A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan
Abstract
:1. Introduction
Bottom of Form
2. Bioactive Compounds of Sappan Wood
2.1. Bioactive Compounds of Sappan Wood
2.1.1. Flavonoids
2.1.2. Phenolic Acids
2.1.3. Anthraquinones
2.1.4. Triterpenoids and Steroids
2.1.5. Alkaloids and Tannins
2.2. Extraction of Bioactive Compounds from Sappan L.
2.2.1. Extraction of Bioactive Compounds
Extraction of Anticonvulsant Compounds
Brazilin
2.3. Medicinal Characteristics of Sappan Wood
2.3.1. Anti-Inflammatory Properties
2.3.2. Antioxidant Properties
2.3.3. Antiacne Properties
2.3.4. Antibacterial Properties
2.3.5. Hepatoprotective Properties
2.3.6. Other Medicinal Properties
2.4. Methods of Extraction of Bioactive Compounds of Sappan Wood
2.4.1. Conventional Extraction Technique
Soxhlet Extraction (SE)
Steam Distillation and Hydrodistillation
Infusion
Maceration
2.4.2. Novel Extraction Technique
Ultrasound-Assisted Extraction (UAE)
Microwave-Assisted Extraction (MAE)
Extraction by Using Deep Eutectic Solvents (DES)
2.5. Commercial Applications
2.5.1. Natural Colorant
2.5.2. Textile Industry
2.5.3. Beverages
2.5.4. Confectionery Products
2.5.5. Nutraceuticals
2.5.6. Natural Remedies
2.5.7. Biofuel
2.5.8. Cosmetics
2.5.9. Woodworking
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Badami, S.; Moorkoth, S. Caesalpinia sappan–A medicinal and dye yielding plant. Nat. Prod. Radiance 2004, 3. [Google Scholar]
- Thanayutsiri, T.; Patrojanasophon, P.; Opanasopit, P.; Ngawhirunpat, T.; Laiwattanapaisal, W.; Rojanarata, T. Rapid and efficient microwave-assisted extraction of Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold nanoparticles. Green. Process. Synth. 2023, 12, 20228109. [Google Scholar] [CrossRef]
- Mekala, K.; Radha, R. A Review on Sappan Wood-A Therapeutic Dye Yielding Tree. Res. J. Pharmacogn. Phytochem. 2015, 7, 227. [Google Scholar] [CrossRef]
- Mathew, G.; Skaria, B.P.; Mathew, S.; Joy, P.P. Caesalpinia Sappan-an Economic Medicinal Tree for the Tropics. In Proceedings of the National Symposium on Medicinal and Aromatic Plants for the Economic Benefit of Rural People (MAPER), Thiruvananthapuram, India, 16–18 February 2007; pp. 1–7. [Google Scholar]
- Rosniawaty, S.; Anjarsari, I.R.D.; Sudirja, R.; Mubarok, S.; Fatmawati, D. Effect of growth regulators and organic matter on the growth of Sappan wood seedlings (Caesalpinia sappan L.). Res. Crops 2023, 24, 198–209. [Google Scholar] [CrossRef]
- Lee, D.K.; Cho, D.H.; Lee, J.H.; Shin, H.Y. Fabrication of nontoxic natural dye from sappan wood. Korean J. Chem. Eng. 2008, 25, 354–358. [Google Scholar] [CrossRef]
- Nathan, V.K.; Rani, M.E. Natural dye from Caesalpinia sappan L. heartwood for eco-friendly coloring of recycled paper-based packing material and its in silico toxicity analysis. Environ. Sci. Pollut. Res. 2021, 28, 28713–28719. [Google Scholar] [CrossRef]
- Saini, R.; Dhiman, N.K. Natural Anti-inflammatory and Anti-allergy Agents: Herbs and Botanical Ingredients. Anti-Inflamm. Anti-Allergy Agents Med. 2022, 21, 90–114. [Google Scholar] [CrossRef]
- Sarofa, U.; Doko, F.M. Characterizing Instant Powder Drink Mixed of Kersen Leaves (Muntingiacalabura) and Secang Wood (Caesalpinia sappan L.) with Maltodextrin Addition. MATEC Web Conf. 2022, 372, 02007. [Google Scholar] [CrossRef]
- Vardhani, A.K. Caesalpinia sappan L. In Proceedings of the International Conference on Applied Science and Health, Paris, France, 15–16 April 2019; Volume 4, pp. 302–308. [Google Scholar]
- Thangal, A.H.; Prasanth, C.S.; Prasanth, M.L.; Anu, V. Pharmacognostic, phytochemical and pharmacological aspects of Caesalpinia sappan plant. Int. J. Pharm. Sci. Res. 2022, 10. [Google Scholar]
- Abu, A. Natural Dyes from Secang (Biancaeasappan) Wood in Sutera. J. Phys. Conf. Ser. 2019, 1387, 012001. [Google Scholar]
- Shad, A.A.; Ahmad, S.; Ullah, R.; AbdEl-Salam, N.M.; Fouad, H.; Ur Rehman, N.; Hussain, H.; Saeed, W. Phytochemical and biological activities of four wild medicinal plants. Sci. World J. 2014, 2014, 857363. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E. Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Curr. Mol. Med. 2011, 11, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.; Ahmad, M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med. 2015, 8, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, S.; Li, C.; Wang, J.; Liu, Z.; Kang, W. Effective compounds from Caesalpinia sappan L. on the tyrosinase in vitro and in vivo. Nat. Prod. Commun. 2020, 15, 1934578X20920055. [Google Scholar] [CrossRef]
- Wu, S.Q.; Otero, M.; Unger, F.M.; Goldring, M.B.; Phrutivorapongkul, A.; Ciiari, C.; Toegel, S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J. Ethnopharmacol. 2011, 138, 364–372. [Google Scholar] [CrossRef]
- Du Toit, K.; Elgorashi, E.E.; Malan, S.F.; Drewes, S.E.; van Staden, J.; Crouch, N.R.; Mulholland, D.A. Anti-inflammatory activity and QSAR studies of compounds isolated from Hyacinthaceae species and TachiadenuslongiflorusGriseb. (Gentianaceae). Bioorg. Med. Chem. 2005, 13, 2561–2568. [Google Scholar] [CrossRef]
- Dapson, R.W.; Bain, C.L. Brazilwood, sappanwood, brazilin and the red dye brazilein: From textile dyeing and folk medicine to biological staining and musical instruments. Biotech. Histochem. 2015, 90, 401–423. [Google Scholar] [CrossRef]
- Hafshah, M.; Rohmah, A.; Mardliyah, A. Potential of Secang Wood (Caesalpinia sappan L.) Ethanol Extractas Anti-Oxidant and Sun-Protection. Al-Kimia 2022, 10. [Google Scholar] [CrossRef]
- Nomer, N.M.G.R.; Duniaji, A.S.; Nocianitri, K.A. kandungansenyawa flavonoid dan antosianinekstrakkayusecang (Caesalpinia sappan L.) sertaaktivitasantibakteriterhadap Vibrio cholerae. J. Ilmu Dan Teknol. Pangan 2019, 8, 216–225. [Google Scholar] [CrossRef]
- Sakti, A.S.; Saputri, F.C.; Mun’im, A. Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon 2019, 5, e02915. [Google Scholar] [CrossRef]
- Asfar, A.M.I.A.; Asfar, A.M.I.T. Polyphenol in Sappan wood (Caesalpinia sappan L.) extract results of ultrasonic-assisted solvent extraction. AIP Conf. Proc. 2023, 2719, 1. [Google Scholar]
- Ahmad, I.; Arifianti, A.E.; Sakti, A.S.; Saputri, F.C.; Mun’im, A. Simultaneous natural deep eutectic solvent-based ultrasonic-assisted extraction of bioactive compounds of cinnamon bark and sappan wood as a dipeptidyl peptidase IV inhibitor. Molecules 2020, 25, 3832. [Google Scholar] [CrossRef]
- Bharathi, K.N.; Nair, D. Evaluation of Laxative Activity of Caesalpinia sappan Wood Extracts in Rats. Int. J. Pharm. Res. Appl. 2022, 7, 64–69. [Google Scholar]
- Rajput, M.S.; Nirmal, N.P.; Nirmal, S.J.; Santivarangkna, C. Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology. S. Afr. J. Bot. 2022, 151, 60–74. [Google Scholar] [CrossRef]
- Tu, W.C.; Ding, L.F.; Peng, L.Y.; Song, L.D.; Wu, X.D.; Zhao, Q.S. Cassane diterpenoids from the seeds of Caesalpinia bonduc and their nitric oxide production and α-glucosidase inhibitory activities. Phytochemistry 2022, 193, 112973. [Google Scholar] [CrossRef]
- Tamburini, D. Investigating Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD) by high performance liquid chromatography tandem mass spectrometry–Towards the creation of a mass spectra database. Dyes Pigm. 2019, 163, 454–474. [Google Scholar] [CrossRef]
- Syamsunarno, M.R.A.; Safitri, R.; Kamisah, Y. Protective effects of Caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs. Front. Pharmacol. 2021, 12, 725745. [Google Scholar] [CrossRef]
- Purba, B.A.V.; Pujiarti, R.; Masendra, M.; Lukmandaru, G. Total Phenolic, Flavonoid, Tannin Content and DPPH Scavenging Activity of Caesalpinia sappan Linn. Bark. Wood Res. J. 2022, 13, 63–68. [Google Scholar] [CrossRef]
- Surup, G.R.; Hunt, A.J.; Attard, T.; Budarin, V.L.; Forsberg, F.; Arshadi, M.; Trubetskaya, A. The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries. Energy 2020, 193, 116696. [Google Scholar] [CrossRef]
- Mandal, S.; Venkatramani, J. A review of plant-based natural dyes in leather application with a special focus on color fastness characteristics. Environ. Sci. Pollut. Res. 2023, 30, 48769–48777. [Google Scholar] [CrossRef]
- Ma, G.; Wu, H.; Chen, D.; Zhu, N.; Zhu, Y.; Sun, Z.; Xu, X. Antimalarial and antiproliferative cassane diterpenes of Caesalpinia sappan. J. Nat. Prod. 2015, 78, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhang, L.L.; Liu, Q.Y.; Feng, L.; Ye, Y.; Lu, J.J.; Lin, L.G. Cytotoxic and pro-apoptotic effects of cassane diterpenoids from the seeds of Caesalpinia sappan in cancer cells. Molecules 2016, 21, 791. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.L.; Sun, Z.H.; Hu, M.G.; Wu, T.Y.; Yuan, J.Q.; Wu, H.F.; Xu, X.D. New cassane diterpenoids from Caesalpinia sappan and their antiplasmodial activity. Molecules 2017, 22, 1751. [Google Scholar] [CrossRef] [PubMed]
- Ngernnak, C.; Panyajai, P.A.W.A.R.E.T.; Anuchapreeda, S.O.N.G.Y.O.T.; Wongkham, W.E.E.R.A.H.; Saiai, A. Phytochemical and cytotoxic investigations of the heartwood of caesalpiniasappanlinn. Asian J. Pharm. Clin. Res. 2018, 11, 336–339. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.B.; Qu, W.; Guan, F.Q.; Li, L.Z.; Liang, J.Y. Caesappin A and B, two novel protosappanins from Caesalpinia sappan L. Fitoterapia 2014, 92, 280–284. [Google Scholar] [CrossRef]
- Mueller, M.; Weinmann, D.; Toegel, S.; Holzer, W.; Unger, F.M.; Viernstein, H. Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food Funct. 2016, 7, 1671–1679. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, A.; Sun, Y.; Zhang, W.; Zhang, T.; Gao, Y.; Shan, D.; Wang, S.; Li, G.; Wang, Q.; et al. Beneficial effects of sappanone A on lifespan and thermotolerance in Caenorhabditis elegans. Eur. J. Pharm. 2020, 888, 173558. [Google Scholar] [CrossRef]
- Min, B.S.; Cuong, T.D.; Hung, T.M.; Min, B.K.; Shin, B.S.; Woo, M.H. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2012, 22, 7436–7439. [Google Scholar] [CrossRef]
- Saenjum, C.; Chaiyasut, C.; Kadchumsang, S.; Chansakaow, S.; Suttajit, M. Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. J. Med. Plants Res. 2010, 4, 1594–1600. [Google Scholar]
- Wang, Y.Z.; Sun, S.Q.; Zhou, Y.B. Extract of the dried heartwood of Caesalpinia sappan L. attenuates collagen-induced arthritis. J. Ethnopharmacol. 2011, 136, 271–278. [Google Scholar] [CrossRef]
- Baek, N.I.; Jeon, S.G.; Ahn, E.M.; Hahn, J.T.; Bahn, J.H.; Jang, J.S.; Choi, S.Y. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch. Pharmacal Res. 2000, 23, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Ma, T.; Sun, S.; Zhang, Y.; Song, L. Brazilin Inhibits the Inflammatory Immune Response Induced by LPS in THP-1 Cells; Research Square Platform LLC: Durham, NC, USA, 2023. [Google Scholar]
- Batubara, I.; Mitsunaga, T.; Ohashi, H. Brazilin from Caesalpinia sappan wood as an antiacne agent. J. Wood Sci. 2010, 56, 77–81. [Google Scholar] [CrossRef]
- Settharaksa, S.; Songsangsirisak, C.; Monton, C. Computer-based estimation of antioxidant activity of Caesalpinia sappan L. Thai J. Pharm. Sci. 2018, 42. [Google Scholar]
- Nagaraju, S.; Thippeswamy, T.G.; Ravi Kumar, H. Evaluating the Lipid Profile and Mineral Composition of the Seed Oil of Caesalpinia sappan L.(Caesalpiniaceae). In Natural Product Experiments in Drug Discovery; Springer: New York, NY, USA, 2022; pp. 75–86. [Google Scholar]
- Bae, I.-K.; Min, H.-Y.; Han, A.-R.; Seo, E.-K.; Lee, S.K. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur. J. Pharm. 2005, 513, 237–242. [Google Scholar] [CrossRef]
- Sasaki, Y.; Hosokawa, T.; Nagai, M.; Nagumo, S. In vitro study for inhibition of NO production about constituents of Sappan Lignum. Biol. Pharm. Bull. 2007, 30, 193–196. [Google Scholar] [CrossRef]
- Hu, C.M.; Liu, Y.H.; Cheah, K.P.; Li, J.S.; Lam, C.S.K.; Yu, W.Y.; Choy, C.S. Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264. 7 macrophages stimulated with lipopolysaccharide. J. Ethnopharmacol. 2009, 121, 79–85. [Google Scholar] [CrossRef]
- Yohana, W.; Wihardja, R.; Sufiawati, I.; Khaerunnisa, D.F. Decreasing Respiratory rate, blood pressure and pulse after drinking secang in prehypertension patients. J. Adv. Med. Dental Sci. Res. 2019, 7, 34–36. [Google Scholar]
- Jung, E.G.; Han, K.I.; Hwang, S.G.; Kwon, H.J.; Patnaik, B.B.; Kim, Y.H.; Han, M.D. Brazilin isolated from Caesalpinia sappan L. inhibits rheumatoid arthritis activity in a type-II collagen induced arthritis mouse model. BMC Complement. Altern. Med. 2015, 15, 1–11. [Google Scholar] [CrossRef]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef]
- Mitani, K.; Takano, F.; Kawabata, T.; Allam, A.E.; Ota, M.; Takahashi, T.; Ohta, T. Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan). Planta Medica 2013, 79, 37–44. [Google Scholar] [CrossRef]
- Madhubala, S.; Poongothai, M.; Mahesh, K.E. Antibacterial and anti acne activity of Caesalpinia sappan L. and Cinnamomum verum J. Presl—A comparison. Int. J. Adv. Res. Biol. Sci. 2018, 5, 118–122. [Google Scholar]
- Srinivasan, R.; Karthik, S.; Mathivanan, K.; Baskaran, R.; Karthikeyan, M.; Gopi, M.; Govindasamy, C. In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pac. J. Trop. Biomed. 2012, 2, S136–S139. [Google Scholar] [CrossRef]
- Rina, O.; Ibrahim, S.; Dharma, A.; Afrizal, I.; Wirawati, C.U. Screening for active agent to anti-diarrhea by an evaluation of antimicrobial activities from three fractions of sappan wood (Caesalpinia sappan L.). Der Pharma Chem. 2016, 8, 114–117. [Google Scholar]
- Puttipan, R.; Wanachantararak, P.; Khongkhunthian, S.; Okonogi, S. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis. Drug Discov. Ther. 2017, 11, 316–322. [Google Scholar] [CrossRef]
- Srilakshmi, V.S.; Vijayan, P.; Raj, P.V.; Dhanaraj, S.A.; Chandrashekhar, H.R. Hepatoprotective properties of Caesalpinia sappan Linn. heartwood on carbon tetrachloride induced toxicity. Indian J. Exp. Biol. 2010, 48, 905–910. [Google Scholar] [PubMed]
- Gupta, N.; Chauhan, P.; Nayeem, M.; Safhi, M.M.; Agarwal, M. Hepatoprotective effect of Caesalpinia crista Linn. against CCl4 and paracetamol induced hepatotoxicity in albino rats. Afr. J. Pharm. Pharmacol. 2014, 8, 485–491. [Google Scholar]
- Vij, T. A narrative review on Sappan wood (Caesalpinia sappan L.). J. Pharm. Innov. 2023, 12, 2861–2865. [Google Scholar]
- Mashau, M.E.; Ramatsetse, K.E.; Ramashia, S.E. Effects of adding Moringa oleifera leaves powder on the nutritional properties, lipid oxidation and microbial growth in ground beef during cold storage. Appl. Sci. 2021, 11, 2944. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, Y.C.; Choi, B.J.; Lee, D.W.; Yoon, J.H.; Kim, E.C. Mechanism of sappanchalcone-induced growth inhibition and apoptosis in human oral cancer cells. Toxicol. Vitr. 2011, 25, 1782–1788. [Google Scholar] [CrossRef]
- Gavamukulya, Y.; Wamunyokoli, F.; El-Shemy, H.A. Annona muricata: Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. Asian Pac. J. Trop. Med. 2017, 10, 835–848. [Google Scholar] [CrossRef]
- Sarumathy, K.; Vijay, T.; Palani, S.; Sakthivel, K.; Rajan, M.D. Antioxidant and hepatoprotective effects of Caesalpinia sappan against acetaminophen-induced hepatotoxicity in rats. Int. J. Clin. Pharmacol. Ther. 2011, 1, 19–31. [Google Scholar]
- Pattananandecha, T.; Apichai, S.; Julsrigival, J.; Ogata, F.; Kawasaki, N.; Saenjum, C. Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants 2022, 11, 1698. [Google Scholar] [CrossRef] [PubMed]
- Kadir, F.A.; Kassim, N.M.; Abdulla, M.A.; Kamalidehghan, B.; Ahmadipour, F.; Yehye, W.A. PASS-predicted hepatoprotective activity of Caesalpinia sappan in thioacetamide-induced liver fibrosis in rats. Sci. World J. 2014, 2014, 301879. [Google Scholar] [CrossRef] [PubMed]
- Prashith, T.R.; Vinayaka, K.S.; Raghavendra, H.S. Caesalpinia sappan L. (Caesalpiniaceae): A Review on its Phytochemistry and Pharmacological Activities. In: Medicinal and aromatic plants: Traditional Uses. Phytochem. Pharmacol. Potential 2021. [Google Scholar]
- Meullemiestre, A.; Petitcolas, E.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.A. Impact of ultrasound on solid–liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrason. Sonochem. 2016, 28, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Kou, D.; Mitra, S. Extraction of semivolatile organic compounds from solid matrices. Sample Prep. Technol. Anal. Chem. 2003, 162, 139–182. [Google Scholar]
- Setiawan, H.; Angela, I.L.; Wijaya, O.; Mun’Im, A. Application of Natural Deep Eutectic Solvents (NADES) for Sappan Wood (Caesalpinia sappan L.) extraction to test for inhibition of DPP IV activity. J. Res. Pharm. 2020, 24, 380–388. [Google Scholar] [CrossRef]
- Bukhanko, N.; Attard, T.; Arshadi, M.; Eriksson, D.; Budarin, V.; Hunt, A.J.; Clark, J. Extraction of cones, branches, needles and bark from Norway spruce (Piceaabies) by supercritical carbon dioxide and soxhlet extractions techniques. Ind. Crops Prod. 2020, 145, 112096. [Google Scholar] [CrossRef]
- Santos, K.A.; Gonçalves, J.E.; Cardozo-Filho, L.; da Silva, E.A. Pressurized liquid and ultrasound-assisted extraction of α-bisabolol from candeia (Eremanthuserythropappus) wood. Ind. Crops Prod. 2019, 130, 428–435. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Ali, A.; Chua, B.L.; Chow, Y.H. An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. TrAC-Trends Anal. Chem. 2019, 118, 338–351. [Google Scholar] [CrossRef]
- Gamboa-Gómez, C.I.; Simental-Mendía, L.E.; González-Laredo, R.F.; Alcantar-Orozco, E.J.; Monserrat-Juarez, V.H.; Ramírez-España, J.C.; Rocha-Guzmán, N.E. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Res. Int. 2017, 102, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Lee, S.; Kang, S.S.; Shin, H.S. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci. Technol. 2018, 82, 89–109. [Google Scholar] [CrossRef]
- Rakotoniaina, E.N.; Donno, D.; Randriamampionona, D.; Harinarivo, H.L.; Andriamaniraka, H.; Solo, N.R.; Beccaro, G.L. Insights into an endemic medicinal plant species of Madagascar and Comoros: The case of Famelona (Chrysophyllumboivinianum (Pierre) Baehni, Sapotaceae family). S. Afr. J. Bot. 2018, 117, 110–118. [Google Scholar] [CrossRef]
- Bastos, C.; Barros, L.; Duenas, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef]
- Mu’nisa, A.; Hala, Y.; Muflihunna, A. Analysis of Phenols and Antioxidants Infused Sappan Wood (Caesalpinia sappan L.). Int. J. Sci. Res. 2017, 2, 89–93. [Google Scholar]
- Todaro, L.; Russo, D.; Cetera, P.; Milella, L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crops Prod. 2017, 109, 384–390. [Google Scholar] [CrossRef]
- Bostyn, S.; Destandau, E.; Charpentier, J.P.; Serrano, V.; Seigneuret, J.M.; Breton, C. Optimization and kinetic modelling of robinetin and dihydrorobinetin extraction from Robiniapseudoacacia wood. Ind. Crops Prod. 2018, 126, 22–30. [Google Scholar] [CrossRef]
- Cetera, P.; Russo, D.; Milella, L.; Todaro, L. Thermo-treatment affects Quercus cerris L. wood properties and the antioxidant activity and chemical composition of its by-product extracts. Ind. Crops Prod. 2018, 380–388. [Google Scholar] [CrossRef]
- Batubara, I.; Mitsunaga, T.; Ohashi, H. Screening antiacne potency of Indonesian medicinal plants: Antibacterial, lipase inhibition, and antioxidant activities. J. Wood Sci. 2009, 55, 230–235. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Patil, H.; Mudaliar, S.; Athalye, A. Ultrasound-assisted enzymatic scouring of jute optimised by response surface methodology and its natural dyeing. Color Tech. 2023, 139, 97–108. [Google Scholar] [CrossRef]
- St-Pierre, F.; Achim, A.; Stevanovic, T. Composition of ethanolic extracts of wood and bark from Acer saccharum and Betula alleghaniensis trees of different vigor classes. Ind. Crops Prod. 2013, 41, 179–187. [Google Scholar] [CrossRef]
- Kurniasari, L.; Djaeni, M.; Kumoro, A.C. Ultrasound-Assisted Extraction (UAE) of sappan wood (Caesalpinia sappan L.): Effect of solvent concentration and kinetic studies. Braz. J. Food Technol. 2023, 26, e2022140. [Google Scholar] [CrossRef]
- Yuniati, Y.; Azmi, D.D.; Nurandriea, E.; Qadariyah, L.; Mahfud, M. Parametric Study and Characterization of Sappan Wood (Caesalpinia sappan Linn) Natural Red Colorant Extract with Ultrasonic Assisted Extraction Method. ASEAN J. Chem. Eng. 2023, 23, 103–112. [Google Scholar] [CrossRef]
- Chartarrayawadee, W.; Too, C.O.; Ross, S.; Ross, G.M.; Jumpatong, K.; Noimou, A.; Settha, A. Green Synthesis and Stabilization of Earthworm-Like Gold Nanostructure and Quasi-Spherical Shape Using Caesalpinia Sappan Linn. Extract. Green Process. Synth. 2018, 7, 424–432. [Google Scholar] [CrossRef]
- Zwingelstein, M.; Draye, M.; Besombes, J.L.; Piot, C.; Chatel, G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Ahmad, I.; Setyaningsih, E.P.; Arifianti, A.E.; Saputri, F.C.; Munim, A. Optimization of ionic liquid-based microwave-assisted extraction on brazilin levels from sappan wood and its dipeptidyl peptidase IV inhibition activity. J. Appl. Pharm Sci. 2021, 11, 072–079. [Google Scholar]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Ghorpade, B.; Darvekar, M.; Vankar, P.S. Ecofriendly cotton dyeing with Sappan wood dye using ultrasound energy. Colourage 2000, 47, 27–30. [Google Scholar]
- Rosanti, I.; Sadikin, A.; Prasetia, R. Determination of the absorbility of natural dyes of secang wood (Caesalpinia sappan) and teak leaves (Tectona grandis L.) in organic kenaf fiber industry. J. Ris. Ind. Has. Hutan 2023, 14, 55–66. [Google Scholar]
- Ohama, P.; Tumpat, N. Textile dyeing with natural dye from sappan tree (Caesalpinia sappan Linn.) extract. Int. J. Mat. Text. Eng. 2014, 8, 432–434. [Google Scholar]
- Vankar, P.S.; Gangwar, A. Natural dyeing mediated by atmospheric air pressure plasma treatment of polyester. Pigment. Resin. Technol. 2023. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N.; Raghavan, G.V. Color and molecular structure alterations of brazilein extracted from Caesalpinia sappan L. under different pH and heating conditions. Sci. Rep. 2020, 10, 12386. [Google Scholar] [CrossRef]
- Bukke, A.N.; Hadi, F.N.; Babu, K.S. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines. Data Bri. 2018, 19, 868–877. [Google Scholar] [CrossRef]
- Januariyatun, A.; Wahyuningsih, M.S.H. Effect of Secang Drink (Caesalpinia sappan L.) on Plasma Nitric Oxide Level and Blood Pressure in Prehypertension Peoples. KnE Life Sci. 2018, 193–202. [Google Scholar] [CrossRef]
- Du, H.; Cheng, J.; Wang, M.; Tian, M.; Yang, X.; Wang, Q. Red dye extracted sappan wood waste derived activated carbons characterization and dye adsorption properties. Diam. Rel. Mat. 2020, 102, 107646. [Google Scholar] [CrossRef]
- Herawati, E.; Yulastri, L. Formulation and Evaluation of Secang Stem Extract (Caesalpinia sappan L) in Decorative Cosmetics. IOP Conf. Ser. Earth Environ. Sci. 2021, 810, 012057. [Google Scholar] [CrossRef]
- Lakshmi, C.; Gahlot, M. The Quintessential Naqqashi Nirmal Painting Art of Telangana: Source of Inspiration for Innovative Textile Design Ideas. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 803–814. [Google Scholar] [CrossRef]
Bioactive Compound | Properties | References |
---|---|---|
Xanthone | The xanthones existing in the pericarp, whole fruit, heartwood, and leaf of mangosteen have been found to possess a broad variety of pharmacologic properties, including antioxidant, antitumor, antiallergic, anti-inflammatory, antibacterial, antifungal, and antiviral activities (Garcinia mangostana Linn., GML). | [15] |
Coumarin | Coumarin is a substance that smells like vanilla and is present in many plants. It was historically used to flavor meals. | [14] |
Chalcones | The golden crystalline ketone C6H5CHCHCOC6H5, as well as many of its many derivatives, some of which are flavone-related plant colors, are created by combining benzaldehyde and acetophenone. Currently, a wide range of chalcones are used as dietary additives, cosmetic ingredients, and for the treatment of gastritis, stomach cancer, viral illnesses, cardiovascular diseases, pain, and for the treatment of pain. | [16] |
Flavones | A colorless, crystalline compound that serves as the building block for several yellow or whitish plant pigments. The anti-inflammatory properties of phytonutrients, like flavonoids, are advantageous, and they shield our cells from oxidative harm that can cause diseases. | [17] |
Homo isoflavonoids | Within a select few plant families, the rare compound is spread. These natural compounds can be found in large quantities in the genus Caesalpinia. Numerous bioactivities of homoisoflavonoids have been noted, including antimicrobial, antimutagenic, antidiabetic, and vasorelaxant properties. | [18] |
Brazilin | C16H14O5, a white or pale phenolic substance, is primarily used for dyeing and is derived from the Caesalpinia Brazilwood species. | [19] |
Part | Principal Compound | Reference |
---|---|---|
Stem | Flavonoids, tannins, alkaloids, sterols, and terpenoids | [20] |
Seeds | Caesalpinia R and S Caesalsappanins A–L Caesalsappanins M–N | [33,34,35] |
Bark | Alkaloids, flavonoids, tannins, terpenoids, and steroids | [27] |
Wood | Brazilin, sappanone B, and protosappanin A | [36] |
Leaves | Glycosides, phenols, tannins, saponins, flavonoids, and steroids | [11] |
Heartwood | Ceasalpiniaphenols A–D Sappanchalcone, ceasalpiniaphenol G, and quercetin Brazilin, protosappanin A, protosappanin B, protosappanin C, protosappanin D, and protosappanin E 3′-Deoxy-4-O-methylepisappanol, (+)-(8S,8′S)-bisdihydrosiringenin Brazilein palmitic acid Protosappanins E-1 and E-2 Lupeol, vanillin, β-sitosterol, linoleic acid, stigmasterol, and friedelin | [37,38,39] |
Characteristics | Mode of Action | References |
---|---|---|
Anti-inflammatory | Inhibition of iNOS gene expression Nuclear factor kappa B (NF-κB) Tumor necrosis factor-α production | [38,42,48,49,50] [38,42,50,51] |
Antioxidant | DPPH radical scavenging assay Ferric reduction assay | [49] [46,51] |
Antiacne | Zone of inhibition | [52,53,54,55] |
Antibacterial | MIC (minimum inhibitory concentration)/MIB (minimum bactericidal concentration) | [56,57,58] |
Hepatoprotective | Inhibition of CCl4 intoxication | [59,60] |
Conventional Extraction | ||||
---|---|---|---|---|
Raw Material | Technique | Experimental Data | Results | References |
Conventional extraction | Solvent: Ethanol–water | Brazilin produces | ||
(80:20) | 3.12 mg/g of extract. | [73] | ||
SLR:1:20 (w:v) 72 h | ||||
Solvent: Ethanol–water | Brazilin produces | |||
(96:4) | 4.58 mg/g of extract. | |||
Maceration | SLR:1:20 (w:v) 72 h | |||
Brazilin produces | [22] | |||
Soxhlet extraction | Solvent: Ethanol–water | 5.43 mg/g of extract. | ||
(96:4) | ||||
SLR:1:20 (w:v) 3 h | ||||
Novel extraction | Deep eutectic solvents | Betain:lactic acid | Brazilin produces | |
with 60% water | 4.49 mg/g of extract. | [22,73] | ||
SLR: 1:20 (w:v) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vij, T.; Anil, P.P.; Shams, R.; Dash, K.K.; Kalsi, R.; Pandey, V.K.; Harsányi, E.; Kovács, B.; Shaikh, A.M. A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules 2023, 28, 6247. https://doi.org/10.3390/molecules28176247
Vij T, Anil PP, Shams R, Dash KK, Kalsi R, Pandey VK, Harsányi E, Kovács B, Shaikh AM. A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules. 2023; 28(17):6247. https://doi.org/10.3390/molecules28176247
Chicago/Turabian StyleVij, Twinkle, Pawase Prashant Anil, Rafeeya Shams, Kshirod Kumar Dash, Rhythm Kalsi, Vinay Kumar Pandey, Endre Harsányi, Béla Kovács, and Ayaz Mukarram Shaikh. 2023. "A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan" Molecules 28, no. 17: 6247. https://doi.org/10.3390/molecules28176247
APA StyleVij, T., Anil, P. P., Shams, R., Dash, K. K., Kalsi, R., Pandey, V. K., Harsányi, E., Kovács, B., & Shaikh, A. M. (2023). A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules, 28(17), 6247. https://doi.org/10.3390/molecules28176247