---|---|---|---|---|---|
I431V | Hydrophobic to hydrophobic | Buried | Large to small | Destabilizing | 0.39 |
A437G | Hydrophobic to hydrophobic | Surface | Large to small | Destabilizing | 0.66 |
K540E | Basic to polar | Surface | Small to large | Destabilizing | 0.37 |
A581G | Hydrophobic to hydrophobic | Buried | Large to small | Destabilizing | 0.31 |
A613S | Hydrophobic to polar | Surface | Small to large | Destabilizing | 0.31 |
A437G/A581G | Destabilizing | 0.41 | |||
A437G/A613S | Stabilizing | −0.06 | |||
A437G/A581G/A613S | Destabilizing | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, R.A.; Myers-Hansen, J.L.; Dolling, N.N.O.; Mensah, B.A.; Brodsky, E.; Mazumder, M.; Ghansah, A. Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance: A Computational-Based Study. Molecules 2023, 28, 145. https://doi.org/10.3390/molecules28010145
Boateng RA, Myers-Hansen JL, Dolling NNO, Mensah BA, Brodsky E, Mazumder M, Ghansah A. Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance: A Computational-Based Study. Molecules. 2023; 28(1):145. https://doi.org/10.3390/molecules28010145
Chicago/Turabian StyleBoateng, Rita Afriyie, James L. Myers-Hansen, Nigel N. O. Dolling, Benedicta A. Mensah, Elia Brodsky, Mohit Mazumder, and Anita Ghansah. 2023. "Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance: A Computational-Based Study" Molecules 28, no. 1: 145. https://doi.org/10.3390/molecules28010145
APA StyleBoateng, R. A., Myers-Hansen, J. L., Dolling, N. N. O., Mensah, B. A., Brodsky, E., Mazumder, M., & Ghansah, A. (2023). Global Analysis of Plasmodium falciparum Dihydropteroate Synthase Variants Associated with Sulfadoxine Resistance Reveals Variant Distribution and Mechanisms of Resistance: A Computational-Based Study. Molecules, 28(1), 145. https://doi.org/10.3390/molecules28010145