Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents
Abstract
:1. Introduction
2. Results
2.1. Regression Model Development and Statistical Analysis
2.2. Process Optimization
2.3. Effect of Process Variables on Adsorption Performance (R1) of AKTWAC
2.4. Effect of Process Variables on Fixed Carbon Content (R2)
2.5. Effect of Process Variables on Yield Percentages of AKTWAC Carbon (R3)
2.6. Physio-Chemical Characterizations
2.6.1. Surface Morphological Analysis
2.6.2. Surface Area and Porous Texture Analysis
2.6.3. Thermogravimetric and Elemental Analysis
2.6.4. X-ray Diffraction Analysis
3. Materials and Methods
3.1. Materials
3.1.1. Preparation of Feedstock
3.1.2. Preparation of Adsorbate Solution
3.2. Methodology
3.2.1. Adsorption Studies
3.2.2. Design of Experiment Using Response Surface Methodology (RSM)
3.2.3. Analytical Methods and Physio-Chemical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Foroutan, R.; Peighambardoust, S.J.; Peighambardoust, S.H.; Pateiro, M.; Lorenzo, J.M. Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules 2021, 26, 2241. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Removal of Chromium(III) and Cadmium(II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules 2021, 26, 3718. [Google Scholar] [CrossRef] [PubMed]
- Kacan, E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. J. Environ. Manag. 2016, 166, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Tomic, N.M.; Dohcevic-Mitrovic, Z.D.; Paunovic, N.M.; Mijin, D.Z.; Radic, N.D.; Grbic, B.V.; Askrabic, S.M.; Babic, B.M.; Bajuk-Bogdanovic, D.V. NanocrystallineCeO2—As effective adsorbent of azo dyes. Langmuir 2014, 30, 11582–11590. [Google Scholar] [CrossRef]
- Das, S.K.; Khan, M.M.R.; Parandhaman, T.; Laffir, F.; Guha, A.K.; Sekarana, G.; Mandal, A.B. Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 2013, 5, 5549–5560. [Google Scholar] [CrossRef]
- Da Silva, L.G.; Ruggiero, R.; Gontijo, P.M.; Pinto, R.B.; Royer, B.; Lima, E.C.; Fernandes, T.; Calvete, T.H.M. Adsorption of Brilliant Red 2BE dye from watersolutions by a chemically modified sugarcane bagasse lignin. Chem. Eng. J. 2011, 168, 620–628. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Abd Hamid, S.B.; Das, R.; Hasan, M.R.; Zain, S.M.; Khalid, K.; Uddin, M.N. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013, 8, 6523–6555. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Krishnan, B.; Sagadevan, S.; Rafique, R.F.; Hamizi, N.A.B.; Abdul Wahab, Y.; Khan, A.A.; Johan, R.B.; Al-douri, Y.; Kazi, S.N.; et al. Effect of Temperature on the Physical, Electro-Chemical and Adsorption Properties of Carbon Micro-Spheres Using Hydrothermal Carbonization Process. Nanomaterials 2018, 8, 597. [Google Scholar] [CrossRef]
- Akinpelu, A.A.; Chowdhury, Z.Z.; Shibly, S.M.; Faisal, A.N.M.; Badruddin, I.A.; Rahman, M.M.; Amin, M.A.; Sagadevan, S.; Akbarzadeh, O.; Khan, T.M.Y.; et al. Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling. Int. J. Mol. Sci. 2021, 22, 2090. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Zain, S.M.; Khan, R.A.; Ahmad, A.A.; Khalid, K. Application of response surface methodology (RSM) for optimizing production condition for removal of Pb (II) and Cu (II) onto kenaf fiber based activated carbon. Res. J. Appl. 2011, 4, 458–465. [Google Scholar]
- Xu, J.; Chen, L.; Qu, H.; Jiao, Y.; Xie, J.; Xing, G. Preparation and characterization ofactivated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 2014, 320, 674–680. [Google Scholar] [CrossRef]
- Ribas, M.; Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Cataluña, R.; Feris, L.A.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Calvete, T. Comparison of a home-made cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem. Eng. J. 2014, 248, 315–326. [Google Scholar] [CrossRef]
- Hesas, R.H.; Arami-Niya, A.; Daud, W.M.A.W.; Sahu, J.N. Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: Optimisation using surface response methodology. Chem. Eng. Res. Des. 2013, 91, 2447–2456. [Google Scholar] [CrossRef]
- Hesas, R.H.; Daud, W.M.A.W.; Sahu, J.N.; Arami-Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrol. 2013, 100, 1–11. [Google Scholar] [CrossRef]
- Chayid, M.A.; Ahmed, M.J. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms kinetics, and thermodynamics studies. J. Environ. Chem. Eng. 2015, 3, 1592–1601. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chem. Eng. J. 2012, 187, 53–62. [Google Scholar] [CrossRef]
- Foo, K.Y.; Lee, L.K.; Hameed, B.H. Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. Chem. Eng. J. 2013, 223, 604–610. [Google Scholar] [CrossRef]
- Al-mahbashi, N.M.Y.; Kutty, S.R.M.; Jagaba, A.H.; Al-nini, A.; Sholagberu, A.T.; Baker, N.S.; Aldhawi, B.N.S.; Rathnayake, U. Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals: Optimization by response surface methodology. Case Stud. Chem. Environ. Eng. 2023, 8, 100437. [Google Scholar] [CrossRef]
- Saucier, C.; Adebayo, M.; Lima, E.C.; Cataluña, R.; Thue, P.; Prola, L.D.T.; Puchana-Rosero, M.J.; Machado, F.; Pavan, F.; Dotto, G.L. Microwaved-assisted activated carbon from cocoa shell as adsorbents for removal of sodium diclofenac and nimesulide from aqueous effluents. J. Hazard. Mater. 2015, 289, 18–27. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chem. Eng. J. 2011, 166, 792–795. [Google Scholar] [CrossRef]
- Salema, A.A.; Ani, F.N. Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J. Anal. Appl. Pyrol. 2012, 96, 162–172. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Fluoro-quinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. J. Anal. Appl. Pyrol. 2014, 105, 199–208. [Google Scholar] [CrossRef]
- Njoku, V.O.; Foo, K.Y.; Asif, M.; Hameed, B.H. Preparation of activated carbonsfrom rambutan (Nephelium lappaceum) peel by microwave-Induced KOH activation for acid yellow 17 dye adsorption. Chem. Eng. J. 2014, 250, 198–204. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Puad, N.A.A.; Bello, O.S. Kinetic: Equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind. 2014, 6, 18–35. [Google Scholar] [CrossRef]
- Abbas, A.F.; Ahmed, M.J. Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis. J. Water Proc. Eng. 2016, 9, 201–207. [Google Scholar] [CrossRef]
- Ferrera-Lorenzo, N.; Fuente, E.; Suárez-Ruiz, I.; Ruiz, B. KOH activated carbon from conventional and microwave heating system of a macro-algae waste from the Agar–Agar industry. Fuel Process. Technol. 2014, 121, 25–31. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Y.; Wang, W.; Yue, Q.; Yang, T. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxy-tetracycline(OTC). Chem. Eng. J. 2011, 171, 1446–1453. [Google Scholar] [CrossRef]
- Qiang, Z.Z.; Ying, X.H.; Srinivasakannan, C.; Hui, P.J.; Bo, Z.L. Utilization of Crofton weed for preparation of activated carbon by microwave induced CO2 activation. Chem. Eng. Process. 2014, 82, 1–8. [Google Scholar]
- Pezoti, O., Jr.; Cazetta, A.L.; Gomes, R.; Barizão, É.O.; Souza, I.P.A.F.; Martins, A.C.; Asefa, T.; Almeida, V.C. Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. J. Anal. Appl. Pyrol. 2014, 105, 166–176. [Google Scholar] [CrossRef]
- Namazi, A.B.; Allen, D.G.; Jia, C.Q. Microwave-assisted pyrolysis and activation of pulp mill sludge. Biomass Bioenergy 2015, 73, 217–224. [Google Scholar] [CrossRef]
- Maldhure, A.V.; Ekhe, J.D. Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem. Eng. J. 2011, 168, 1103–1111. [Google Scholar] [CrossRef]
- Zhu, L.; Lei, H.; Wang, L.; Yadavalli, G.; Zhang, X.; Wei, Y.; Liu, Y.; Yan, D.; Chen, S.; Ahring, B. Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J. Anal. Appl. Pyrol. 2015, 115, 149–156. [Google Scholar] [CrossRef]
- Georgin, J.; Dotto, G.L.; Mazutti, M.A.; Foletto, E.L. Preparation of activatedcarbon from peanut shell by conventional pyrolysis and microwaveirradiation-pyrolysis to remove organic dyes from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 266–275. [Google Scholar] [CrossRef]
- Jaber, L.; Ihsanullah, I.; Almanassra, I.W.; Backer, S.N.; Abushawish, A.; Khalil, A.K.A.; Alawadhi, H.; Shanableh, A.; Atieh, M.A. Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells. Sustainability 2022, 14, 10877. [Google Scholar] [CrossRef]
- Blanco, A.; Pignata, M.L.; Lascano, H.R.; Salazar, M.J.; Rodriguez, J.H. Lead uptake and translocation pathways in soybean seedlings: The role of ion competition and transpiration rates. Environ. Sci. Pollut. Res. 2021, 28, 20624–20636. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Khan, M.I.; Atieh, M.A.; Shanableh, A. Adsorption of Lead Ions from an Aqueous Solution onto NaOH-Modified Rice Husk. Desalin. Water Treat. 2022, 254, 104–115. [Google Scholar] [CrossRef]
- Otieno, J.; Kowal, P.; Mąkinia, J. Monitoring Lead Concentration in the Surrounding Environmental Components of a Lead Battery Company: Plants, Air and Effluents—Case Study. Kenya. Int. J. Environ. Res. Public Health 2022, 19, 5195. [Google Scholar] [CrossRef]
- Ahmad, K.; Shah, H.B.; Khan, M.S.; Iqbal, A.; Potrich, E.; Amaral, L.S.; Rasheed, S.; Nawaz, H.; Ayub, A.; Naseem, K.; et al. Lead In drinking water: Adsorption method and role of zeolitic imidazolate frameworks for its remediation: A Review. J. Clean. Prod. 2022, 368, 133010. [Google Scholar] [CrossRef]
- Agwogie, A.B. The Potentials of Adansonia digitata Root and Stem Powders and Stem Activated Carbon as Low-Cost Adsorbents for the Removal of Heavy Metals from Aqueous Solutions. Masters’s Thesis, University of Nigeria, Nsukka, Nigeria, 2014. [Google Scholar]
- Ndjientcheu, L.M.; Yossa, S.K.; Ouiminga, S.S.; Sidibe, I.; Ouedraogo, W.K. Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron: Chemical activation as alternative route for preparation of activated carbon from baobab seeds hulls and adsorption of diuron. Sci. Afr. 2020, 9, e00476. [Google Scholar] [CrossRef]
- Nedjai, R.; Alkhatib, M.; Kabbashi, N.; Alam, M.Z.; Ahmed Kabbashi, N. Removal of Phenol from Aqueous Solution by Adsorption onto Baobab Fruit Shell Activated Carbon: Equilibrium and Kinetics Studies. J. Environ. Treat. Tech. 2021, 9, 686–697. [Google Scholar] [CrossRef]
- Tchikuala, E.; Mourão, P.; Nabais, J. Valorisation of Natural Fibres from African Baobab Wastes by the Production of Activated Carbons for Adsorption of Diuron. Procedia Eng. 2017, 200, 399–407. [Google Scholar] [CrossRef]
- Marcos, J.C.; Fonseca, L.P.; Ramalho, M.T.; Cabral, J.M.S. Application of surface response analysis to the optimization of penicilin acylase purification in aqueous two-phase system. Enzym. Microb. Technol. 2002, 31, 1006–1014. [Google Scholar] [CrossRef]
- Karacan, F.; Ozden, U.; Karacan, S. Optimization of manufacturing conditions for activated carbon from Turkish by chemical activation using response surface methodology. Appl. Therm. Eng. 2007, 27, 1212–1218. [Google Scholar] [CrossRef]
- Karim, M.Z.; Chowdhury, Z.Z.; Abd Hamid, S.B.; Ali, M.E. Optimizing the pre-treatment condition for a-cellulose using Lewis acid catalyst. Sci. Adv. Mater. 2016, 8, 534–544. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Zain, S.M.; Rashid, A.K.; Khalid, K. Process Variables Optimization for Preparation and Characterization of Novel Adsorbent from Lignocellulosic Waste. BioResources 2012, 7, 3732–3754. [Google Scholar] [CrossRef]
- Sudaryanto, Y.; Hartono, S.B.; Irawaty, W.; Hindarso, H.; Ismadji, S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour. Technol. 2006, 97, 734–739. [Google Scholar] [CrossRef]
- Cao, Q.; Xie, K.C.; Lv, Y.K.; Bao, W.R. Process effects on activated carbon with large specific surface area from corn cob. Bioresour. Technol. 2006, 97, 110–115. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Hasan, M.D.; Abd Hamid, S.B.; Samsudin, E.M.; Zain, S.M.; Khalid, K. Catalytic pre-treatment of biochar residues derived from lignocellulosic feedstock for equilibrium studies of manganese, Mn(ii) cations from aqueous solution. RSC Adv. 2015, 5, 6345–6356. [Google Scholar] [CrossRef]
- Deng, H.; Li, G.X.; Yang, H.B.; Tang, J.P.; Tang, J.Y. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem. Eng. J. 2010, 163, 373–381. [Google Scholar] [CrossRef]
- Arenas, E.; Chejne, F. The effect of the activating agent and temperature on the porosity development of physically activated coal chars. Carbon 2004, 42, 2451–2455. [Google Scholar] [CrossRef]
- Zolin, A.; Jensen, A.; Dam-Johansen, K.; Jensen, L.S. Influence of experimental protocol on activation energy in char gasification: The effect of thermal annealing. Fuel 2001, 80, 1029–1032. [Google Scholar] [CrossRef]
- Lua, A.C.; Guo, J. Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 2000, 38, 1089–1097. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Wong, Y.M.; Yek, P.Y.; Ma, N.; Lee, C.L.; Chase, H. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 2017, 162, 1376–1387. [Google Scholar] [CrossRef]
- Zahangir, M.A.; Suleyman, A.M.; Noraini, K. Production of activated carbon from oil palm empty fruit bunches for removal of Zinc. In Proceedings of the Twelfth International Water Technology Conference, IWTC12, Alexandria, Egypt, 1 January 2008; pp. 373–383. [Google Scholar]
- Kundu, A.; Gupta, B.S.; Hashim, M.; Redzwan, G. Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. J. Clean. Prod. 2015, 105, 420–427. [Google Scholar] [CrossRef]
- Kundu, A.; Gupta, B.S.; Hashim, M.; Sahu, J.; Mujawar, M.; Redzwan, G. Optimisation of the process variables in production of activated carbon by microwave heating. RSC Adv. 2015, 5, 35899–35908. [Google Scholar] [CrossRef]
- Duan, X.; Chandrasekar, S.; Peng, J.-h.; Zhang, L.-b.; Zhang, Z.-y. Preparation of activated carbon from Jatropha hull with microwave heating: Optimization using response surface methodology. Fuel Process. Technol. 2011, 92, 394–400. [Google Scholar]
- Basta, A.H.; Fierro, V.; El-Saied, H.; Elzard, C.A. 2-steps KOH activation of rice straw: An efficient method for preparing high performance activated carbons. Bioresour. Technol. 2009, 100, 3941–3947. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Julkapli, N.M.; Ali, A.M.; Abdul, R.A.M.A.H.; Wageeh, A.Y. Microwave Assisted Synthesis, Characterization and Application of Graphitic Bio-carbon using Two Level Factorial Designs. BioResources 2016, 11, 3637–3659. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Karim, M.Z.; Ashraf, M.A. Influence of Carbonization Temperature on Physicochemical Properties of Biochar derived from Slow Pyrolysis of Durian wood sawdust (Durio zibethinus). BioResources 2016, 11, 3356–3372. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Abd Hamid, S.B.; Zain, S.M. Base Catalytic Approach: A Promising Technique for Activation of Bio Char for Equilibrium Sorption Studies of Copper, Cu(II) ions in Single Solute System. Materials 2014, 7, 2815–2832. [Google Scholar]
- Sagadevan, S.; Pal, K.; Chowdhury, Z.Z. Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. J. Mater. Sci. Mater. Electron. 2017, 28, 12591–12597. [Google Scholar] [CrossRef]
- Sagadevan, S.; Pal, K.; Chowdhury, Z.Z.; Foley, M. Controllable synthesis of Graphene/ZnO-nanocomposite for novel switching. J. Alloys Compd. 2017, 728, 645–654. [Google Scholar] [CrossRef]
- Hamid, S.A.; Chowdhury, Z.Z.; Karim, M.; Ali, M. Catalytic Isolation and Physicochemical Properties of Nanocrystalline Cellulose (NCC) using HCl-FeCl3 System Combined with Ultrasonication. BioResources 2016, 11, 3840–3855. [Google Scholar] [CrossRef]
- Liu, H.; Jian Zhang, J.; Bao, N.; Cheng, C.; Ren, L.; Zhang, C. Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: Adsorption of trimethoprim. J. Hazard Mater. 2012, 235–236, 367–375. [Google Scholar] [CrossRef]
- Adebisi, G.A.; Chowdhury, Z.Z.; Alaba, P.A. Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J. Clean. Prod. 2017, 148, 958–968. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Zain, S.M.; Khan, R.A.; Ahmed, A.A. Equilibrium kinetics and isotherm studies of Cu (II) adsorption from waste water onto alkali activated oil palm ash. Am. J. Appl. Sci. 2011, 8, 230–237. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y.; Taghinezhad, E.; Witrowa-Rajchert, D.; Nowacka, M. The Quality of Infrared Rotary Dried Terebinth (Pistacia atlantica L.)-Optimization and Prediction Approach Using Response Surface Methodology. Molecules 2021, 26, 1999. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Hamid, S.B.A.; Rahman, M.M.; Rafique, R.F. Catalytic activation and application of micro-spherical carbon derived from hydrothermal carbonization of lignocellulosic biomass: Statistical analysis using Box–Behnken design. RSC Adv. 2016, 6, 102680–102694. [Google Scholar] [CrossRef]
Input/Independent Variables | Code | Unit | Variable Levels (Coded and Actual) | Desired Output/Dependent Variables/Responses | ||||
---|---|---|---|---|---|---|---|---|
−1 | 0 | +1 | Removal Percentages (%) | Active Carbon Content (%) | Yield Percentages (%) | |||
Microwave Power | x1 | Watt | 550 | 650 | 750 | R1 | R2 | R3 |
Radiation/Residence Time | y1 | Min. | 10 | 12.5 | 15 | |||
Ratio | z1 | - | 1 | 1.5 | 2 |
Sample ID | Run | Type of Point | Level (Coded Factors) | Input/Independent Variables (Actual Factors) | Removal Percentage (%) | Fixed Carbon Content (%) | Yield Percentages (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Power x1, (Watt) | Radiation Time, y1, (Min.) | Ratio z3 | R1 (%) | R2 (%) | R3 (%) | ||||||
S-1 | 1 | Center | 0 | 0 | 0 | 650 | 12.50 | 1.50 | 85.99 | 78.77 | 83.44 |
S-2 | 2 | Center | 0 | 0 | 0 | 650 | 12.50 | 1.50 | 85.98 | 79.99 | 84.54 |
S-3 | 3 | Center | 0 | 0 | 0 | 650 | 12.50 | 1.50 | 85.59 | 78.87 | 83.33 |
S-4 | 4 | Center | 0 | 0 | 0 | 650 | 12.50 | 1.50 | 85.98 | 78.32 | 83.54 |
S-5 | 5 | Center | 0 | 0 | 0 | 650 | 12.50 | 1.50 | 85.77 | 79.33 | 82.99 |
S-6 | 6 | IBFact | 0 | −1 | 0 | 550 | 10.00 | 1.50 | 87.04 | 80.22 | 85.88 |
S-7 | 7 | IBFact | +1 | −1 | 0 | 750 | 10.00 | 1.50 | 80.99 | 62.77 | 80.08 |
S-8 | 8 | IBFact | +1 | 0 | −1 | 750 | 12.50 | 1.00 | 84.33 | 62.76 | 78.99 |
S-9 | 9 | IBFact | 0 | −1 | −1 | 650 | 10.00 | 1.00 | 86.39 | 76.33 | 84.06 |
S-10 | 10 | IBFact | 0 | +1 | +1 | 650 | 15.00 | 2.00 | 72.33 | 70.44 | 76.87 |
S-11 | 11 | IBFact | −1 | 0 | −1 | 550 | 12.50 | 1.00 | 86.03 | 75.66 | 86.76 |
S-12 | 12 | IBFact | −1 | 0 | +1 | 550 | 12.50 | 2.00 | 81.22 | 70.43 | 81.09 |
S-13 | 13 | IBFact | −1 | 0 | 0 | 550 | 15.00 | 1.50 | 82.09 | 68.44 | 83.99 |
S-14 | 14 | IBFact | 0 | +1 | −1 | 650 | 15.00 | 1.00 | 73.56 | 70.75 | 82.45 |
S-15 | 15 | IBFact | +1 | +1 | −1 | 750 | 15.00 | 1.50 | 69.99 | 61.79 | 78.89 |
S-16 | 16 | IBFact | 0 | 0 | +1 | 650 | 10.00 | 2.00 | 74.22 | 69.87 | 79.77 |
S-17 | 17 | IBFact | +1 | 0 | +1 | 750 | 12.50 | 2.00 | 68.55 | 61.99 | 73.32 |
Statistical Tools | Output Variables/Responses | ||
---|---|---|---|
Removal Percentages | Fixed Carbon Content | Percentage Yield | |
R1 | R2 | R3 | |
Standard Deviation, SD% | 1.11 | 1.20 | 0.81 |
Mean | 80.94 | 72.16 | 81.76 |
Correlation Coefficient, R2 | 0.98 | 0.98 | 0.97 |
Adjusted R2 | 0.97 | 0.96 | 0.94 |
Coefficient of Variation, CV | 1.37 | 1.67 | 0.99 |
Adequate Precision | 21.76 | 18.96 | 20.26 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | Prob > F | Comments |
---|---|---|---|---|---|---|
Model | 665.58 | 9 | 73.95 | 60.45 | <0.0001 | Significant |
x1 | 132.19 | 1 | 132.19 | 108.05 | <0.0001 | |
y1 | 117.58 | 1 | 117.58 | 96.11 | <0.0001 | |
z1 | 144.42 | 1 | 144.42 | 118.01 | 0.0003 | |
x12 | 6.20 | 1 | 6.20 | 5.07 | 0.0591 | |
y12 | 89.91 | 1 | 89.91 | 73.49 | <0.0001 | |
z12 | 89.72 | 1 | 89.72 | 73.33 | <0.0001 | |
x1y1 | 9.15 | 1 | 9.15 | 7.48 | 0.0291 | |
x1z1 | 30.09 | 1 | 30.09 | 24.59 | 0.0016 | |
y1z1 | 29.92 | 1 | 29.92 | 24.46 | 0.0017 | |
Residuals | 8.56 | 7 | 1.22 | |||
Lack of Fit | 8.44 | 3 | 2.81 | 88.80 | 0.0004 | |
Pure Error | 0.137 | 0.0049 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | Prob > F | Comments |
---|---|---|---|---|---|---|
Model | 738.36 | 9 | 82.04 | 56.64 | <0.0001 | Significant |
x1 | 258.10 | 1 | 258.10 | 178.18 | <0.0001 | |
y1 | 39.47 | 1 | 39.47 | 27.25 | 0.0012 | |
z1 | 20.38 | 1 | 20.38 | 14.07 | 0.0072 | |
x12 | 33.33 | 1 | 33.33 | 168.08 | <0.0001 | |
y12 | 46.06 | 1 | 46.06 | 31.78 | 0.0008 | |
z12 | 64.10 | 1 | 64.10 | 44.25 | 0.0003 | |
x1y1 | 29.16 | 1 | 29.16 | 1.71 | 0.1063 | |
x1z1 | 4.97 | 1 | 4.97 | 13.08 | 0.0378 | |
y1z1 | 9.46 | 1 | 9.46 | 3.43 | 0.0028 | |
Residuals | 10.14 | 7 | 1.45 | |||
Lack of Fit | 8.53 | 3 | 2.84 | 14.67 | 0.0126 | |
Pure Error | 1.61 | 4 | 0.40 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | Prob > F | Comments |
---|---|---|---|---|---|---|
Model | 184.13 | 9 | 20.46 | 31.34 | <0.0001 | Significant |
x1 | 87.38 | 1 | 87.38 | 133.86 | <0.0001 | |
y1 | 7.20 | 1 | 7.20 | 11.03 | 0.0127 | |
z1 | 56.23 | 1 | 56.23 | 86.14 | <0.0001 | |
x12 | 4.67 | 1 | 4.67 | 7.15 | 0.0318 | |
y12 | 0.39 | 1 | 0.39 | 0.60 | 0.4636 | |
z12 | 25.80 | 1 | 25.80 | 39.52 | 0.0004 | |
x1y1 | 0.10 | 1 | 0.10 | 0.19 | 0.6774 | |
x1z1 | 0.30 | 1 | 0.30 | 0.77 | 0.2987 | |
y1z1 | 0.42 | 1 | 0.42 | 0.64 | 0.4509 | |
Residuals | 4.57 | 7 | 0.65 | |||
Lack of Fit | 3.22 | 3 | 1.07 | 1.10 | 0.1471 | |
Pure Error | 1.35 | 4 | 0.34 |
Power | Radiation Time | Ratio | Percentage Removal (R1) | Fixed Carbon Content (R2) | Yield Percentages (R3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(Watt) | (Min.) | (-) | Predicted | Experimental | Error | Predicted | Experimental | Error | Predicted | Experimental | Error |
568.59 | 10.13 | 1.32 | 87.73 | 85.66 | 2.35 | 80.98 | 80.02 | 1.18 | 86.85 | 85.90 | 1.09 |
Sample | SBET (m2/g) | Smic (m2/g) | Langmuir Surface Area (m2/g) | External Surface Area (m2/g) | Smic/SBET (%) | Vmic (cm3/g) | Vtot (cm3/g) | Diameter (nm) | Bulk Density (g/mL) | Iodine Number (mg/g) | PZPC |
---|---|---|---|---|---|---|---|---|---|---|---|
AKTWC | 448.79 | 209.99 | 699.89 | 238.81 | 46.79 | 0.07 | 0.16 | 4.76 | - | - | - |
AKTWAC | 1390.76 | 798.67 | 1882.91 | 592.09 | 55.26 | 0.49 | 0.96 | 6.73 | 0.07 | 1297.87 | 4.6 |
Proximate Analysis (TGA) | AKTW | AKTWC | AKTWAC |
---|---|---|---|
Carbon Content (%) | 51.92 | 70.70 | 80.02 |
Moisture (%) | 3.88 | 2.87 | 1.76 |
Volatile Matter (%) | 36.98 | 14.55 | 2.07 |
Ash Residues (%) | 7.22 | 11.88 | 16.21 |
dtgmax | 347.38 | 371.22 | 378.87 |
Elemental Analysis | |||
C | 53.98 | 68.78 | 81.03 |
H | 6.87 | 4.89 | 1.12 |
N | 2.12 | 0.78 | 0.24 |
O | 35.05 | 24.52 | 17.29 |
S | 1.98 | 1.03 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellamuthu, S.; Chowdhury, Z.Z.; Khalid, K.; Shibly, S.M.; Rahman, M.M.; Rana, M.; Badruddin, I.A.; Khaleed, H.M.T.; Kamangar, S.; Johan, M.R.B.; et al. Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents. Molecules 2023, 28, 6640. https://doi.org/10.3390/molecules28186640
Sellamuthu S, Chowdhury ZZ, Khalid K, Shibly SM, Rahman MM, Rana M, Badruddin IA, Khaleed HMT, Kamangar S, Johan MRB, et al. Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents. Molecules. 2023; 28(18):6640. https://doi.org/10.3390/molecules28186640
Chicago/Turabian StyleSellamuthu, Santhana, Zaira Zaman Chowdhury, Khalisanni Khalid, Shahjalal Mohd. Shibly, Md Mahfujur Rahman, Masud Rana, Irfan Anjum Badruddin, H. M. T. Khaleed, Sarfaraz Kamangar, Mohd. Rafie Bin Johan, and et al. 2023. "Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents" Molecules 28, no. 18: 6640. https://doi.org/10.3390/molecules28186640
APA StyleSellamuthu, S., Chowdhury, Z. Z., Khalid, K., Shibly, S. M., Rahman, M. M., Rana, M., Badruddin, I. A., Khaleed, H. M. T., Kamangar, S., Johan, M. R. B., Hussein, M., Mitra, A., & Faisal, A. N. (2023). Mathematical Modelling and Optimization for Facile Synthesis of Structured Activated Carbon (ACs) from Adansonia kilima (Baobab) Wood Chips Integrating Microwave-Assisted Pyrolysis for the Elimination of Lead (II) Cations from Wastewater Effluents. Molecules, 28(18), 6640. https://doi.org/10.3390/molecules28186640