Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Polyphenolic Compounds in Apples
2.2. Distribution of Polyphenols during Juices Production
3. Materials and Methods
3.1. Plant Material
3.2. Prepartion of Apple Juices
3.3. Solvents and Reagents
3.4. Individual Polyphenolic Compounds Extraction and Analysis (RP-HPLC/DAD) of Apples and Juices
3.5. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: Assessment, analysis and application. J. Food Sci. Technol. 2016, 53, 1727–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongiorni, S.; Arisi, I.; Ceccantoni, B.; Rossi, C.; Cresta, C.; Castellani, S.; Forgione, I.; Rinalducci, S.; Muleo, R.; Prantera, G. Apple polyphenol diet extends lifespan, slows down mitotic rate and reduces morphometric parameters in drosophila melanogaster: A comparison between three different apple cultivars. Antioxidants 2022, 11, 2086. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, G.; Baron, G.; Gado, F.; Della Vedova, L.; Bombardelli, E.; Carini, M.; D’Amato, A.; Aldini, G.; Altomare, A. Polyphenols from thinned young apples: HPLC-HRMS profile and evaluation of their anti-oxidant and anti-inflammatory activities by proteomic studies. Antioxidants 2022, 11, 1577. [Google Scholar] [CrossRef] [PubMed]
- Josimuddin, S.K.; Kumar, M.; Rastogi, H. A review on nutritional and medicinal value of malus domestica with various activity. Int. J. Health Sci. 2022, 6, 7251–7265. [Google Scholar] [CrossRef]
- Kim, S.J.; Anh, N.H.; Jung, C.W.; Long, N.P.; Park, S.; Cho, Y.H.; Yoon, Y.C.; Lee, E.G.; Kim, M.; Son, E.Y.; et al. Metabolic and cardiovascular benefits of apple and apple-derived products: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2022, 9, 766155. [Google Scholar] [CrossRef]
- Kobayashi, M.; Harada, S.; Fujimoto, N.; Nomura, Y. Apple polyphenols exhibits chondroprotective changes of synovium and prevents knee osteoarthritis. Biochem. Biophys. Res. Commun. 2022, 614, 120–124. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Li, X.; Wu, X.; Zhao, Y.; Ma, Y.; Bi, J. Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. J. Agric. Food Chem. 2021, 69, 7–27. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Quijada-Morín, N.; Brás, N.F.; Gomes, P.; de Freitas, V.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Characterization of sensory properties of flavanols—A molecular dynamic approach. Chem. Senses 2015, 40, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Włodarska, K.; Pawlak-Lemanska, K.; Gorecki, T.; Sikorska, E. Perception of apple juice: A comparison of physicochemical measurements, descriptive analysis and consumer responses. J. Food Qual. 2016, 39, 351–361. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Shehzadi, K.; Rubab, Q.; Asad, L.; Ishfaq, M.; Shafique, B.; Ali Nawaz Ranjha, M.M.; Mahmood, S.; Mueen-Ud-Din, G.; Javaid, T.; Sabtain, B.; et al. A critical review on presence of polyphenols in commercial varieties of apple peel, their extraction and health benefits. Open Access J. Biog. Sci. Res. 2020, 6, 18. [Google Scholar] [CrossRef]
- Rana, S.; Rana, A.; Gupta, S.; Bhushan, S. Varietal influence on phenolic constituents and nutritive characteristics of pomace obtained from apples grown in western Himalayas. J. Food Sci. Technol. 2021, 58, 166–174. [Google Scholar] [CrossRef]
- Horvacki, N.; Andrić, F.; Gašić, U.; Đurović, D.; Tešić, Ž.; Fotirić Akšić, M.; Milojković-Opsenica, D. Phenolic compounds as phytochemical tracers of varietal origin of some autochthonous apple cultivars grown in Serbia. Molecules 2022, 27, 7651. [Google Scholar] [CrossRef]
- Stanivuković, S.; Žujić, M.; Žabić, M.; Mićić, N.; Bosančić, B.; Đurić, G. Characterization of old apple cultivars from Bosnia and Herzegovina by means of pomological and biochemical analysis. Not. Bot. Horti. Agrobot. 2017, 45, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Akagić, A.; Vranac, A.; Gaši, F.; Drkenda, P.; Spaho, N.; Oručević Žuljević, S.; Kurtović, M.; Musić, O.; Murtić, S.; Hudina, M. Sugars, acids and polyphenols profile of commercial and traditional apple cultivars for processing. Acta Agric. Slov. 2019, 113, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Alihodzic, A.; Gasi, F.; Drkenda, P.; Akagic, A.; Vranac, A.; Meland, M.; Music, O.; Spaho, N. Sensory acceptability of the autochthonous fruits of Bosnia and Herzegovina: Challenges and possibilities for food industry. Erwerbs-Obstbau 2018, 60, 247–252. [Google Scholar] [CrossRef]
- Akagić, A.; Oras, A.; Gaši, F.; Meland, M.; Drkenda, P.; Memić, S.; Spaho, N.; Žuljević Oručević, S.; Jerković, I.; Musić, O.; et al. A comparative study of ten pear (Pyrus communis L.) cultivars in relation to the content of sugars, organic acids, and polyphenol compounds. Foods 2022, 11, 3031. [Google Scholar] [CrossRef]
- Skoko, A.-M.G.; Vilić, R.; Kovač, M.; Nevistić, A.; Šarkanj, B.; Lores, M.; Celeiro, M.; Babojelić, M.S.; Kovač, T.; Lončarić, A. Occurrence of patulin and polyphenol profile of Croatian traditional and conventional apple cultivars during storage. Foods 2022, 11, 1912. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, L.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, A.; Muhammad, Z.; Iqbal, A.; Ramzan, R.; Liu, Y.; Pan, S.; Hu, W. Aggregation and conformational changes in native and thermally treated polyphenol oxidase from apple juice (Malus domestica). Front. Chem. 2018, 6, 203. [Google Scholar] [CrossRef] [PubMed]
- Le Deun, E.; van der Werf, R.; Lebail, G.; Le Quéré, J.-M.; Guyor, S. HPLC DAD-MS profiling of polyphenols responsible for the yellow-orange color in apple juices of different french cider apple varieties. J. Agric. Food Chem. 2015, 63, 7675–7684. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Garcia-Villalba, R.; Tomas-Barbera, F.A. Polyphenolic characterisation of old local apple varieties from Southeastern European region. J. Food Compos. Anal. 2013, 31, 199–211. [Google Scholar] [CrossRef]
- Tang, T.; Xie, X.; Ren, X.; Wang, W.; Tang, X.; Zhang, J.; Wang, Z. A difference of enzymatic browning unrelated to PPO from physiology, targeted metabolomics and gene expression analysis in Fuji apples. Postharvest Biol. Technol. 2020, 170, 111323. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Sesillo, F.B.; Masia, A.; Musacchi, S. Determination of post-harvest biochemical composition, enzymatic activities, and oxidative browning in 14 apple cultivars. Foods 2021, 10, 186. [Google Scholar] [CrossRef]
- Sae-leaw, T.; Benjakul, S. Prevention of melanosis in crustaceans by plant polyphenols: A review. Trends Food Sci. Technol. 2019, 85, 1–9. [Google Scholar] [CrossRef]
- Arnold, M.; Gramza-Michalowska, A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5038–5076. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmianski, J.; Woydylo, A. Effect of L-ascorbic acid addition on quality, polyphenolic compounds and antioxidant capacity of cloudy apple juices. Eur. Food Res. Technol. 2013, 236, 777–798. [Google Scholar] [CrossRef] [Green Version]
- Zha, Z.; Tang, R.; Wang, C.; Li, Y.; Liu, S.; Wang, L.; Wang, K. Riboflavin inhibits browning of fresh-cut apples by repressing phenolic metabolism and enhancing antioxidant system. Postharvest Biol. Technol. 2022, 187, 111867. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, H.; Tian, Y.; You, Z.; Guo, Y. Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. Cyta-J. Food 2019, 17, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Massini, L.; Rico, D.; Martin-Diana, A.B. Quality attributes of apple juice: Role and effect of phenolic compounds. In Fruit Juices—Extraction, Composition, Quality and Analysis; Rajauria, G., Tiwari, B.K., Eds.; Elsevier Academic Press: Chennai, India, 2018; pp. 45–57. [Google Scholar]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Computational modelling approach for the optimization of apple juice clarification using immobilized pectinase and xylanase enzymes. Curr. Res. Food Sci. 2020, 3, 243–255. [Google Scholar] [CrossRef]
- Akagić, A.; Vranac, A. Svojstva voća za Proizvodnju Sokova; Poljoprivredno-prehrambeni fakultet Univerziteta u Sarajevu: Sarajevo, Bosnia and Herzegovina, 2017; p. 10. [Google Scholar]
- Vranac, A.; Akagić, A.; Gaši, F.; Spaho, N.; Kurtović, M.; Meland, M. Sensory evaluation of blended cloudy apple juices. Work. Fac. Agric. Food Sci. Univ. Sarajevo 2017, 62, 493–504. [Google Scholar]
- Jakobek, L.; Ištuk, J.; Buljeta, I.; Voća, S.; Šic Žlabur, J.; Skenderović Babojelić, M. Traditional, indigenous apple varieties, a fruit with potential for beneficial effects: Their quality traitsand bioactive polyphenol contents. Foods 2020, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Lončarić, A.; Babojelić, M.S.; Kovač, T.; Šarkanj, B. Pomological properties and polyphenol content of conventional and traditional apple cultivars from Croatia. Food Health Dis. 2019, 8, 19–24. [Google Scholar]
- Jakobek, L.; Barron, A.R. Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J. Food Compos. Anal. 2016, 45, 9–15. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- Illiano, A.; Pinto, G.; Carrera, M.A.; Palmese, A.; Di Novella, R.; Casoria, P.; Amoresano, A. LC–MS/MS-based quantification method of polyphenols for valorization of ancient apple cultivars from Cilento. ACS Food Sci. Technol. 2022, 2, 647–654. [Google Scholar] [CrossRef]
- Bohinc, K.; Štukelj, R.; Abram, A.; Jerman, I.; Van de Velde, N.; Vidrih, R. Biophysical characterization of autochthonous and new apple cultivar surfaces. Agronomy 2022, 12, 2051. [Google Scholar] [CrossRef]
- Jakobek, L.; Ištuk, J.; Buljeta, I.; Voća, S.; Šic Žlabur, J.; Lesičar, J.; Skendrović-Babojelić, M. Polyphenol content, profile, and distribution in old, traditional apple varieties. Croat. J. Food Sci. Technol. 2020, 12, 110–117. [Google Scholar] [CrossRef]
- Lo Piccolo, E.; Landi, M.; Massai, R.; Remorini, D.; Conte, G.; Guidi, L. Ancient apple cultivars from Garfagnana (Tuscany, Italy): A potential source for ‘nutrafruit’ production. Food Chem. 2019, 294, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Gotal, A.-M.; Kovač, T.; Lončarić, A. Polyphenols of traditional apple varieties—The overview. Croat. J. Food Sci. Technol. 2021, 13, 277–290. [Google Scholar] [CrossRef]
- Yu, C.H.J.; Migicovsky, Z.; Song, J.; Vasantha Rupasinghe, H.P. (Poly)phenols of apples contribute to in vitro antidiabetic properties: Assessment of canada’s apple biodiversity collection. Plants People Planet 2022, 1–16. [Google Scholar] [CrossRef]
- Chen, G.; Yi, Z.; Chen, X.; Ma, X.; Su, W.; Li, X. Polyphenol nanoparticles from commonly consumed tea for scavenging free radicals, stabilizing pickering emulsions, and inhibiting cancer cells. ACS Appl. Nano Mater. 2021, 4, 652–665. [Google Scholar] [CrossRef]
- Fu, Y.; You, Z.; Xiao, A.; Liu, L. Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin. Microchim. Acta 2021, 188, 71. [Google Scholar] [CrossRef]
- Smailagić, D.; Banjac, N.; Ninković, S.; Savić, J.; Ćosić, T.; Penčík, A.; Ćalić, D.; Bogdanović, M.; Trajković, M.; Stanišić, M. New Insights into the activity of apple dihydrochalcone phloretin: Disturbance of auxin homeostasis as physiological basis of phloretin phytotoxic action. Front. Plant Sci. 2022, 13, 875528. [Google Scholar] [CrossRef]
- Mei, X.; Zhang, X.; Wang, Z.; Gao, Z.; Liu, G.; Hu, H.; Zou, L.; Li, X. Insulin sensitivity-enhancing activityof phloridzin is associated with lipopolysaccharides decrease and gut microbiota changes in obese and type2 diabetes (db/db) mice. J. Agric. Food Chem. 2016, 64, 7502–7511. [Google Scholar] [CrossRef]
- Niederberger, K.E.; Tennant, D.R.; Bellion, P. Dietary intake of phloridzin from natural occurrence in foods. Br. J. Nutr. 2020, 123, 942–950. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Zhu, H.; Zheng, T.; Chen, X.; Li, P.; Zhang, J.; Ma, F. A new strategy based on LC-Q TRAP-MS for determining the distribution of polyphenols in different apple varieties. Foods 2022, 11, 3390. [Google Scholar] [CrossRef]
- Michala, A.-S.; Pritsa, A. Quercetin: A molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases 2022, 10, 37. [Google Scholar] [CrossRef]
- Zymone, K.; Benetis, R.; Trumbeckas, D.; Baseviciene, I.; Trumbeckaite, S. Different effects of quercetin glycosides and quercetin on kidney mitochondrial function—Uncoupling, cytochrome C reducing and antioxidant activity. Molecules 2022, 27, 6377. [Google Scholar] [CrossRef]
- Kirkova, D.; Stremski, Y.; Statkova-Abeghe, S.; Docheva, M. Quercetin hybrids—Synthesis, spectral characterization and radical scavenging potential. Molbank 2022, 1, M1329. [Google Scholar] [CrossRef]
- Isika, D.K.; Özkömeç, F.N.; Çeşme, M.; Sadik, O.A. Synthesis, biological and computational studies of flavonoid acetamide derivatives. RSC Adv. 2022, 12, 10037–10050. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Spencer, E.A.; Thompson, M.J.; Heneghan, C.J. The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens. 2015, 29, 77–81. [Google Scholar] [CrossRef]
- Lea, G.H.A.; Hemingway, R.W.; Laks, P.E. Flavor, color, and stability in fruit products: The effect of polyphenols. In Plant Polyphenols Synthesis, Properties, Significance; Springer US Plenum Press: New York, NY, USA, 1992; pp. 827–847. [Google Scholar]
- Lea, A.G.H. Cidermaking. In Fermented Beverage Production; Lea, A.G.H., Piggot, J.R., Eds.; Blackie and Sons: Glasgow, UK, 1995; pp. 66–96. [Google Scholar]
- Heinmaa, L.; Moor, U.; Poldma, P.; Raudsepp, P.; Kidmose, U.; Lo Scalzo, R. Content of health-beneficial compounds and sensory properties of organic apple juice as affected by processing technology. LWT Food Sci. Technol. 2017, 85, 372–379. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M.M.; Buczek, M.; Kruczyńska, D.; Jarosław Markowski, J. Cloudy red-fleshed apple juice production and quality. Pol. J. Natur. Sc. 2015, 30, 59–72. [Google Scholar]
- Ozoglu, H.; Bayindirli, A. Inhibition of enzymatic browning in cloudy apple juice with selected antibrowning agents. Food Control 2002, 13, 213–221. [Google Scholar] [CrossRef]
- Jang, J.H.; Moon, K.D. Inhibition of polyphenol oxidase and peroxidase activities on fresh–cut apple. Food Chem. 2011, 124, 444–449. [Google Scholar] [CrossRef]
- Murtaza, A.; Iqbal, A.; Marszalek, K.; Iqbal, M.A.; Ali, S.W.; Xu, X.; Pan, S.; Hu, W. Enzymatic, phyto- and physicochemical evaluationof apple juice under high-pressure carbon dioxideand thermal processing. Foods 2020, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Le Bourvellec, C.; Bouzerzour, K.; Ginies, C.; Regis, S.; Ple, Y.; Renard, C.M.G.C. Phenolic and polysaccharidic composition of applesauce is close to that of apple flesh. J. Food Compos. Anal. 2011, 24, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fan, M.; Ran, J.; Zhang, T.; Sun, H.; Dong, M.; Zhang, Z.; Zheng, H. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J. Biol. Sci. 2016, 23, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, C.M.G.C.; Le Quere, J.M.; Bauduin, R.; Symoneaux, R.; Le Bourvellec, C.; Baron, A. Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chem. 2011, 124, 117–125. [Google Scholar] [CrossRef]
- Ceymann, M. Polyphenol Content and Profile in Apples and Its Potential Relevance to Human Health. Ph.D. Thesis, ETH Domain, Zurich, Switzerland, 2013. [Google Scholar]
- Brahem, M.; Eder, S.; Renard, C.M.G.C.; Loonis, M.; Le Bourvellec, C. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT Food Sci. Technol. 2017, 5, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Žuljević, S.O.; Akagić, A. Flour-based confectionery as functional food. In Functional Foods—Phytochemicals and Health Promoting Potential; Arshad, M.S., Ahmad, M.H., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sharma, H.P.; Patel, H.; Sugandha. Enzymatic added extraction and clarification of fruit juices—A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1215–1227. [Google Scholar] [CrossRef]
- Jen, J.J. Quality Factors of Fruits and Vegetables; American Chemical Society: Washington, DC, USA, 1989. [Google Scholar]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P.; Tuszyński, T. The profile of polyphenols and antioxidant properties of selected apple cutivars grown in Poland. J. Fruit Ornam. Plant Res. 2010, 18, 39–50. [Google Scholar]
- Marcotte, B.V.; Verheyde, M.; Pomerleau, S.; Doyen, A.; Couillard, C. Health benefits of apple juice consumption: A review of interventional trials on humans. Nutrients 2022, 14, 821. [Google Scholar] [CrossRef]
- Amobonye, A.E.; Bhagwat, P.; Ruzengwe, F.M.; Singh, S.; Pillai, S. Pear juice clarification using polygalactur.onase from Beauveria bassiana: Effects on rheological, antioxidant and quality properties. Pol. J. Food Nutr. Sci. 2022, 72, 57–67. [Google Scholar] [CrossRef]
- Javdani, Z.; Ghasemnezhad, M.; Zare, S. A comparison of heat treatment and ascorbic acid on controlling enzymatic browning of fresh-cuts apple fruit. Int. J. Agric. Crop Sci. 2013, 5, 186–193. [Google Scholar]
- Hyson, D.A. A Comprehensive review of apples and apple components and their relationship to human health. Am. Soc. Nutr. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Candrawinata, V.I.; Blades, B.L.; Golding, J.B.; Stathopoulos, C.E.; Roach, P.D. Effect of clarification on the polyphenolic compound content and antioxidant activity of commercial apple juices. Int. Food Res. J. 2012, 19, 1055–1061. [Google Scholar]
- Koutsos, A.; Tuohy, K.M.; Lovegrove, A. Apples and cardiovascular health—Is the gut microbiota a core consideration? Nutrients 2015, 7, 3959–3998. [Google Scholar] [CrossRef]
- Dushkova, M.; Mihalev, K.; Dinchev, A.; Vasilev, K.; Georgiev, D.; Terziyska, M. Concentration of polyphenolic antioxidants in apple juice and extract using ultrafiltration. Membranes 2022, 12, 1032. [Google Scholar] [CrossRef]
- Tian, Y.; Gou, X.; Niu, P.; Sun, L.; Guo, Y. Multivariate data analysis of the physicochemical and phenolic properties of not from concentrate apple juices to explorethe alternative cultivars in juice production. Food Anal. Methods 2018, 11, 1735–1747. [Google Scholar] [CrossRef]
- Akagić, A.; Vranac, A.; Spaho, N.; Gaši, F.; Kurtović, M.; Meland, M. Effect of processing on the polyphenolic compounds in apple juices. Work. Fac. Agric. Food Sci. Univ. Sarajevo 2017, 62, 482–492. [Google Scholar]
- Akagić, A. Tehnologija proizvodnje sokova i nektara. In Tehnologija Sokova i Nektara; Akagić, A., Spaho, N., Eds.; Poljoprivredno-prehrambeni Fakultet Univerziteta u Sarajevu: Sarajevo, Bosnia and Herzegovina, 2017; pp. 65–92. [Google Scholar]
- Krapfenbauer, G.; Kinner, M.; Gössinger, M.; Schonlechner, R.; Berghofer, E. Effect of thermal treatment on the quality of cloudy apple juice. J. Agric. Food Chem. 2006, 54, 5453–5460. [Google Scholar] [CrossRef]
Phenolic Compounds | Idared | Granny Smith | P. zelenika | Funtača | Rebrača | Tetovka | Paradija | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | PU | P | PU | P | PU | P | PU | P | PU | P | PU | P | PU | |
Phenolic acids | ||||||||||||||
Chlorogenic acid | 85.6 ± 1.5 | 136.4 ± 1.6 | 50.2 ± 0.8 | 71.8 ± 0.8 | 217.6 ± 2.5 | 389 ± 4.4 | 50 ± 2.6 | 142.1 ± 2.7 | 81.6 ± 0.99 | 117.3 ± 0.8 | 181.4 ± 3.5 | 130.1 ± 3.5 | 68.4 ± 1.3 | 101.2 ± 0.5 |
111 ± 1.55 a* | 61.0 ± 0.8 b* | 303.3 ± 3.5 c* | 96.1 ± 2.7 d* | 99.5 ± 0.9 d* | 155.8 ± 3.5 e* | 84.8 ± 0.9 f* | ||||||||
Caffeic acid | 3.0 ± 0.2 | 1.1 ± 0.01 | 1.9 ± 0.2 | 0.3 ± 0.03 | 1.93 ± 0.07 | 1.06 ± 0.04 | 2.64 ± 0.2 | 0.52 ± 0.04 | 1.44 ± 0.09 | 0.37 ± 0.02 | 1.68 ± 0.14 | 0.39 ± 0.01 | 2.19 ± 0.29 | 1.46 ± 0.004 |
2.10 ± 0.1 a* | 1.10 ± 0.1 b* | 1.50 ± 0.1 c* | 1.58 ± 0.12 cd* | 0.91 ± 0.11 b* | 1.04 ± 0.08 b* | 1.83 ± 0.1 ad* | ||||||||
Gallic acid | 8.5 ± 0.8 | 2.49 ± 0.14 | 9.36 ± 0.4 | 3.25 ± 0.06 | 6.74 ± 0.21 | 2.95 ± 0.04 | 4.1 ± 0.38 | 5.61 ± 0.39 | 5.85 ± 0.27 | 1.24 ± 0.03 | 5.12 ± 0.95 | 3.45 ± 0.34 | 6.43 ± 0.27 | 3.02 ± 0.24 |
5.50 ± 0.5 a* | 6.31 ± 0.2 b* | 4.85 ± 0.1 ad* | 4.86 ± 0.39 ad* | 3.55 ± 0.15 c* | 4.29 ± 0.6 cd* | 4.73 ± 0.26 ad* | ||||||||
Protocatechuic acid | 5.87 ± 0.25 | 1.0 ± 0.02 | 6.28 ± 0.87 | 1.66 ± 0.19 | 6.76 ± 0.2 | 3.73 ± 0.17 | 1.27 ± 0.11 | 1.85 ± 0.13 | 7.52 ± 0.22 | 1.24 ± 0.09 | 4.85 ± 0.14 | 1.2 ± 0.04 | 4.83 ± 0.17 | 0.76 ± 0.01 |
3.44 ± 0.1 a* | 3.97 ± 0.5 b* | 5.25 ± 0.2 c* | 1.56 ± 0.12 d* | 4.38 ± 0.2 b* | 3.02 ± 0.1 ae* | 2.80 ± 0.1 e* | ||||||||
Sinapic acid | 99.4 ± 1.2 | 0.4 ± 0.05 | 19.1 ± 2.8 | 0.01 ± 0.01 | 6.39 ± 0.1 | 1.16 ± 0.06 | 2.1 ± 0.1 | 0.42 ± 0.03 | 9.4 ± 0.7 | 0.8 ± 0.05 | 15.3 ± 0.5 | 1.23 ± 0.2 | 27.4 ± 1.0 | 1.23 ± 0.16 |
49.9 ± 0.6 a* | 9.56 ± 1.4 b* | 3.78 ± 0.1 c* | 1.26 ± 0.1 d* | 5.10 ± 0.4 c* | 8.27 ± 0.4 b* | 14.3 ± 0.6 e* | ||||||||
Σ | 202.4 | 141.4 | 86.9 | 77.0 | 239.4 | 397.9 | 60.1 | 150.5 | 105.8 | 121.0 | 208.4 | 136.4 | 109.3 | 107.7 |
Flavan 3-ols | ||||||||||||||
Catechin | 28.9 ± 0.3 | 1.82 ± 0.1 | 9.25 ± 0.3 | 22.9 ± 1.3 | 58.0 ± 1.6 | 5.36 ± 0.2 | 6.26 ± 0.8 | 16.3 ± 1.0 | 61.7 ± 2.8 | 29.5 ± 4.9 | 12.2 ± 1.2 | 36.3 ± 1.3 | 110.4 ± 0.4 | 68.8 ± 2.6 |
15.4 ± 0.2 a* | 16.1 ± 0.8 a* | 31.7 ± 0.9 b* | 11.3 ± 0.9 c* | 45.6 ± 3.9 d* | 24.3 ± 1.3 e* | 89.6 ± 1.5 f* | ||||||||
Epicatechin | 74.8 ± 1.1 | 29.9 ± 1.1 | 88.1 ± 1.6 | 2.88 ± 0.1 | 95.2 ± 0.5 | 43.1 ± 0.6 | 152.3 ± 2.8 | 43.5 ± 3.8 | 244.3 ± 2.6 | 42.1 ± 1.97 | 194 ± 0.5 | 26.1 ± 0.8 | 302.1 ± 1.1 | 52.8 ± 0.1 |
52.4 ± 1.1 a* | 45.5 ± 0.9 b* | 69.2 ± 0.6 c* | 97.9 ± 3.3 d* | 143.2 ± 2.3 e* | 110.1 ± 0.7 f* | 177.5 ± 0.6 g* | ||||||||
Procyanidin B1 | 58.1 ± 0.8 | 16.9 ± 0.2 | 12.6 ± 1.2 | 0.66 ± 0.2 | 20.1 ± 0.3 | 12.4 ± 0.6 | 30.8 ± 1.4 | 9.88 ± 0.7 | 31.2 ± 2.3 | 4.09 ± 0.3 | 26.4 ± 0.5 | 7.65 ± 0.2 | 9.04 ± 0.1 | 13.3 ± 0.3 |
37.5 ± 0.5 a* | 6.63 ± 0.7 b* | 16.3 ± 0.5 c* | 20.3 ± 1.1 d* | 17.6 ± 1.3 c* | 17.0 ± 0.4 c* | 11.2 ± 0.2 e* | ||||||||
Procyanidin B2 | 87.2 ± 1.1 | 44.2 ± 0.3 | 101.3 ± 1.8 | 2.83 ± 0.1 | 113.4 ± 2.4 | 60.1 ± 2.6 | 120 ± 4.3 | 34.0 ± 3.7 | 149 ± 1.4 | 26.5 ± 1.1 | 108.4 ± 0.4 | 20.1 ± 1.2 | 146.6 ± 0.7 | 23.7 ± 0.6 |
65.7 ± 0.7 a* | 52.1 ± 1.0 b* | 86.8 ± 2.5 c* | 77.0 ± 4.0 d* | 87.8 ± 1.3 c* | 64.3 ± 0.8 a* | 85.2 ± 0.7 c* | ||||||||
Σ | 249.0 | 92.8 | 211.3 | 29.3 | 286.7 | 121.0 | 309.4 | 103.7 | 486.2 | 102.2 | 341.0 | 90.2 | 568.1 | 158.6 |
Dihydrochalcones | ||||||||||||||
Phloridzin | 73.5 ± 1.4 | 11.0 ± 1.3 | 36.2 ± 1.5 | 6.07 ± 0.9 | 82.3 ± 2.0 | 12.1 ± 0.6 | 58.5 ± 0.6 | 6.52 ± 0.3 | 83.9 ± 0.8 | 18.4 ± 0.3 | 169 ± 2.9 | 9.56 ± 1.5 | 169.7 ± 0.6 | 9.76 ± 0.8 |
42.3 ± 1.4 a* | 21.1 ± 1.2 b* | 47.2 ± 1.3 c* | 32.5 ± 0.5 d* | 51.2 ± 0.6 e* | 89.3 ± 4.4 f* | 89.7 ± 0.7 f* | ||||||||
Phloretin | 8.79 ± 0.1 | 3.87 ± 0.1 | 24.8 ± 2.4 | 4.55 ± 0.4 | 20.0 ± 1.1 | 3.44 ± 0.1 | 11.1 ± 0.7 | 2.64 ± 0.1 | 25.0 ± 1.4 | 3.84 ± 0.2 | 26.7 ± 0.8 | 3.66 ± 0.17 | 48.5 ± 0.1 | 3.39 ± 0.1 |
6.33 ± 0.1 a* | 14.7 ± 3.0 b* | 11.7 ± 0.6 c* | 6.87 ± 0.3 a* | 14.4 ± 0.8 b* | 15.2 ± 0.5 b* | 25.9 ± 0.1 d* | ||||||||
Σ | 82.3 | 14.9 | 61.0 | 10.6 | 102.3 | 15.5 | 69.6 | 9.16 | 108.9 | 22.2 | 195.7 | 13.2 | 218.2 | 13.2 |
Flavonol glycosides | ||||||||||||||
Quercetin 3-O-galactoside | 174.2 ± 1.3 | 0.42 ± 0.05 | 32.7 ± 0.17 | 0.51 ± 0.01 | 51.3 ± 0.6 | 0.4 ± 0.02 | 9.21 ± 0.6 | 0.51 ± 0.04 | 58.1 ± 0.3 | 2.67 ± 0.4 | 20.2 ± 1.4 | 0.42 ± 0.07 | 38.1 ± 0.7 | 1.54 ± 0.2 |
87.3 ± 0.7 a* | 16.6 ± 0.1 b* | 25.9 ± 0.3 c* | 4.86 ± 0.3 d* | 30.4 ± 0.4 e* | 10.3 ± 0.7 f* | 19.8 ± 0.5 g* | ||||||||
Quercetin 3-O-glucoside | 90.8 ± 0.5 | 0.36 ± 0.05 | 17.4 ± 0.9 | 0.11 ± 0.001 | 37.1 ± 1.14 | 0.18 ± 0.01 | 9.11 ± 0.8 | 0.17 ± 0.02 | 19.9 ± 1.9 | 0.19 ± 0.03 | 16.7 ± 0.7 | 0.19 ± 0.007 | 10.6 ± 0.2 | 0.54 ± 0.06 |
45.6 ± 0.3 a* | 8.76 ± 0.5 de* | 18.6 ± 0.6 b* | 4.64 ± 0.4 c* | 10.0 ± 1.0 d* | 8.45 ± 0.4 e* | 5.57 ± 0.1 c* | ||||||||
Quercetin 3-O-rhamnoside | 111 ± 0.5 | 0.24 ± 0.005 | 41.4 ± 0.8 | 0.34 ± 0.03 | 36.8 ± 0.8 | 0.9 ± 0.03 | 21.1 ± 1.8 | 0.7 ± 0.05 | 69.7 ± 1.4 | 1.45 ± 0.2 | 47.3 ± 1.2 | 0.36 ± 0.06 | 88.1 ± 0.7 | 1.01 ± 0.001 |
55.6 ± 0.3 a* | 20.9 ± 0.4 b* | 18.9 ± 0.4 c* | 10.9 ± 0.9 d* | 35.6 ± 0.8 e* | 23.8 ± 0.6 f* | 44.6 ± 0.4 g* | ||||||||
Quercetin 3-O-rutinoside | 15.5 ± 1.3 | nd | 2.79 ± 0.4 | nd | 0.94 ± 0.2 | nd | 0.39 ± 0.03 | nd | 3.13 ± 0.05 | nd | 0.95 ± 0.04 | nd | 0.28 ± 0.02 | nd |
15.5 ± 1.3 a* | 2.79 ± 0.4 b* | 0.94 ± 0.01 c* | 0.39 ± 0.03 c* | 3.13 ± 0.05 b* | 0.95 ± 0.04 c* | 0.28 ± 0.02 c* | ||||||||
Σ | 391.5 | 1.02 | 94.3 | 0.96 | 126.1 | 1.48 | 39.8 | 1.38 | 150.8 | 4.31 | 85.2 | 0.97 | 137.1 | 3.09 |
TOTAL | 925.2 | 250.1 | 453.5 | 117.9 | 754.4 | 535.9 | 478.9 | 264.7 | 851.7 | 249.7 | 830.3 | 240.8 | 1032.7 | 282.6 |
TOTAL FRUIT (P+PU) | 1175.3 | 571.4 | 1290.3 | 743.6 | 1101.4 | 1071.1 | 1315.3 |
Phenolic Group | Idared | Granny Smith | P. zelenika | Funtača | Rebrača | Tetovka | Paradija | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | PU | F | P | PU | F | P | PU | F | P | PU | F | P | PU | F | P | PU | F | P | PU | F | |
Phenolic acids | 17.2 | 12 | 29.2 | 15.2 | 13.4 | 28.6 | 18.6 | 30.8 | 49.4 | 8.10 | 20.2 | 28.3 | 9.60 | 11.0 | 20.6 | 19.5 | 12.7 | 32.2 | 8.30 | 8.20 | 16.5 |
Flavan 3-ols | 21.2 | 7.90 | 29.1 | 37.0 | 5.10 | 42.1 | 22.2 | 9.40 | 31.6 | 41.6 | 13.9 | 55.5 | 44.1 | 9.30 | 53.4 | 31.8 | 8.40 | 40.2 | 43.2 | 12.1 | 55.3 |
Dihydrochalcones | 7.0 | 1.27 | 8.3 | 10.7 | 1.90 | 12.6 | 7.90 | 1.20 | 9.10 | 9.40 | 1.20 | 10.6 | 10.0 | 1.90 | 11.9 | 18.3 | 1.20 | 19.5 | 16.6 | 1.0 | 17.6 |
Flavonol glycosides | 33.3 | 0.09 | 33.4 | 16.5 | 0.16 | 16.7 | 9.80 | 0.10 | 9.90 | 5.40 | 0.19 | 5.60 | 13.7 | 0.40 | 14.1 | 8.0 | 0.10 | 8.10 | 10.4 | 0.23 | 10.6 |
TOTAL SHARE | 78.7 | 21.3 | - | 79.4 | 20.6 | - | 58.5 | 41.5 | - | 64.5 | 35.5 | - | 77.4 | 22.6 | - | 77.6 | 22.4 | - | 78.5 | 21.5 | - |
Phases | Cultivars | Phenolic Acids | Flavan 3-ols | Dihydrochalcones | Flavonol Glycosides | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorogenic a. | Catechin | Epicatechin | Procyan. B1 | Procyan. B2 | Phloridzin | Q-3-galactoside | Q-3-glucoside | Q-3-rhamn. | ||||||||||||||||||||
− | + | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − | + | |||||||||||
PHASE I—MASH | ID | 170.8 ± 0.6 | 183 ± 0.9 | a* | 18.8 ± 0 | 22.1 ± 0.5 | a* | 76.8 ± 0.3 | 78 ± 0.8 | a* | 45.7 ± 0.3 | 48.5 ± 1 | a* | 89.8 ± 0.1 | 104.4 ± 0.9 | a* | 45.3 ± 0 | 50.8 ± 0 | a* | 60.7 ± 0.1 | 65.2 ± 0.8 | a* | 30.6 ± 0.1 | 35.5 ± 0.8 | a* | 41.4 ± 1.2 | 43.7 ± 0.2 | a* |
GS | 76.3 ± 0.5 | 83.1 ± 1.6 | b* | 20.7 ± 0 | 26.6 ± 0.4 | b* | 56 ± 0.2 | 64.4 ± 0.3 | b* | 7.74 ± 0.2 | 9.19 ± 0 | b* | 50.2 ± 0.4 | 57.7 ± 0.4 | b* | 16.2 ± 1 | 18.9 ± 1 | b* | 9.7 ± 0.3 | 10.4 ± 0.1 | b* | 7.77 ± 0.2 | 8.82 ± 0.1 | b* | 17.2 ± 0.1 | 18.7 ± 0.1 | b* | |
PZ | 329.7 ± 0.5 | 350.6 ± 0.1 | c* | 38.2 ± 1 | 44 ± 0.8 | c* | 105.6 ± 0.1 | 112 ± 0.8 | c* | 25.7 ± 0.4 | 26.8 ± 0 | c* | 123.6 ± 0.6 | 128.3 ± 0.8 | c* | 65.8 ± 0 | 71.1 ± 1 | c* | 18.8 ± 0.6 | 21.9 ± 0.6 | c* | 19.4 ± 0.2 | 22.4 ± 0.3 | c* | 24.2 ± 0.2 | 26.1 ± 0.3 | c* | |
FU | 130.9 ± 0.2 | 148.5 ± 0.7 | d* | 45.1 ± 0 | 49.6 ± 0.3 | d* | 145.1 ± 0.5 | 153.5 ± 1.4 | d* | 11.98 ± 0.4 | 16.0 ± 0 | d* | 72.0 ± 0.4 | 81.8 ± 1.4 | d* | 23.9 ± 1 | 30.1 ± 1 | d* | 2.91 ± 0.1 | 3.99 ± 0.2 | d* | 2.35 ± 0.2 | 3.33 ± 0.1 | d* | 7.78 ± 0.3 | 9.51 ± 0.1 | d* | |
RE | 110.5 ± 0.3 | 119.5 ± 0.9 | e* | 53.8 ± 1 | 60.9 ± 0.4 | e* | 225.9 ± 1.1 | 234.4 ± 0.4 | e* | 17.7 ± 0.8 | 20.5 ± 0 | e* | 113.4 ± 0.8 | 118.5 ± 0.8 | e* | 45.7 ± 1 | 54.6 ± 0 | e* | 28.5 ± 0.3 | 33.2 ± 0.5 | e* | 12.1 ± 0.2 | 13.0 ± 0.2 | e* | 32.4 ± 0.9 | 36.6 ± 0.5 | e* | |
TE | 245.6 ± 2.8 | 271.9 ± 1.0 | f* | 26.7 ± 1 | 31.1 ± 0.6 | f* | 182.5 ± 0.5 | 191.9 ± 0.5 | f* | 25.8 ± 0.7 | 27.5 ± 1 | c* | 102.8 ± 0.5 | 109.9 ± 0.8 | f* | 74.7 ± 1 | 92.2 ± 1 | f* | 7.4 ± 0.2 | 8.68 ± 0.1 | f* | 8.95 ± 0.1 | 10.3 ± 0.1 | f* | 18.6 ± 0.3 | 22.6 ± 0.5 | f* | |
PA | 152.1 ± 0.1 | 160.9 ± 0.3 | g* | 126 ± 0 | 137.1 ± 2 | g* | 217 ± 1.6 | 234 ± 0.8 | g* | 16.0 ± 0.5 | 17.2 ± 0 | f* | 125.5 ± 0.9 | 131.3 ± 0.6 | g* | 72.7 ± 1 | 79.2 ± 1 | g* | 15.6 ± 0.3 | 18.1 ± 0.1 | g* | 5.52 ± 0.1 | 6.82 ± 0.1 | g* | 22.1 ± 0.4 | 26.4 ± 1.5 | c* | |
PHASE II—RAW JUICE | ID | 138.7 ± 0.9 | 147.3 ± 0.4 | a* | 12.4 ± 0 | 15.9 ± 0.1 | a* | 46.2 ± 0.7 | 49.5 ± 0.2 | a* | 26.6 ± 0.6 | 33.4 ± 1 | a* | 50.6 ± 0.2 | 60.3 ± 0.1 | a* | 36.2 ± 0 | 41.7 ± 1 | a* | 24.1 ± 0.1 | 26.8 ± 0.8 | a* | 18.5 ± 0.2 | 21.4 ± 0.5 | a* | 12.8 ± 0.1 | 15.1 ± 0.1 | a* |
GS | 50.1 ± 1.2 | 59.2 ± 0.1 | b* | 11.8 ± 0 | 16.5 ± 0.3 | a* | 42.4 ± 0.2 | 46.4 ± 0.1 | b* | 6.4 ± 0.03 | 6.86 ± 1 | b* | 34.6 ± 0.2 | 38.3 ± 0.4 | b* | 9.71 ± 0 | 13.5 ± 0 | b* | 1.08 ± 0.1 | 1.19 ± 0.1 | b* | 3.06 ± 0.1 | 3.82 ± 0.2 | df* | 3.1 ± 0.04 | 3.51 ± 0.1 | b* | |
PZ | 277.7 ± 1.4 | 302.7 ± 1.5 | c* | 24.5 ± 0 | 30.1 ± 1.4 | b* | 80.9 ± 0.4 | 86.7 ± 0.2 | c* | 18.7 ± 0.1 | 19.6 ± 0 | c* | 96.5 ± 0.7 | 108.9 ± 0.6 | c* | 39.5 ± 1 | 46.9 ± 1 | c* | 12.6 ± 0.3 | 14.6 ± 0.1 | c* | 12.3 ± 0.5 | 14.5 ± 0.1 | b* | 18.4 ± 0.5 | 20.0 ± 0.2 | c* | |
FU | 83.1 ± 0.9 | 100.4 ± 0.8 | d* | 19.1 ± 1 | 24.6 ± 0.5 | c* | 104 ± 1.0 | 115.3 ± 0.6 | d* | 9.68 ± 0.3 | 11.7 ± 0 | d* | 64.7 ± 0.8 | 70.5 ± 0.1 | d* | 21.2 ± 1 | 24 ± 1.0 | d* | 1.03 ± 0.1 | 1.26 ± 0.1 | d* | 1.18 ± 0.1 | 1.45 ± 0.1 | c* | 4.52 ± 0.1 | 6.08 ± 0.1 | d* | |
RE | 81.2 ± 0.5 | 93.1 ± 0.4 | e* | 36.2 ± 1 | 39.4 ± 0.4 | d* | 148.4 ± 0.5 | 160.2 ± 0.8 | e* | 12.8 ± 0.7 | 16.0 ± 1 | e* | 91.6 ± 0.8 | 97.5 ± 0.7 | e* | 25.5 ± 0 | 33.7 ± 0 | e* | 7.58 ± 0.1 | 9.64 ± 0.2 | b* | 3.33 ± 0.1 | 3.92 ± 0.1 | d* | 5.35 ± 0.1 | 6.65 ± 0.1 | e* | |
TE | 217.0 ± 2.5 | 241.7 ± 0.8 | f* | 14.0 ± 0 | 18.2 ± 0.4 | e* | 145.6 ± 0.3 | 162.1 ± 0.4 | e* | 18.9 ± 0.3 | 21.6 ± 1 | f* | 83.2 ± 0.5 | 95.4 ± 0.2 | f* | 45.1 ± 1 | 53.0 ± 0 | f* | 1.61 ± 0.1 | 2.50 ± 0.2 | f* | 2.04 ± 0.1 | 2.65 ± 0.2 | e* | 4.82 ± 0.1 | 6.48 ± 0.3 | de* | |
PA | 111.5 ± 0.4 | 121.5 ± 0.4 | g* | 48.4 ± 1 | 58.6 ± 0.4 | f* | 169.2 ± 1.0 | 199.1 ± 0.1 | f* | 10.2 ± 0.5 | 11.5 ± 0 | d* | 80.6 ± 0.6 | 91.6 ± 1.0 | g* | 51.8 ± 1 | 59.8 ± 1 | g* | 10.1 ± 0.3 | 11.4 ± 0.3 | b* | 2.6 ± 0.1 | 3.65 ± 0.3 | f* | 10.8 ± 0.2 | 14.8 ± 0.3 | f* | |
PHASE III 1—DEPECTINISATION | ID | 99.5 ± 0.2 | 112.6 ± 0.3 | a* | 10.3 ± 0 | 12 ± 0.1 | a* | 38.7 ± 0.3 | 45 ± 0.4 | a* | 21.4 ± 0.3 | 27.3 ± 0 | a* | 33.9 ± 0.9 | 40 ± 0.2 | a* | 24.2 ± 0 | 28.6 ± 0 | a* | 3.04 ± 0.1 | 3.89 ± 0.1 | a* | 1.59 ± 0.1 | 1.85 ± 0.1 | a* | 3.18 ± 0.1 | 3.75 ± 0.2 | a* |
GS | 35.1 ± 0.6 | 40.6 ± 0.2 | b* | 4.11 ± 0 | 5.35 ± 0.1 | b* | 27.3 ± 0.6 | 32.07 ± 0.2 | b* | 4.65 ± 0.1 | 5.47 ± 0 | b* | 15.5 ± 0.1 | 19.9 ± 0.2 | b* | 7.68 ± 0 | 9.18 ± 0 | b* | 0.72 ± 0.1 | 0.87 ± 0.1 | b* | 0.6 ± 0.04 | 0.7 ± 0.003 | b* | 1.89 ± 0.1 | 2.28 ± 0.1 | b* | |
PZ | 220.2 ± 0.6 | 254.4 ± 2.5 | c* | 22.9 ± 1 | 27.8 ± 0.4 | c* | 76.3 ± 0.6 | 88.5 ± 0.5 | c* | 15.4 ± 0.5 | 18.0 ± 1 | c* | 106.7 ± 0.5 | 115.0 ± 0.6 | c* | 40.3 ± 0 | 46.1 ± 0 | c* | 9.77 ± 0.2 | 11.6 ± 0.3 | c* | 5.72 ± 0.3 | 5.04 ± 1.8 | c* | 11.6 ± 0.3 | 13.6 ± 0.5 | c* | |
FU | 71.6 ± 1 | 75.7 ± 0.6 | d* | 15.5 ± 1 | 18.2 ± 0.2 | d* | 82.0 ± 0.5 | 89.5 ± 1.0 | d* | 13.3 ± 0.6 | 17.8 ± 0 | d* | 56.6 ± 0.1 | 59.9 ± 0.2 | d* | 16.3 ± 1 | 19.8 ± 0 | d* | 0.51 ± 0.1 | 0.68 ± 0.1 | d* | 0.37 ± 0.1 | 0.49 ± 0.1 | b* | 2.92 ± 0.1 | 3.48 ± 0.1 | d* | |
RE | 121.3 ± 0.4 | 137.4 ± 0.5 | e* | 28.4 ± 0 | 33.9 ± 0.8 | e* | 210.9 ± 0.6 | 221.5 ± 0.8 | e* | 18.0 ± 0.4 | 19.9 ± 1 | e* | 128.3 ± 0.3 | 140 ± 0.8 | e* | 29.9 ± 1 | 36.7 ± 1 | e* | 5.09 ± 0.1 | 6.07 ± 0.1 | e* | 2.54 ± 0.3 | 2.99 ± 0.4 | d* | 3.29 ± 0.1 | 4.03 ± 0.1 | e* | |
TE | 196.3 ± 0.3 | 218.9 ± 0.6 | f* | 12.4 ± 0 | 14.6 ± 0.1 | f* | 114.4 ± 0.9 | 133.2 ± 0.4 | f* | 14.0 ± 0.4 | 15.1 ± 0 | f* | 60.2 ± 0.5 | 68.1 ± 0.7 | f* | 20.1 ± 1 | 25.5 ± 0 | f* | 1.15 ± 0.1 | 1.27 ± 0.1 | f* | 1.60 ± 0.1 | 1.68 ± 0.1 | a* | 3.20 ± 0.5 | 3.63 ± 0.7 | a* | |
PA | 115.8 ± 0.7 | 129.5 ± 0.5 | g* | 52.7 ± 1 | 57.2 ± 1.6 | g* | 235.5 ± 0.8 | 253.8 ± 2.3 | g* | 9.52 ± 0.4 | 11.7 ± 0 | g* | 107.8 ± 0.7 | 117.8 ± 0.7 | g* | 79.5 ± 1 | 83.8 ± 1 | g* | 12.5 ± 0.4 | 14.6 ± 0.5 | g* | 1.78 ± 0.1 | 2.53 ± 0.1 | ad* | 10.8 ± 0.1 | 11.3 ± 0.1 | f* | |
PHASE III 2—CLARIFICATION | ID | 84.4 ± 0.7 | 96.9 ± 0.5 | a* | 7.05 ± 0 | 9.47 ± 0.1 | a* | 38.8 ± 0.5 | 34.4 ± 0.1 | a* | 14.6 ± 0.8 | 21.9 ± 0 | a* | 25.4 ± 0.5 | 31.3 ± 0.6 | a* | 18.6 ± 0 | 20.2 ± 0 | a* | 2.88 ± 0.1 | 2.91 ± 0.1 | a* | 1 ± 0.002 | 1.17 ± 0.1 | a* | 2.31 ± 0.2 | 2.52 ± 0.3 | ae* |
GS | 22.8 ± 0.5 | 32.2 ± 0.5 | b* | 3.38 ± 0 | 3.57 ± 0.1 | b* | 21.3 ± 0.3 | 27.5 ± 0.3 | b* | 4.42 ± 0.1 | 5.22 ± 0 | b* | 12.5 ± 0.4 | 14.6 ± 0.2 | b* | 3.77 ± 1 | 4.93 ± 0 | b* | 0.51 ± 0.1 | 0.72 ± 0.3 | ce* | 0.41 ± 0.1 | 0.52 ± 0.1 | b* | 1.43 ± 0.3 | 1.66 ± 0.1 | b* | |
PZ | 171.9 ± 1.4 | 197.3 ± 1.1 | c* | 7.74 ± 1 | 11.5 ± 0.5 | c* | 42.5 ± 0.9 | 50.3 ± 0.2 | c* | 6.57 ± 0.5 | 8.70 ± 1 | c* | 69.5 ± 1.1 | 81.2 ± 1.1 | c* | 15.6 ± 1 | 17.6 ± 0 | c* | 5.67 ± 0.5 | 8.07 ± 0.1 | b* | 2.53 ± 0.4 | 3.46 ± 0.3 | c* | 5.35 ± 0.6 | 6.14 ± 0.1 | c* | |
FU | 58.9 ± 0.4 | 63.4 ± 0.4 | d* | 10.1 ± 0 | 11.5 ± 0.4 | d* | 58.2 ± 0.9 | 68.4 ± 0.7 | d* | 8.56 ± 1.4 | 13.1 ± 1 | d* | 49.9 ± 0.6 | 54.2 ± 0.2 | d* | 14.5 ± 0 | 16.4 ± 0 | d* | 0.3 ± 0.1 | 0.35 ± 0.1 | c* | 0.22 ± 0.2 | 0.30 ± 0.1 | b* | 1.82 ± 0.1 | 2.41 ± 0.1 | a* | |
RE | 102.3 ± 1.1 | 113.3 ± 1.5 | e* | 18.9 ± 1 | 23.3 ± 0.6 | e* | 169.4 ± 1.5 | 180.9 ± 0.5 | e* | 15.3 ± 0.7 | 16.1 ± 1 | e* | 112.7 ± 1.9 | 118.7 ± 1.0 | e* | 17.0 ± 1 | 20.1 ± 1 | a* | 3.22 ± 0.2 | 4.04 ± 0.1 | d* | 1.66 ± 0.1 | 2.10 ± 0.1 | d* | 1.68 ± 0.2 | 2.56 ± 0.1 | a* | |
TE | 159.4 ± 1.3 | 175.7 ± 0.5 | f* | 9.43 ± 0 | 14.5 ± 0.4 | f* | 86.2 ± 1.0 | 100.5 ± 1.0 | f* | 10.8 ± 0.2 | 11.8 ± 0 | d* | 54.4 ± 0.7 | 60.8 ± 0.5 | f* | 14.9 ± 0 | 19.0 ± 0 | c* | 0.72 ± 0.1 | 0.85 ± 0.4 | e* | 0.85 ± 0.3 | 1.33 ± 0.2 | a* | 2.6 ± 0.004 | 2.87 ± 0.3 | e* | |
PA | 50.4 ± 1.0 | 70.2 ± 1.1 | d* | 16.6 ± 1 | 21.8 ± 1.1 | g* | 119.3 ± 1.3 | 149.8 ± 2.2 | g* | 3.51 ± 0.4 | 4.73 ± 1 | b* | 58.4 ± 1.1 | 66.1 ± 1.8 | g* | 26.7 ± 1 | 45.4 ± 1 | e* | 6.56 ± 0.4 | 10.7 ± 0.2 | f* | 1.2 ± 0.003 | 2.0 ± 0.03 | d* | 5.37 ± 0.3 | 6.93 ± 0.1 | f* | |
PHASE IVa—CLOUDY JUICE | ID | 113.5 ± 0.4 | 132.4 ± 0.6 | a* | 4.56 ± 0 | 5.58 ± 0.1 | a* | 31.3 ± 0.1 | 36.6 ± 1 | a* | 12.8 ± 0.7 | 15.6 ± 0 | a* | 30.9 ± 0.3 | 39.9 ± 0.6 | a* | 16.3 ± 0 | 22.6 ± 0 | a* | 5.3 ± 0.05 | 5.7 ± 0.004 | a* | 3.17 ± 0.1 | 4 ± 0.1 | a* | 3.68 ± 0.3 | 4.27 ± 0.4 | a* |
GS | 32.5 ± 0.4 | 38.6 ± 0.5 | b* | 6 ± 0.4 | 7.28 ± 0.5 | b* | 21.9 ± 0.6 | 27.4 ± 0.4 | b* | 3.65 ± 0.1 | 4.26 ± 0 | b* | 20.1 ± 0.4 | 22.4 ± 0.5 | b* | 4.2 ± 0 | 5.77 ± 0 | b* | 0.77 ± 0.1 | 0.9 ± 0.03 | b* | 0.44 ± 0.1 | 0.59 ± 0.1 | b* | 0.75 ± 0.1 | 1.15 ± 0.1 | b* | |
PZ | 177.2 ± 0.5 | 203.9 ± 1.1 | c* | 10.9 ± 0 | 14.3 ± 0.3 | c* | 68.2 ± 1.3 | 77.4 ± 0.2 | c* | 13.3 ± 0.1 | 14.9 ± 0 | a* | 77.5 ± 0.7 | 88.5 ± 0.4 | c* | 23.0 ± 0 | 33.6 ± 1 | c* | 4.56 ± 0.3 | 5.76 ± 0.3 | c* | 2.93 ± 0.1 | 4.09 ± 0.1 | a* | 4.95 ± 0.4 | 6.6 ± 0.6 | c* | |
FU | 69.1 ± 0.4 | 82 ± 0.5 | d* | 9.2 ± 0 | 12.8 ± 0.2 | d* | 67 ± 0.3 | 77.3 ± 0.9 | d* | 5.49 ± 0.2 | 7.25 ± 0 | c* | 49 ± 0.5 | 58.6 ± 0.9 | d* | 15.5 ± 1 | 18.8 ± 0 | d* | 0.62 ± 0.1 | 0.73 ± 0.2 | b* | 0.5 ± 0.01 | 0.63 ± 0.1 | b* | 2.62 ± 0.1 | 3.43 ± 0.1 | d* | |
RE | 68.8 ± 0.9 | 77.2 ± 0.6 | e* | 17.1 ± 0 | 23.7 ± 0.3 | e* | 128.9 ± 0.3 | 139 ± 0.4 | e* | 10.2 ± 0.2 | 11.2 ± 0 | d* | 78.2 ± 0.8 | 84.8 ± 0.7 | e* | 15.4 ± 1 | 21.4 ± 0 | a* | 2.94 ± 0.1 | 4.63 ± 0.1 | d* | 1.75 ± 0.4 | 2.74 ± 0.2 | c* | 2.91 ± 0.1 | 3.49 ± 0.3 | d* | |
TE | 196.3 ± 0.5 | 208.5 ± 0.6 | f* | 8.36 ± 0 | 10.5 ± 0.8 | f* | 111.7 ± 1.5 | 130.9 ± 0.6 | f* | 12.0 ± 0.2 | 15.3 ± 1 | a* | 60.5 ± 0.7 | 70.9 ± 0.8 | f* | 25.5 ± 1 | 31.3 ± 1 | c* | 1.40 ± 0.1 | 1.57 ± 0.1 | e* | 1.62 ± 0.1 | 1.69 ± 0.1 | d* | 4.01 ± 0.1 | 4.30 ± 0.4 | a* | |
PA | 70.6 ± 0.3 | 87.3 ± 0.1 | g* | 34.2 ± 0 | 41.6 ± 0.3 | g* | 119.7 ± 1 | 151 ± 1.6 | g* | 9.03 ± 0.3 | 9.67 ± 0 | e* | 70.2 ± 0.2 | 74.1 ± 0.8 | g* | 36.8 ± 0 | 42.0 ± 1 | e* | 5.79 ± 0.1 | 7.35 ± 0.1 | f* | 1.56 ± 0.2 | 2.77 ± 0.2 | c* | 5.84 ± 0.1 | 8.35 ± 0.3 | f* | |
PHASE IVb—CLEAR JUICE | ID | 67.9 ± 0.5 | 81.8 ± 1.2 | a* | 2.33 ± 0 | 3.1 ± 0.03 | a* | 25 ± 0.3 | 29.5 ± 0.7 | a* | 9.05 ± 0.2 | 13.2 ± 1 | a* | 19.6 ± 0.4 | 26.4 ± 0.1 | a* | 15.2 ± 0 | 16.9 ± 0 | a* | 1.84 ± 0.1 | 2.35 ± 0.1 | a* | 0.79 ± 0.3 | 1.02 ± 0.3 | a* | 1.2 ± 0.001 | 1.36 ± 0.3 | a* |
GS | 13.5 ± 0.5 | 20.1 ± 0.3 | b* | 2.04 ± 0 | 2.66 ± 0.1 | a* | 15.4 ± 0.3 | 18.6 ± 0.1 | b* | 2.51 ± 0.1 | 2.98 ± 0 | b* | 8.9 ± 0.08 | 9.67 ± 0.1 | b* | 1.11 ± 0 | 1.37 ± 0 | b* | 0.34 ± 0.4 | 0.47 ± 0.1 | cd* | 0.11 ± 0.1 | 0.28 ± 0.1 | b* | 0.5 ± 0.001 | 0.6 ± 0.004 | b* | |
PZ | 121.8 ± 1.7 | 131.4 ± 0.9 | c* | 4.25 ± 0 | 6.91 ± 0.1 | b* | 36.0 ± 2.2 | 41.0 ± 0.5 | c* | 3.04 ± 0.1 | 4.12 ± 0 | c* | 57.8 ± 2.0 | 66.8 ± 0.8 | c* | 10.5 ± 0 | 12.5 ± 0 | c* | 2.39 ± 0.3 | 3.05 ± 0.4 | b* | 1.71 ± 0.2 | 2.10 ± 0.1 | c* | 2.48 ± 0.2 | 3.09 ± 0.3 | c* | |
FU | 36.2 ± 0.2 | 46.5 ± 0.5 | d* | 4.72 ± 0 | 6.71 ± 0.1 | b* | 38.8 ± 1.0 | 54.6 ± 0.5 | d* | 4.98 ± 0.4 | 9.23 ± 1 | d* | 46.7 ± 0.5 | 49.1 ± 0.8 | d* | 10.6 ± 0 | 13.4 ± 0 | c* | 0.09 ± 0.1 | 0.15 ± 0.1 | c* | 0.18 ± 0.1 | 0.2 ± 0.004 | b* | 1.60 ± 0.1 | 1.87 ± 0.1 | d* | |
RE | 79.7 ± 0.9 | 85.8 ± 0.9 | e* | 15.1 ± 0 | 18.0 ± 0.5 | c* | 119.7 ± 2.1 | 124.1 ± 1.0 | e* | 11.0 ± 0.5 | 12.8 ± 0 | e* | 88.8 ± 0.7 | 95.1 ± 1.3 | e* | 14.1 ± 0 | 16.6 ± 1 | a* | 2.06 ± 0.1 | 3.04 ± 0.1 | b* | 1.01 ± 0 | 1.39 ± 0.1 | d* | 1.27 ± 0.2 | 2.0 ± 0.01 | d* | |
TE | 103.2 ± 1.1 | 113.5 ± 1.0 | f* | 8.95 ± 0 | 11.5 ± 0.1 | d* | 66.2 ± 0.4 | 77.1 ± 1.2 | f* | 8.04 ± 0.3 | 9.31 ± 0 | f* | 44.3 ± 0.7 | 51.0 ± 0.3 | d* | 10.1 ± 1 | 14.4 ± 0 | c* | 0.48 ± 0.1 | 0.57 ± 0.1 | d* | 0.83 ± 0.1 | 0.98 ± 0.1 | a* | 1.66 ± 0.1 | 2.29 ± 0.1 | e* | |
PA | 31.6 ± 1.7 | 55.8 ± 0.6 | g* | 9.44 ± 1 | 13.0 ± 0.5 | e* | 99.8 ± 1.8 | 113.3 ± 1.1 | g* | 1.52 ± 0.5 | 3.0 ± 0 | b* | 42.3 ± 1.7 | 51.2 ± 0.7 | d* | 18.3 ± 1 | 26.7 ± 1 | d* | 3.13 ± 0.1 | 5.17 ± 0.6 | e* | 0.85 ± 0.1 | 1.34 ± 0.1 | d* | 3.94 ± 0.1 | 4.36 ± 0.1 | f* |
Operations | C | CAA | CL | CLAA | Phase & Sampling Point | Critical Process |
---|---|---|---|---|---|---|
Inspection and washing | + | + | + | + | ||
Grinding | + | + | + | + | I | Cell wall disintegration |
Grinding + addition of L-ascorbic acid | + | + | ||||
Mash enzymatization | + | + | + | + | II | Extraction |
Mash pressing | + | + | + | + | ||
Raw juice depectinization | + | + | III-1 | Colloidal particles removal | ||
Clarification | + | + | III-2 | |||
Filtration | + | + | ||||
Pasteurization | + | + | + | + | IV a/b* | Thermal treatment |
Filling and cooling | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oras, A.; Akagić, A.; Spaho, N.; Gaši, F.; Žuljević, S.O.; Meland, M. Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina. Molecules 2023, 28, 230. https://doi.org/10.3390/molecules28010230
Oras A, Akagić A, Spaho N, Gaši F, Žuljević SO, Meland M. Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina. Molecules. 2023; 28(1):230. https://doi.org/10.3390/molecules28010230
Chicago/Turabian StyleOras, Amila, Asima Akagić, Nermina Spaho, Fuad Gaši, Sanja Oručević Žuljević, and Mekjell Meland. 2023. "Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina" Molecules 28, no. 1: 230. https://doi.org/10.3390/molecules28010230
APA StyleOras, A., Akagić, A., Spaho, N., Gaši, F., Žuljević, S. O., & Meland, M. (2023). Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina. Molecules, 28(1), 230. https://doi.org/10.3390/molecules28010230