Formulation and Characterization of Matrine Oil Dispersion to Improve Droplet Wetting and Deposition
Abstract
:1. Introduction
2. Results
2.1. OD Formulation and Optimization
Preliminary Screening of the Emulsifier
2.2. Screening of the Thickener Dosage
2.3. Effect of Emulsifier Dosage on the Physical Stability of OD
2.4. Suspensibility
2.5. Multi-Light Scattering Stability
2.6. Determination of the Optimal Formulation
2.6.1. Static Surface Tension
2.6.2. Dynamic Contact Angle
2.6.3. Particle Size
2.6.4. Spray Performance
3. Conclusions and Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Matrine OD
4.2.1. Preparation Process
4.2.2. Screening of Emulsifiers
4.2.3. Optimization of Thickener Dosage
4.2.4. Emulsifier Dosage Screening
4.3. Stability Test
4.3.1. High-Temperature Stability
4.3.2. Low-Temperature Stability
4.3.3. Multiple Light Scattering Test
4.4. Determination of Suspensibility
4.5. Determination of Viscosity
4.6. Particle Size Determination
4.7. Determination of Wettability
4.7.1. Static Surface Tension
4.7.2. Dynamic Contact Angle
4.8. Determination of Droplet Density
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- EEsimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Lonshakova-Mukina, V.I.; Antashkevich, A.A.; Torgashina, I.G.; Lukyanenko, K.A.; Kratasyuk, V.A. The Effects of Commercial Pesticide Formulations on the Function of In Vitro and In Vivo Assay Systems: A Comparative Analysis. Chemosensors 2022, 8, 328. [Google Scholar]
- Guo, K.; Deng, X.; Peng, Y.; Yang, N.; Qian, K.; Bai, L. A MOF-based pH-responsive dual controlledrelease system for herbicide pretilachlor and safener AD-67 delivery that enhances the herbicidal efficacy and reduces side effects. Environ. Sci. Nano 2023, 10, 1016. [Google Scholar]
- Deng, X.; Zhao, P.; Xie, Y.; Bai, L. Self-Assembled Sphere Covalent Organic Framework with Enhanced Herbicidal Activity by Loading Cyhalofop-butyl. J. Agric. Food Chem. 2023, 71, 1417–1425. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Grovermann, C.; Praneetvatakul, S.; Heng, P.; Nguyen, T.T.L.; Buntong, B.; Le, N.T.; Pinn, T. How much is too much? Quantifying pesticide overuse invegetable production in Southeast Asia. J. Clean. Prod. 2020, 244, 118738. [Google Scholar] [CrossRef]
- Bagheri, A.; Emami, N.; Damalas, C.A. Farmers’ behavior towards safe pesticide handling: An analysis with the theory of planned behavior. Sci. Total Environ. 2021, 751, 141709. [Google Scholar] [PubMed]
- Liu, T.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res. 2022, 29, 7972–7983. [Google Scholar]
- Tucker, S.; Dumitriu, G.-D.; Teodosiu, C. Pesticides Identification and Sustainable Viticulture Practices to Reduce Their Use: An Overview. Molecules 2022, 27, 8205. [Google Scholar]
- Deng, X.; Zhao, P.; Zhou, X.; Bai, L. Excellent sustained-release efficacy of herbicide quinclorac with cationic cova-lent organic frameworks. Chem. Eng. J. 2021, 405, 1269–1279. [Google Scholar]
- do Nascimento Junior, D.R.; Tabernero, A.; Cabral Albuquerque, E.C.d.M.; Vieira de Melo, S.A.B. Biopesticide Encapsulation Using Supercritical CO2: A Comprehensive Review and Potential Applications. Molecules 2021, 26, 4003. [Google Scholar]
- Zhang, Y.; Liu, B.; Huang, K.; Wang, S.; Quirino, R.L.; Zhang, Z.-X.; Zhang, C. Eco-friendly Castor oil-based delivery system with sustained pesticide release and enhanced retention. ACS Appl. Mater. Interfaces 2020, 12, 37607–37618. [Google Scholar] [CrossRef]
- Jensen, P.K.; Olesen, M.H. Spray mass balance in pesticide application: A review. Crop Prot. 2014, 61, 23–31. [Google Scholar]
- Delele, M.A.; Nuyttens, D.; Duga, A.T.; Ambaw, A.; Lebeau, F.; Nicolai, B.M.; Verboven, P. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces. Soft Matter 2016, 12, 7195–7211. [Google Scholar] [PubMed]
- Zabkiewicz, J.A.; Pethiyagoda, R.; Forster, W.A.; van Leeuwen, R.; Moroney, T.J.; McCue, S.W. Simulating spray droplet impaction outcomes: Comparison with experimental data. Pest Manag. Sci. 2020, 76, 3469–3476. [Google Scholar]
- Dong, X.; Zhu, H.; Yang, X. Characterization of droplet impact and deposit formation on leaf surfaces. Pest Manag. Sci. 2015, 71, 302–308. [Google Scholar]
- Dong, X.; Zhu, H.; Yang, X. Three-dimensional imaging system for Analyses of Dynamic Droplet Impaction and Deposit Formation on Leaves. Trans. ASABE 2013, 56, 1641–1651. [Google Scholar]
- Cao, Y.; Xi, T.; Xu, L.; Qiu, W.; Guo, H.; Lv, X.; Li, C. Computational fluid dynamics simulation experimental verification and analysis of droplets deposition behaviour on vibrating pear leaves. Plant Methods 2022, 18, 80. [Google Scholar]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules 2021, 26, 3061. [Google Scholar]
- Hikal, W.M.; Baeshen, R.S.; Said-AlAhl, H.A. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar]
- Pilkington Lisa, I. Towards the Use of Natural Compounds for Crop Protection and Food Safety. Foods 2022, 11, 648. [Google Scholar] [CrossRef]
- Raja, N. Botanicals: Sources for Eco-Friendly Biopesticides. J. Agric. Sci. Food Res. 2014, 5, 1. [Google Scholar]
- Nikkhah, M.; Hashemi, M.; Najafi, M.B.H.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [PubMed]
- Ahmad, S.; Ansari, M.S.; Moraiet, M.A. Demographic changes in Helicoverpa armigera after exposure to neemazal (1% EC azadirachtin). Crop Prot. 2013, 50, 30–36. [Google Scholar]
- Neeraj, G.S.; Kumar, A.; Ram, S.; Kumar, V. Evaluation of nematicidal activity of ethanolic extracts of medicinal plants to Meloidogyne incognita (kofoid and white) chitwood under lab conditions. Int. J. Pure Appl. Biosci. 2017, 1, 827–831. [Google Scholar]
- Liu, X.; Li, L.; Sun, T.; Fu, S.; Hu, M.; Zhong, G. Inhibition of Echinochloa crusgalli using bioactive components from the stems and leaves of Camellia oleifera. Int. J. Agric. Biol. 2017, 195, 1031–1038. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, W.; Si, L.; Hou, J.; Wang, J.; Xu, Z.; Li, W.; Chen, J.; Li, R.; Li, P.; et al. Chinese herbal extract su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis b virus (HBV) in vitro and effectively suppressed hbv replication in mouse model. Antivir. Res. 2018, 155, 39–47. [Google Scholar]
- Wang, X.; Lin, H.; Ren, Z. The clinical efficacy and adverse effects of interferon combined with MATRINE in chronic hepatitis b: A systematrineic review and meta-analysis. Phytother. Res. 2017, 31, 849–857. [Google Scholar]
- Yang, Y.; Dong, Q.; Li, R. Matrine induces the apoptosis of fibroblast-like synoviocytes derived from rats with collagen-induced arthritis by suppressing the activation of the jak/stat signaling pathway. Int. J. Mol. Med. 2017, 39, 307–316. [Google Scholar]
- Zhang, Y.B.; Zhang, X.L.; Chen, N.H.; Wu, Z.N.; Ye, W.C.; Li, Y.L.; Wang, G.C. Four matrine-based alkaloids with antiviral activities against HBV from the seeds of Sophora alopecuroides. Org. Lett. 2017, 19, 424–427. [Google Scholar]
- Zhou, B.G.; Wei, C.S.; Zhang, S.; Zhang, Z.; Gao, H.M. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signal pathway. J. Cell. Biochem. 2017, 119, 3885–3891. [Google Scholar]
- Li, M.; Wang, Z.; Meng, H.; Dong, B.; Deng, X.; Zhou, H. Formulation of Matrine Oil-Based Suspension Concentrate for Improving the Wetting of Droplets and Spraying Performance. Agronomy 2023, 13, 1895. [Google Scholar]
- Song, Y.; Cao, C.; Liu, K.; Huang, J.; Zheng, L.; Cao, L.; Li, F.; Zhao, P.; Huang, Q. The use of folate/zinc supramolecular hydrogels to increase droplet deposition on chenopodium album l. leaves. ACS Sustain. Chem. Eng. 2020, 34, 12911–12919. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, J.; Ma, Y.; Wu, T.; Gao, Y.; Du, F. Du Topology-regulated pesticide retention on plant leaves through concave janus carriers. ACS Sustain. Chem. Eng. J. 2019, 15, 13148–13156. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, X.; Cao, L.; Chen, Z.; Huang, Q.; Song, B. Enhancing pesticide droplet deposition through O/W Pickering Emulsion: Synergistic stabilization by Flower-like ZnO particles and polymer emulsifier. Chem. Eng. J. 2022, 434, 134761. [Google Scholar]
- Li, J.; Shi, Y.; Lan, Y.; Guo, S. Vertical distribution and vortex structure of rotor wind field under the influence of rice canopy. Comput. Electron. Agric. 2019, 159, 140–146. [Google Scholar] [CrossRef]
- Chen, H.; Lan, Y.; Fritz, B.K.; Hoffmann, W.C.; Liu, S. Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). Int. J. Agric. Biol. Eng. 2021, 14, 38–49. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.; Liu, Q.; Yi, T.; Han, P.; Zhang, R.; Pan, L. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Front. Plant Sci. 2022, 13, 981494. [Google Scholar] [CrossRef]
- Meng, Y.; Song, J.; Lan, Y.; Mei, G.; Liang, Z.; Han, Y. Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop. Ind. Crops Prod. 2019, 140, 111645. [Google Scholar] [CrossRef]
- Chen, P.; Lan, Y.; Huang, X.; Qi, H.; Wang, G.; Wang, J.; Wang, L.; Xiao, H. Droplet Deposition and Control of Planthoppers of Different Nozzles in Two-Stage Rice with a Quadrotor Unmanned Aerial Vehicle. Agronomy 2020, 10, 303. [Google Scholar]
- Chen, P.; Ouyang, F.; Wang, G.; Qi, H.; Xu, W.; Yang, W.; Zhang, Y.; Lan, Y. Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Ind. Crop. Prod. 2021, 163, 113324. [Google Scholar] [CrossRef]
- Chen, P.; Ouyang, F.; Zhang, Y.; Lan, Y. Preliminary Evaluation of Spraying Quality of Multi-Unmanned Aerial Vehicle (UAV) Close Formation Spraying. Agriculture 2022, 12, 1149. [Google Scholar]
- Song, Y.; Huang, Q.; Liu, M.; Cao, L.; Li, F.; Zhao, P.; Cao, C. Wetting and deposition behaviors of pesticide droplets with different dilution ratios on wheat leaves infected by pathogens. J. Mol. Liq. 2023, 370, 120977. [Google Scholar]
- Da Ling, S.; Zhang, J.; Chen, Z.; Ma, W.; Du, Y.; Xu, J. Generation of monodisperse micro-droplets within the stable narrowing jetting regime: Effects of viscosity and interfacial tension. Microfluid. Nanofluid 2022, 7, 53. [Google Scholar]
- Chen, L.Y.; Jiang, Z.D.; Liu, J.Y.; Zheng, L.F.; Wu, X.M. Effects of different thickeners on the stability of pesticide oil dispersion. Chin. J. Pestic. Sci. 2022, 2, 233–242. [Google Scholar]
- Vuković Slavica, M.; Inđić Dušanka, V.; Gvozdenac Sonja, M. Surface tension and suspensibility of spray liquids of fungicides, insecticides and non-pesticide substances depending on water quality. Hem. Ind. 2015, 69, 371–380. [Google Scholar]
- Zhu, J.; Zhang, G.; Miao, Z.; Shang, T. Synthesis and performance of a comblike am-photeric polycarboxylate dispersant for coal–water slurry. Colloids Surf. A Physicochem. Eng. Asp. 2012, 412, 101–107. [Google Scholar]
- Zhang, S.; Yang, X.; Tu, Z.; Hua, W.; He, P.; Li, H.; Zhang, B.; Ren, T. Influence of the hydrophilic moiety of polymeric surfactant on their surface activity and physical stability of pesticide suspension concentrate. J. Mol. Liq. 2020, 317, 114136. [Google Scholar]
- da Silva Bruckmann, F.; Viana, A.R.; Lopes, L.Q.S.; Santos, R.C.V.; Muller, E.I.; Mortari, S.R.; Rhoden, C.R.B. Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1459–1472. [Google Scholar]
- Li, M.; Wang, Z.; Meng, H.; Dong, B.; Deng, X.; Zhou, H. Formulation and Wetting and Spraying Properties of 1.0% Matrine Soluble Agent. Chin. J. Biol. Control 2022, 6, 1410–1417. [Google Scholar]
- Peng, R.; Pang, Y.; Qiu, X.; Qian, Y.; Zhou, M. Synthesis of anti-photolysis lignin-based dispersant and its application in pesticide suspension concentrate. RSC Adv. 2020, 10, 13830–13837. [Google Scholar] [CrossRef]
- Zhang, D.X.; Wang, R.; Cao, H.; Luo, J.; Jing, T.F.; Li, B.X.; Mu, W.; Liu, F.; Hou, Y. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf. B Biointerfaces 2021, 209, 112166–112176. [Google Scholar]
- Kampf, N.; Wachtel, E.J.; Zilman, A.; Ben-Shalom, N.; Klein, J. Anomalous viscosity-time behavior of polysaccharide dispersions. J. Chem. Phys. 2018, 149, 163320. [Google Scholar] [PubMed]
- Tabar, M.A.; Ghazanfari, M.H.; Monfared, A.D. On the size-dependent behavior of drop contact angle in wettability alteration of reservoir rocks to preferentially gas wetting using nanofluid. J. Pet. Sci. Eng. 2019, 178, 1143–1154. [Google Scholar]
- Elif, C.C. The effect of drop size on contact angle measurements of superhydrophobic surfaces. RSC Adv. 2014, 4, 1197–1203. [Google Scholar]
- Song, R.; Shen, G.Q.; Liu, Y.X.; Tang, F.L.; Chen, Q.C.; Sun, P. Preparation and characterization of an oil-in-water microemulsion of thiamethoxam and acetamiprid without organic solvent for unmanned aerial vehicle spraying. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125485–125493. [Google Scholar]
Emulsifier | Use Level | Storage Time (Temperature) | ||||
---|---|---|---|---|---|---|
0 h (25 °C) | 24 h (25 °C) | 48 h (25 °C) | 7 d (0 °C ± 1 °C) | 14 d (54 °C ± 2 °C) | ||
VO/02N | 15% | Homogeneous | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
VO/03 | 15% | Homogeneous | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
VO/01 | 15% | Homogeneous | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
Emulsifier | Use Level | pH | Active Ingredient Content (%) | |||
---|---|---|---|---|---|---|
Before Hot Storage | After Hot Storage | Before Hot Storage | After Hot Storage | Rate of Dissociation (%) | ||
VO/02N | 15% | 6.69 | 6.76 | 8.24 | 8.10 | 1.70 |
VO/03 | 15% | 6.48 | 6.50 | 8.89 | 8.67 | 2.47 |
VO/01 | 15% | 7.84 | 7.79 | 8.62 | 8.28 | 3.94 |
Emulsifier Levels | Dosage of Thickener | Appearance before Cold Storage | Appearance after Cold Storage |
---|---|---|---|
15% VO/02N 15% VO/03 15% VO/01 | 3.0% | Homogeneous | Homogeneous |
2.5% | |||
2.0% | |||
1.5% | |||
1.0% | Produced turbid liquid with precipitate; the precipitation did not disappear after oscillation |
Mulsifier Levels | Use of Thickening Agent | pH | Active Ingredient Content (%) | Appearance | ||||
---|---|---|---|---|---|---|---|---|
Before Hot Storage | After Hot Storage | Before Hot Storage | After Hot Storage | Rate of Dissociation | Before Hot Storage | After Hot Storage | ||
15% VO/02N 15% VO/03 15% VO/01 | 3.0% | 6.69 | 6.76 | 8.14 | 8.10 | 0.005 | Homogeneous | Homogeneous |
2.5% | 7.34 | 6.69 | 8.20 | 8.09 | 0.01 | |||
2.0% | 6.54 | 6.13 | 8.16 | 8.06 | 0.01 | |||
1.5% | 6.03 | 5.90 | 8.24 | 8.17 | 0.008 | |||
1.0% | 5.89 | 5.82 | 8.14 | 8.06 | 0.01 | Turbid |
NO. | Emulsifier | Storage Time (Temperature) | ||||
---|---|---|---|---|---|---|
0 h (25 °C) | 24 h (25 °C) | 48 h (25 °C) | 7d (0 °C ± 1 °C) | 14 d (54 °C ± 2 °C) | ||
1 | 6% VO/02N | Turbid | Turbid | Turbid | - | - |
2 | 8% VO/02N | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
3 | 10% VO/02N | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
4 | 12% VO/02N | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
5 | 15% VO/02N | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
6 | 6% VO/03 | Turbid | Turbid | Turbid | - | - |
7 | 8% VO/03 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
8 | 10% VO/03 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
9 | 12% VO/03 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
10 | 15% VO/03 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
11 | 6% VO/01 | Turbid | Turbid | Turbid | - | - |
12 | 8% VO/01 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
13 | 10% VO/01 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
14 | 12% VO/01 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
15 | 15% VO/01 | Grey liquid | Homogeneous | Homogeneous | Homogeneous | Homogeneous |
NO. | pH | Active Ingredient Content (%) | |||
---|---|---|---|---|---|
Before Hot Storage | After Hot Storage | Before Hot Storage | After Hot Storage | Rate of Dissociation (%) | |
2 | 7.50 | 7.36 | 8.25 | 8.09 | 1.94 |
3 | 6.94 | 7.04 | 8.21 | 8.09 | 1.46 |
4 | 6.72 | 6.80 | 8.26 | 8.17 | 1.09 |
5 | 6.69 | 6.76 | 8.24 | 8.10 | 1.70 |
7 | 6.76 | 6.76 | 8.18 | 8.09 | 1.10 |
8 | 6.68 | 6.65 | 8.16 | 8.02 | 1.72 |
9 | 6.55 | 6.59 | 8.12 | 8.04 | 0.99 |
10 | 6.48 | 6.50 | 7.89 | 7.67 | 2.79 |
12 | 7.74 | 7.75 | 8.98 | 8.74 | 3.44 |
13 | 7.32 | 7.41 | 8.12 | 8.03 | 1.26 |
14 | 7.45 | 7.46 | 8.80 | 8.65 | 1.92 |
15 | 7.84 | 7.79 | 8.62 | 8.58 | 0.52 |
No. | Suspensibility (%) | |
---|---|---|
Before Hot Storage | After Hot Storage | |
2 | 99.09 | 98.25 |
3 | 99.67 | 99.03 |
4 | 97.69 | 97.19 |
5 | 98.02 | 96.71 |
7 | 99.33 | 98.89 |
8 | 98.97 | 98.64 |
9 | 96.32 | 96.29 |
10 | 99.64 | 97.81 |
12 | 99.17 | 98.64 |
13 | 99.08 | 98.76 |
14 | 99.69 | 98.73 |
15 | 98.55 | 97.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, Z.; Meng, H.; Wang, D.; Deng, X.; Zhou, H. Formulation and Characterization of Matrine Oil Dispersion to Improve Droplet Wetting and Deposition. Molecules 2023, 28, 6896. https://doi.org/10.3390/molecules28196896
Li M, Wang Z, Meng H, Wang D, Deng X, Zhou H. Formulation and Characterization of Matrine Oil Dispersion to Improve Droplet Wetting and Deposition. Molecules. 2023; 28(19):6896. https://doi.org/10.3390/molecules28196896
Chicago/Turabian StyleLi, Meng, Zhen Wang, Huanwen Meng, Dong Wang, Xile Deng, and Hongyou Zhou. 2023. "Formulation and Characterization of Matrine Oil Dispersion to Improve Droplet Wetting and Deposition" Molecules 28, no. 19: 6896. https://doi.org/10.3390/molecules28196896
APA StyleLi, M., Wang, Z., Meng, H., Wang, D., Deng, X., & Zhou, H. (2023). Formulation and Characterization of Matrine Oil Dispersion to Improve Droplet Wetting and Deposition. Molecules, 28(19), 6896. https://doi.org/10.3390/molecules28196896