Pyridinium Salts of Dehydrated Lanthanide Polychlorides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Characterization
2.2.1. Crystal Structures
Hydrogen Bonding
Bonding Energy
Lattice Energy
Crystal Stress Analysis
Stress Summary
3. Materials and Methods
3.1. Ln-6 General Synthesis
3.2. Ln-5 General Syntheses
4. Analytical Analyses
4.1. Infrared Spectroscopy
4.2. X-ray Crystal Structure Information
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boyle, T.J.; Guerrero, F.; Cramer, R.E.; Boye, D.A.; Brooks, H.; Reuel, P.C. Synthesis and Characterization of Solvated Lanthanide Tris(trimethylsilyl)siloxides. Inorg. Chem. 2022, 61, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Lanthanides Isolation and Production; Web Solutions, LLC.: Waukesha, WI, USA, 2022; Available online: https://science.jrank.org/pages/3825/Lanthanides-Isolation-production.html (accessed on 20 September 2022).
- Boyle, T.J.; Ottley, L.A.M. Lanthanide halides. In The Rare Earth Elements: Fundamentals and Applications; Atwood, D., Ed.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gruber, V.; Carsky, M. New technology for lanthanide recovery from spent Nd-Fe-B magnets. S. Afr. J. Chem. Eng. 2020, 33, 35–38. [Google Scholar] [CrossRef]
- Mitchem, S. Scientists Gain Insight into Recycling Processes for Nuclear and Electronic Waste. Argonne National Laboratory, 2012. Available online: https://www.anl.gov/article/scientists-gain-insight-into-recycling-processes-for-nuclear-and-electronic-waste (accessed on 20 September 2022).
- Taylor, M.D. Preparation of Anhydrous Lanthanon Halides. Chem. Rev. 1962, 62, 503–511. [Google Scholar] [CrossRef]
- Boyle, T.J.; Cramer, R.E.; Fasulo, F.; Padilla, N. Solvation coordination compounds of scandium chloride from the dehydration of scandium chloride hexahydrate. Polyhedron 2021, 208, 115437. [Google Scholar] [CrossRef]
- Li, J.-S.; Neumuller, B.; Dehnicke, K. Pyridinium-Chlorometallate von Lanthanoid-Elementen. Die Kristallstrukturen von [HPy]2[LnCl5(Py)] mit Ln = Eu, Er, Yb und von [H(Py)2][YbCl4(Py)2] · Py. Z. Anorg. Allg. Chem. 2002, 628, 2785–2789. [Google Scholar] [CrossRef]
- Cook, D. Vibrational Spectra of pyridinium salts. Can. J. Chem. 1961, 39, 2009–2024. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sec. E 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Cramer, R.E.; Rimsza, J.M.; Boyle, T.J. Lanthanide Contraction is a variable. Inorg. Chem. 2021, 61, 6120–6127. [Google Scholar] [CrossRef]
- Szalewicz, K. Hydrogen Bond Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 505–538. [Google Scholar]
- Löble, M.W.; Keith, J.M.; Altman, A.B.; Stieber, S.C.E.; Batista, E.R.; Boland, K.S.; Conradson, S.D.; Clark, D.L.; Pacheco, J.L.; Kozimor, S.A.; et al. Covalency in Lanthanides. An X-ray Absorption Spectroscopy and Density Functional Theory Study of LnCl6x– (x = 3, 2). J. Am. Chem. Soc. 2015, 137, 2506–2523. [Google Scholar] [CrossRef]
- Becker, A.; Urland, W. Crystal structures and magnetic behaviour of new complex lanthanide chlorides with organic cations. J. Alloys Compd. 1998, 24, 62–66. [Google Scholar] [CrossRef]
- Petricek, S. Syntheses and Crystal Structures of Anionic Lanthanide Chloride Complexes [(CH3)2NH2][LnCl4(HMPA)2] (Ln = La, Nd) and [(CH3)2NH2]4[LnCl6]Cl (Ln = Nd, Sm, Eu). Acta Chim. Slov. 2005, 52, 398–403. [Google Scholar]
- Czjek, M.; Fuess, H. Crystal structure of tetra(monomethylammonium) hexachloroytterbatochloride (CH3NH3)4YbCl7. Z. Krist. Cryst. Mater. 1987, 179, 49. [Google Scholar]
- Czjek, M.; Fuess, H.; Pabst, I. Crystal structure and magnetic properties of tetra(monomethylammonium) hexachloroytterbatochloride ( CH3NH3)4YbCl7. Z. Anorg. Allg. Chem. 1992, 617, 105–109. [Google Scholar] [CrossRef]
- Diamantopoulou, E.; Papefstathiou, G.S.; Terzis, A.; PRaptopoulou, C.P.; Desseyn, H.O.; Perlepes, S.P. Hydrogen bonded networks based on lanthanide(III) complexes of N,N′-dimethylurea (DMU): Preparation, characterisation, and crystal structures of [Nd(DMU)(6)][NdCl6] and [Nd(NO3)(3)(DMU)(3)]. Polyhedron 2003, 22, 825. [Google Scholar] [CrossRef]
- Runge, P.; Shulze, M.; Urland, W. Darstellung und Kristallstruktur von (CH3NH3)8[NdCl6][NdCl4(H2O)2]2Cl3. Z. Anorg. Allg. Chem. 1991, 592, 115–120. [Google Scholar] [CrossRef]
- Hallfeldt, J.; Urland, W. Synthese, Kristallstruktur und magnetisches Verhalten von (2,4,6-Trimethylpyridinium)–[ErCl6][ErCl5(H2O)]2Cl3. Z. Anorg. Allg. Chem. 2002, 628, 2661–2664. [Google Scholar] [CrossRef]
- Rogers, R.D.; Rollins, A.N.; Henry, R.F.; Murdoch, J.S.; Etzenhouser, R.D.; Huggins, S.E.; Nunez, L. Direct comparison of the preparation and structural features of crown ether and polyethylene glycol complexes of neodymium trichloride hexahydrate. Inorg. Chem. 1991, 30, 4945–4954. [Google Scholar] [CrossRef]
- Izgorodina, E.I.; Bernard, U.L.; Dean, P.M.; Pringle, J.M.; MacFarlane, D.R. The Madelung Constant of Organic Salts. Cryst. Growth Des. 2009, 11, 4834–4839. [Google Scholar] [CrossRef]
- The SHELEX Suite of Package of Programs—Saint, SADABS, Apex3; Bruker AXS: Madison, WI, USA, 2012.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, C17, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Pushmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Downward, L.; Booth, C.H.; Lukens, W.W.; Bridges, F. A Variation of the F-Test for Determining Statistical Relevance of Particular Parameters in EXAFS Fits. AIP Conf. Proc. 2007, 882, 129–131. [Google Scholar]
Compound | La-6 | Ce-6 | Pr-6 |
---|---|---|---|
Chem. Form | C20H23Cl6N4La | C20H23CeCl6N4 | C20H23Cl6N4Pr |
Form. weight | 335.02 | 672.24 | 673.03 |
temp (K) | 100 (2) | 100 (2) | 100 (2) |
space group | Orthorhombic P 21 21 21 | Orthorhombic P 21 21 21 | Monoclinic P21/c |
a (Å) | 9.7104(6) | 9.6382(3) | 15.6181(11) |
b (Å) | 15.6614(10 | 15.6027(4) | 9.5868(8) |
c (Å) | 18.1015(12) | 18.0596(6) | 36.244(3) |
b (deg) | 89.999(3) | ||
V (Å3) | 2752.8(3) | 2715.84(14) | 5426.8(7) |
Z | 4 | 4 | 8 |
Dcalcd (Mg/m3) | 1.619 | 1.644 | 1.648 |
m (Mo, Ka) (mm−1) | 2.149 | 2.282 | 2.402 |
Flack Parameter | 0.500(6) | 0.50(1) | NA c |
R1 a (%) (all data) | 2.25 (2.65) | 2.22 (2.22) | 5.55 (10.16) |
wR2 b (%) (all data) | 4.86 (5.18) | 6.14 (6.15) | 10.15 (12.71) |
Compound | Nd-6 | Sm-6 | Eu-6 |
Chem. Form | C20H23Cl6N4Nd | C20H23Cl6N4Sm | C20H23Cl6EuN4 |
Form. weight | 676.36 | 682.47 | 684.08 |
temp (K) | 100 (2) | 100 (2) | 100 (2) |
space group | Monoclinic P21/c | Monoclinic P21/c | Monoclinic P21/c |
a (Å) | 15.561(2) | 15.5230(14) | 15.534(3) |
b (Å) | 9.5667(15) | 9.5386(9) | 9.5290(19) |
c (Å) | 36.204(5) | 36.265(4) | 36.287(7) |
b (deg) | 90.306(5) | 90.244(4) | 90.091(7) |
V (Å3) | 5389.3(14) | 5369.6(9) | 5371.5(18) |
Z | 8 | 8 | 8 |
Dcalcd(Mg/m3) | 1.667 | 1.688 | 1.692 |
m (Mo, Ka) (mm−1) | 2.537 | 2.800 | 2.948 |
Flack Parameter | NA | NA | NA |
R1 a (%) (all data) | 8.14 (13.45) | 4.45 (6.04) | 4.81 (9.68) |
wR2 b (%) (all data) | 16.45 (19.59) | 9.48 (10.78) | 11.22 (15.11) |
Compound | Gd-6 | Tb-5 | Dy-5 |
Chem. Form | C20H23Cl6GdN4 | C15H17Cl5N3Tb | C15H17Cl5DyN3 |
Form. weight | 689.37 | 572.48 | 579.06 |
temp (K) | 100 (2) | 100 (2) | 100(2) |
space group | Monoclinic P21/c | Orthorhombic Pna21 | Orthorhombic Pna21 |
a (Å) | 15.5351(13) | 15.561(2) | 18.693(3) |
b (Å) | 9.5079(8) | 9.5667(15) | 7.3078(10) |
c (Å) | 36.279(3) | 36.204(5) | 14.789(2) |
b (deg) | 90.055(3) | ||
V (Å3) | 5358.6(8) | 2028.3(3) | 2020.3(5) |
Z | 8 | 4 | 4 |
Dcalcd(Mg/m3) | 1.709 | 1.885 | 1.904 |
m (Mo, Ka) (mm−1) | 3.089 | 4.148 | 4.362 |
Flack Parameter | NA | 0.500(9) | 0.459(6) |
R1 a (%) (all data) | 6.38 (7.36) | 1.78 (1.98) | 1.37 (1.40) |
wR2 b (%) (all data) | 13.85 (14.77) | 3.65 (3.71) | 3.25 (3.30) |
Compound | Ho-5 | Er-5 | Tm-5 |
Chem. Form | C15H17Cl5HoN3 | C15H17Cl5ErN3 | C15H17Cl5N3Tm |
Form. weight | 581.49 | 583.82 | 585.49 |
temp (K) | 100 (2) | 100 (2) | 100 (2) |
space group | Orthorhombic Pna21 | Orthorhombic Pna21 | Orthorhombic Pna21 |
a (Å) | 18.6738(17) | 18.6315(7) | 18.6333(11) |
b (Å) | 7.2976(6) | 7.2898(3) | 7.2815(4) |
c (Å) | 14.7913(13) | 14.7705(5) | 14.7648(9) |
V (Å3) | 2015.7(3) | 2006.13(13) | 2003.3(2) |
Z | 4 | 4 | 4 |
Dcalcd(Mg/m3) | 1.916 | 1.933 | 1.941 |
m (Mo, Ka) (mm−1) | 4.590 | 4.852 | 5.098 |
Flack Parameter | 0.465(5) | 0.486(5) | 0.350(8) |
R1 a (%) (all data) | 1.65 (1.71) | 1.05 (1.06) | 2.27 (2.76) |
wR2 b (%) (all data) | 3.78 (3.79) | 2.67 (2.68) | 4.92 (5.28) |
Compound | Yb-5 | Lu-5 | Ce-H2O/py-H |
Chem. Form | C15H17Cl5N3Yb | C15H17Cl5N3Lu | C10H26CeCl5N2O7 |
Form. weight | 589.60 | 591.54 | 603.70 |
temp (K) | 100 (2) | 100 (2) | 100(2) |
space group | Orthorhombic Pna21 | Orthorhombic Pna21 | Monoclinic P21/n |
a (Å) | 18.6135(11) | 18.8935(3) | 8.4460(8) |
b (Å) | 7.2804(4) | 7.27030(10) | 17.5550(18) |
c (Å) | 147520(9)) | 14.7377(3) | 15.5427(18) |
b(deg) | 91.534(3) | ||
V (Å3) | 1999.1(2) | 1992.25(6) | 2303.7(4) |
Z | 4 | 4 | 4 |
Dcalcd(Mg/m3) | 1.959 | 1.972 | 1.741 |
m (Mo, Ka) (mm−1) | 5.349 | 5.628 | 2.585 |
Flack Parameter | 0.457(7) | 0.488(6) | |
R1 a (%) (all data) | 2.16 (2.45) | 1.90 (2.73) | 5.50 (5.73) |
wR2 b (%) (all data) | 4.63 (4.81) | 3.41 (3.56) | 18.67 (18.84) |
Distance (Å) | La | Ce | Pr | Nd | Sm | Eu | Gd |
---|---|---|---|---|---|---|---|
Ln-Cl | 2.796 | 2.758 | 2.737 | 2.724 | 2.702 | 2.689 | 2.676 |
Cl---Cl | 3.954 | 3.900 | 3.871 | 3.852 | 3.821 | 3.803 | 3.784 |
(py)N-H-N(py) | 2.678 | 2.678 | 2.672 | 2.674 | 2.664 | 2.678 | 2.676 |
(py)N-H---Cl | 3.165 | 3.171 | 3.210 | 3.179 | 3.164 | 3.171 | 3.181 |
Angles (deg) | La | Ce | Pr | Nd | Sm | Eu | Gd |
trans Cl-Ln-Cl | 173.11 | 172.18 | 174.43 | 175.00 | 174.48 | 173.45 | 174.43 |
(py)N-H-N(py) | 171.80 | 170.96 | 174.11 | 174.20 | 173.58 | 173.97 | 171.91 |
(py)N-H---Cl | 169.63 | 168.77 | 164.87 | 165.67 | 165.67 | 164.88 | 164.47 |
Distance (Å) | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|
Ln-Cl | 2.643 | 2.638 | 2.633 | 2.602 | 2.597 | 2.591 | 2.576 |
Cl---Cl | 3.738 | 3.73 | 3.726 | 3.680 | 3.673 | 3.664 | 3.643 |
Ln-N(py) | 2.524 | 2.517 | 2.507 | 2.507 | 2.475 | 2.475 | 2.454 |
(py)N-H---Cl | 3.230 | 3.232 | 3.229 | 3.276 | 3.235 | 3.274 | 3.265 |
Angles (deg) | Tb | Dy | Ho | Er | Tm | Yb | Lu |
trans Cl-Ln-Cl | 176.105 | 176.37 | 176.37 | 176.615 | 176.71 | 176.805 | 176.775 |
tans Cl-Ln-N(py) | 177.19 | 177.28 | 177.29 | 177.11 | 177.47 | 178.06 | 177.36 |
(py)N-H---Cl | 177.19 | 177.28 | 177.29 | 177.11 | 177.47 | 178.06 | 177.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cramer, R.E.; Baca, E.M.; Boyle, T.J. Pyridinium Salts of Dehydrated Lanthanide Polychlorides. Molecules 2023, 28, 283. https://doi.org/10.3390/molecules28010283
Cramer RE, Baca EM, Boyle TJ. Pyridinium Salts of Dehydrated Lanthanide Polychlorides. Molecules. 2023; 28(1):283. https://doi.org/10.3390/molecules28010283
Chicago/Turabian StyleCramer, Roger E., Esteban M. Baca, and Timothy J. Boyle. 2023. "Pyridinium Salts of Dehydrated Lanthanide Polychlorides" Molecules 28, no. 1: 283. https://doi.org/10.3390/molecules28010283
APA StyleCramer, R. E., Baca, E. M., & Boyle, T. J. (2023). Pyridinium Salts of Dehydrated Lanthanide Polychlorides. Molecules, 28(1), 283. https://doi.org/10.3390/molecules28010283