In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the As-Synthesized Samples
2.2. The Influence of Heterojunction Structure on PT/IS with Mixed Crystalline Phase Photoelectrode
2.3. The Photocathodic Protection (PCP) Performance of PT/IS
2.4. The Charge Transfer Mechanism of PT/IS Photoelectrode
3. Experimental
3.1. Synthesis of In2S3@TiO2/In2S3 Heterojunction
3.2. Characterization
3.3. Photoelectrochemical and Photocathodic Protection Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bu, Y.; Ao, J.P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy Environ. 2017, 2, 331–362. [Google Scholar] [CrossRef]
- Xu, D.; Yang, M.; Liu, Y.; Zhu, R.; Lv, X.; Zhang, C.; Liu, B. Fabrication of an innovative designed TiO2 nanosheets/CdSe/polyaniline/graphene quaternary composite and its application as in-situ photocathodic protection coatings on 304SS. J. Alloys Compd. 2020, 822, 153685. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Y.; Liu, Y.; Chen, F.; Zhang, C.; Liu, B. A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects. Mater. Des. 2021, 197, 109235. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Ning, Y.; Ge, C.; Hou, B.; Zhao, Q.; Hu, Y. Photogenerated cathodic protection properties of Ag/NiS/TiO2 nanocomposites. Sci. Rep. 2022, 12, 4814. [Google Scholar] [CrossRef]
- Yuan, J.; Tsujikawa, S. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates. J. Electrochem. Soc. 1995, 142, 3444–3450. [Google Scholar] [CrossRef]
- Pan, G.; Li, J.; Zhang, G.; Zhan, Y.; Liu, Y. Binder-integrated Bi/BiOI/TiO2 as an anti-chloride corrosion coating for enhanced photocathodic protection of 304 stainless steel in simulated seawater. J. Alloys Compd. 2023, 938, 168469. [Google Scholar] [CrossRef]
- Guo, X.; Pan, G.; Fang, L.; Liu, Y.; Rui, Z. Z-Scheme CuOx/Ag/TiO2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater. Molecules 2023, 28, 456. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.C.; Hu, J.; Wang, H.H.; Shi, H.Y.; Wang, H.P.; Wang, X.; Jin, P.; Song, G.L.; Du, R.G. Decoration of rutile TiO2 nanorod film with g-C3N4/SrTiO3 for efficient photoelectrochemical cathodic protection. J. Photochem. Photobiol. A Chem. 2023, 443, 114825. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, M.; Chen, Z.; Jing, J.; Feng, C. High-efficiency photoelectrochemical cathodic protection performance of the TiO2/AgInSe2/In2Se3 multijunction nanosheet array. Corros. Sci. 2020, 176, 108901. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Yang, Y.; Pang, W. Photo-induced corrosion or protection: Determining the charge transfer in the semiconductor-metal heterojunction. J. Alloys Compd. 2020, 817, 152746. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Nan, Y.; Sun, Y.; Xu, H.; Chi, L.; Huang, Y.; Duan, J.; Hou, B. Effect of Co3O4/TiO2 heterojunction photoanode with enhanced photocathodic protection on 304 stainless steel under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131150. [Google Scholar] [CrossRef]
- Altaf, A.A.; Ahmed, M.; Hamayun, M.; Kausar, S.; Waqar, M.; Badshah, A. Titania nano-fibers: A review on synthesis and utilities. Inorganica Chim. Acta 2020, 501, 119268. [Google Scholar] [CrossRef]
- Feng, M.; Liu, Y.; Zhang, S.; Liu, Y.; Luo, N.; Wang, D. Carbon quantum dots (CQDs) modified TiO2 nanorods photoelectrode for enhanced photocathodic protection of Q235 carbon steel. Corros. Sci. 2020, 176, 108919. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Jing, J.; Sun, M.; Lu, G.; Tian, J.; Hou, J. A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corros. Sci. 2020, 166, 108441. [Google Scholar] [CrossRef]
- Jiang, A.; Di, Y.; Chen, S.; Zhang, D.; Chen, X.; Zhang, Z.; Zhang, X.; Dong, Q. Photocathodic protection of 304 stainless steel by coating muscovite/TiO2 heterostructure. Appl. Clay Sci. 2023, 240, 106974. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, X.; Yang, L.; Liu, X.; Zhong, Z.; Hou, B. Novel K-doped TiO2 nanotube arrays with superhydrophilic surface and high photoelectrochemical cathodic protection. Appl. Surf. Sci. 2022, 580, 152274. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-Scheme In2S3-TiO2 for CO2 Reduction under Concentrated Natural Sunlight. Chin. J. Struct. Chem. 2022, 41, 34–39. [Google Scholar]
- Chai, H.; Gao, L.; Wang, P.; Li, F.; Hu, G.; Jin, J. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Appl. Catal. B Environ. 2022, 305, 121011. [Google Scholar] [CrossRef]
- Han, M.; Yu, L.; Chen, W.; Wang, W.; Jia, J. Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays. Appl. Surf. Sci. 2016, 369, 108–114. [Google Scholar] [CrossRef]
- Huang, G.; Shen, Q.; Ma, X.; Zhong, J.; Chen, J.; Huang, J.; Wang, L.; She, H.; Wang, Q. Preparation of an In2S3/TiO2 Heterostructure for Enhanced Activity in Carbon Dioxide Photocatalytic Reduction. Chemphotochem 2021, 5, 438–444. [Google Scholar] [CrossRef]
- Park, J.; Lee, T.H.; Kim, C.; Lee, S.A.; Choi, M.-J.; Kim, H.; Yang, J.W.; Lim, J.; Jang, H.W. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 295, 120276. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, X.; Liu, N.; Wang, X.; Wang, L.; Hou, B. Study on the photocathodic protection of 304 stainless steel by Ag and In2S3 co-sensitized TiO2 composite. Appl. Surf. Sci. 2020, 507, 145088. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, L.; Li, C.; Jiang, Y.; Wang, F. Direct Z-scheme In2S3/Bi2S3 heterojunction-based photoelectrochemical aptasensor for detecting oxytetracycline in water. J. Environ. Chem. Eng. 2022, 10, 107404. [Google Scholar] [CrossRef]
- Ng, B.J.; Putri, L.K.; Kong, X.Y.; Teh, Y.W.; Pasbakhsh, P.; Chai, S.P. Z-Scheme Photocatalytic Systems for Solar Water Splitting. Adv. Sci. 2020, 7, 1903171. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Li, Y.; Zhang, J.; Du, Y.; Yang, Y.; Jiang, Y.; Lin, K. Construction of core-shell ZnS@In2S3 rhombic dodecahedron Z-scheme heterojunction structure: Enhanced photocatalytic activity and mechanism insight. Chem. Eng. J. 2021, 423, 130138. [Google Scholar] [CrossRef]
- Nan, Y.; Wang, X.; Xing, S.; Xu, H.; Niu, J.; Ren, M.; Yu, T.; Huang, Y.; Hou, B. Designed a hollow Ni2P/TiO2 S-scheme heterojunction for remarkably enhanced photoelectric effect for solar energy harvesting and conversion. J. Mater. Chem. C 2023, 11, 4576–4587. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, G.; Wang, Y.; Jin, J.; Hao, M.; Li, J.; Huang, X.; Jiang, J. Enhancing photocatalytic H-2 evolution on In2S3/mesoporous TiO2 nanocomposites via one-pot microwave-assisted synthesis using an ionic liquid. Nanoscale 2020, 12, 12336–12345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, H.; Wu, L.; Xie, Z.-H.; Zhong, C.-J. Temperature-controlled and shape-dependent ZnO/TiO2 heterojunction for photocathodic protection of nickel-coated magnesium alloys. Appl. Surf. Sci. 2023, 614, 156109. [Google Scholar] [CrossRef]
- Chang, Y.; Xuan, Y.; Zhang, C.; Hao, H.; Yu, K.; Liu, S. Z-Scheme Pt@CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting. Catal. Today 2019, 327, 315–322. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Lin, C.; Zhang, J.; Feng, J.; Hou, B.; Yan, W.; Li, M.; Ren, Z. Spontaneous polarization of ferroelectric heterostructured nanorod arrays for high-performance photoelectrochemical cathodic protection. Appl. Surf. Sci. 2023, 609, 155345. [Google Scholar] [CrossRef]
- Wang, W.; Ye, Y.; Li, G.; Yang, Z.; Duan, J.; Sun, J.; Yan, Y. High-efficiency photocathodic protection performance of novel MnIn2S4/TiO2 n-n heterojunction films for Q235 carbon steel in chloride- containing simulated concrete pore solution. J. Alloys Compd. 2023, 941, 168957. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Wang, S.; Li, L.; Wang, W.; Sun, Q. In-situ generation of Bi2S3 to construct WO3/BiVO4/Bi2S3 heterojunction for photocathodic protection of 304SS. J. Electroanal. Chem. 2022, 907, 116033. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Arlos, M.J.; Liang, R.; Fong, L.C.M.L.C.; Zhou, N.Y.; Ptacek, C.J.; Andrews, S.A.; Servos, M.R. Influence of methanol when used as a water-miscible carrier of pharmaceuticals in TiO2 photocatalytic degradation experiments. J. Environ. Chem. Eng. 2017, 5, 4497–4504. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, K.; Zhang, C.; Yang, Z.; Feng, Y.; Hao, H.; Jiang, Y.; Lou, L.L.; Zhou, W.; Liu, S. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Appl. Catal. B-Environ. 2017, 215, 74–84. [Google Scholar] [CrossRef]
- Jiang, W.; Qu, D.; An, L.; Gao, X.; Wen, Y.; Wang, X.; Sun, Z. Deliberate construction of direct Z-scheme photocatalysts through photodeposition. J. Mater. Chem. A 2019, 7, 18348–18356. [Google Scholar] [CrossRef]
- Gong, D.; Xu, S.; Zhang, K.; Du, L.; Qiu, P. Enhancing photoelectrochemical cathodic protection performance by facile tuning sulfur redox state in sacrificial agents. Chem. Eng. J. 2023, 451, 138552. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Zhu, J.; Li, W.; Li, Y.; Zhang, P. Preparation of ZIF-67/BiVO4 composite photoanode and its enhanced photocathodic protection performance of 316SS under visible light. J. Alloys Compd. 2023, 961, 170926. [Google Scholar] [CrossRef]
Samples | Rs (Ω) | CPE1, Y0 (S·secn) | n1 (0 < n ≤ 1) | Rf (Ω) | CPE2, Y0 (S·secn) | n2 (0 < n ≤1) | Rct (kΩ) |
---|---|---|---|---|---|---|---|
IS | 1.50 | 1.81 × 10−7 | 1.00 | 19.5 | 0.78 × 10−5 | 0.96 | 8.10 |
PT(1)/IS | 1.51 | 2.08 × 10−7 | 1.00 | 18.0 | 1.22 × 10−5 | 0.96 | 6.95 |
PT(3)/IS | 1.96 | 3.56 × 10−7 | 0.94 | 23.5 | 3.24 × 10−5 | 0.92 | 2.92 |
PT(5)/IS | 1.84 | 3.00 × 10−7 | 0.97 | 20.3 | 2.03 × 10−5 | 0.94 | 4.17 |
PT | 2.68 | 1.85 × 10−7 | 0.99 | 18.2 | 1.03 × 10−5 | 0.97 | 9.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Suo, K.; Wang, Y.; Ren, X.; Cao, J. In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel. Molecules 2023, 28, 6554. https://doi.org/10.3390/molecules28186554
Chang Y, Suo K, Wang Y, Ren X, Cao J. In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel. Molecules. 2023; 28(18):6554. https://doi.org/10.3390/molecules28186554
Chicago/Turabian StyleChang, Yue, Kaili Suo, Yuhang Wang, Xiaona Ren, and Jiangli Cao. 2023. "In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel" Molecules 28, no. 18: 6554. https://doi.org/10.3390/molecules28186554
APA StyleChang, Y., Suo, K., Wang, Y., Ren, X., & Cao, J. (2023). In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel. Molecules, 28(18), 6554. https://doi.org/10.3390/molecules28186554