Analysis of Engineered Nanoparticles in Seawater Using ICP-MS-Based Technology: From Negative to Positive Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Treatment Conditions
2.2. Metal Concentrations in Seawater
2.3. ENPs in Seawater
3. Materials and Methods
3.1. Sample Location and Collection
3.2. Chemicals and Materials
3.3. Sample Preparation
3.4. ICP-SFMS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Keller, A.A.; Lazareva, A. Predicted releases of engineered nanomaterials: From global to regionals to local. Environ. Sci. Technol. Lett. 2014, 1, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Giese, B.; Klaessig, F.; Park, B.; Kaegi, R.; Steinfeldt, M.; Wigger, H.; von Gleich, A.; Gottschalk, F. Risk, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 2018, 8, 1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Yang, J.; Cai, Z.; Feng, Y.; Wang, Y.; Zhang, D.; Pan, X. Detection of engineered nanoparticles in aquatic environments: Current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 2019, 6, 709–735. [Google Scholar] [CrossRef]
- Global Nanotechnology Market (by Component and Applications), Funding & Investment, Patent Analysis and 27 Companies Profile & Recent Developments–Forecast to 2024. Research and Markets. 2018. Available online: https://www.researchandmarkets.com/reports/4520812 (accessed on 2 December 2022).
- Timerbaev, A.R.; Kuznetsova, O.V.; Keppler, B.K. Current trends and challenges in analysis and characterization of engineered nanoparticles in seawater. Talanta 2021, 226, 122201. [Google Scholar] [CrossRef] [PubMed]
- Sanchís, J.; Jimenez-Lamana, J.; Abad, E.; Szpunar, J.; Farré, M. Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besòs and Ebro rivers. Environ. Sci. Technol. 2020, 54, 3969–3978. [Google Scholar] [CrossRef] [PubMed]
- De Vega, R.G.; Lockwood, T.E.; Xu, X.; Gonzalez de Vega, C.; Scholz, J.; Horstmann, ·M.; Doble, P.A.; Clases, D. Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS. Anal. Bioanal. Chem. 2022, 414, 5671–5681. [Google Scholar] [CrossRef] [PubMed]
- Rodushkin, I.; Paulukat, C.; Pontér, S.; Engström, E.; Baxter, D.C.; Sörlin, D.; Pallavicini, N.; Rodushkina, K. Application of double-focusing sector field ICP-MS for determination of ultratrace constituents in samples characterized by complex composition of the matrix. Sci. Total Environ. 2018, 622–623, 203–213. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, E.; Yamanaka, M. Key steps in method development for inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS). Spectroscopy 2022, 37, 42–45. [Google Scholar] [CrossRef]
- Suárez-Oubiña, C.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Single-particle inductively coupled plasma mass spectrometry using ammonia reaction gas as a reliable and free-interference determination of metallic nanoparticles. Talanta 2022, 242, 123286. [Google Scholar] [CrossRef]
- Kuznetsova, O.V.; Keppler, B.K.; Timerbaev, A.R. Seawater analysis of engineered nanoparticles using ICP-MS-based technology: Addressing challenges with the development of reliable monitoring strategy. Talanta 2023, 252, 123846. [Google Scholar] [CrossRef] [PubMed]
- Thio, B.J.; Montes, M.O.; Mahmoud, M.A.; Lee, D.-W.; Zhou, D.; Keller, A.A. Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ. Sci. Technol. 2012, 46, 6985–6991. [Google Scholar] [CrossRef] [PubMed]
- Angel, B.M.; Batley, G.E.; Jarolimek, C.V.; Rogers, N.J. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 2013, 93, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, E.A.; Keller, A.A.; Mädler, L.; Zhou, D.; Pokhrel, S.; Cherr, G.N. Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development. J. Hazard. Mater. 2011, 192, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Sikder, M.; Lead, J.R.; Thomas Chandler, G.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Sci. Total Environ. 2018, 618, 597–607. [Google Scholar] [CrossRef]
- Kuznetsova, O.V.; Timerbaev, A.R. Direct seawater analysis by high-resolution ICP-MS provides insights into toxic metal accumulation in marine sediments. At. Spectrosc. 2021, 42, 85–90. [Google Scholar] [CrossRef]
- Li, L.; Stoiber, M.; Wimmer, A.; Xu, Z.; Lindenblatt, C.; Helmreich, B.; Schuster, M. To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ. Sci. Technol. 2016, 50, 6327–6333. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-C.; Lu, Y.-F.; Lin, Y.-P. Release of particulate lead from four lead corrosion products in drinking water: A laboratory study coupled with microscopic observations and computational fluid dynamics. Environ. Sci. Technol. 2022, 56, 12218–12227. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.-O.; Kim, S.-J. Effects of molybdenum on improvement of anti-corrosion by plasma ion nitriding for austenitic stainless steels. J. Nanosci. Nanotechnol. 2019, 19, 2198–2201. [Google Scholar] [CrossRef] [PubMed]
- Supiandi, N.I.; Charron, G.; Tharaud, M.; Cordier, L.; Guigner, J.-M.; Benedetti, M.F.; Sivry, Y. Isotopically labeled nanoparticles at relevant concentrations: How low can we go? The case of CdSe/ZnS QDs in surface waters. Environ. Sci. Technol. 2019, 53, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
ENPs | Main Fields of Application |
---|---|
Ag | Medicine, textiles, cosmetics, home appliances, environment |
TiO2 | Cosmetics, construction, textiles, renewable energies |
SiO2 | Construction, textiles, automotive, cosmetics |
ZnO | Cosmetics, skin care |
CuO | Batteries, sensors, superconductors, coatings |
Cu2O | Coatings and paints |
CeO2 | Fuel additives, abrasive material |
Quantum dots | Electronics |
Au | Electronics, medicine |
MoO3 | Batteries, fuel additives, coatings, catalysts |
SnO2 | Batteries, coatings, catalysts, sensors |
ENPs a | Recovery (%) | |
---|---|---|
0.1 M Copper Nitrate | 0.1 M Nickel Nitrate | |
Ag-NPs | 85 ± 8 | 88 ± 9 |
Ti-NPs | 107 ± 12 | 109 ± 11 |
Zn-NPs | 109 ± 13 | 98 ± 11 |
Metal | Measured Value b | LOD c | |||
---|---|---|---|---|---|
S0 | S4 | K0 | K4 | ||
Ag | 0.53 ± 0.03 | n.d. d | n.d. | n.d. | 0.009 |
Bi | 0.38 ± 0.02 | 0.36 ± 0.02 | 0.42 ± 0.03 | 0.46 ± 0.04 | 0.0013 |
Cd | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.004 |
Co | n.d. | n.d. | n.d. | n.d. | 0.014 |
Cr | 2.28 ± 0.08 | 0.64 ± 0.04 | 0.64 ± 0.08 | 0.46 ± 0.08 | 0.029 |
Cu | 2.07 ± 0.05 | 0.80 ± 0.07 | 2.83 ± 0.12 | 0.95 ± 0.06 | 0.06 |
Fe | 32.7 ± 0.5 | 5.94 ± 0.08 | 7.99 ± 0.21 | 1.86 ± 0.06 | 0.06 |
Mn | 0.13 | 0.11 | 0.08 | 0.11 | 0.05 |
Mo | 5.60 ± 0.12 | 0.76 ± 0.02 | 5.07 ± 0.28 | 0.87 ± 0.02 | 0.007 |
Ni | n.d. | n.d. | n.d. | n.d. | 0.13 |
Pb | 0.78 ± 0.06 | 0.58 ± 0.07 | 0.73 ± 0.06 | 0.55 ± 0.04 | 0.005 |
Sb | 0.37 ± 0.01 | 0.31 ± 0.05 | 0.42 ± 0.04 | 0.39 ± 0.03 | 0.008 |
Sn | 0.36 ± 0.01 | 0.21 ± 0.03 | 0.46 ± 0.03 | 0.26 ± 0.03 | 0.009 |
Ti | 0.65 ± 0.04 | 0.44 ± 0.03 | 0.74 ± 0.07 | 0.44 ± 0.07 | 0.079 |
V | 0.44 ± 0.03 | 0.11 ± 0.004 | 0.28 ± 0.02 | 0.11 ± 0.01 | 0.009 |
Zn | 24.0 ± 0.4 | 5.64 ± 0.20 | 11.7 ± 0.4 | 4.50 ± 0.30 | 0.10 |
Metal | Measured Value |
---|---|
Cr | 0.11 ± 0.05 |
Cu | 0.40 ± 0.05 |
Fe | 0.72 ± 0.05 |
Mn | 0.20 ± 0.05 |
Zn | 0.70 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, O.V.; Keppler, B.K.; Timerbaev, A.R. Analysis of Engineered Nanoparticles in Seawater Using ICP-MS-Based Technology: From Negative to Positive Samples. Molecules 2023, 28, 994. https://doi.org/10.3390/molecules28030994
Kuznetsova OV, Keppler BK, Timerbaev AR. Analysis of Engineered Nanoparticles in Seawater Using ICP-MS-Based Technology: From Negative to Positive Samples. Molecules. 2023; 28(3):994. https://doi.org/10.3390/molecules28030994
Chicago/Turabian StyleKuznetsova, Olga V., Bernhard K. Keppler, and Andrei R. Timerbaev. 2023. "Analysis of Engineered Nanoparticles in Seawater Using ICP-MS-Based Technology: From Negative to Positive Samples" Molecules 28, no. 3: 994. https://doi.org/10.3390/molecules28030994
APA StyleKuznetsova, O. V., Keppler, B. K., & Timerbaev, A. R. (2023). Analysis of Engineered Nanoparticles in Seawater Using ICP-MS-Based Technology: From Negative to Positive Samples. Molecules, 28(3), 994. https://doi.org/10.3390/molecules28030994