Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Novel NHC-Au(I) Complexes (1–4)
2.2. Reactivity of Novel NHC-Au(I) Complexes (1–4) with External Oxidants
2.3. Characterization and Reactivity of the Au(0) Nuggets
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hemmert, C.; Gornitzka, H. Luminescent bioactive NHC–metal complexes to bring light into cells. Dalton Trans. 2016, 45, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, M.G.; Aktaş, A.; Gürses, C.; Gök, Y.; Ateş, B. Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors. Bioorganic Chem. 2020, 95, 103552. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, B.; Xiong, X.; Chan, A.S.C.; Sun, R.W.; Zou, T. Bioorthogonal Activation of Dual Catalytic and Anti-Cancer Activities of Organogold(I) Complexes in Living Systems. Angew. Chem. Int. Ed. 2021, 60, 4133–4141. [Google Scholar] [CrossRef] [PubMed]
- Porchia, M.; Pellei, M.; Marinelli, M.; Tisato, F.; Del Bello, F.; Santini, C. New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem. 2018, 146, 709–746. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Meng, G.; Nolan, S.P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. [Google Scholar] [CrossRef] [PubMed]
- Collado, A.; Nelson, D.J.; Nolan, S.P. Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis–Ligand Development. Chem. Rev. 2021, 121, 8559–8612. [Google Scholar] [CrossRef] [PubMed]
- Chernyshev, V.M.; Khazipov, O.V.; Shevchenko, M.A.; Chernenko, A.Y.; Astakhov, A.V.; Eremin, D.B.; Pasyukov, D.V.; Kashin, A.S.; Ananikov, V.P. Revealing the unusual role of bases in activation/deactivation of catalytic systems: O–NHC coupling in M/NHC catalysis. Chem. Sci. 2018, 9, 5564–5577. [Google Scholar] [CrossRef] [Green Version]
- Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev. 2011, 40, 5151–5169. [Google Scholar] [CrossRef]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Danopoulos, A.A.; Simler, T.; Braunstein, P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem. Rev. 2019, 119, 3730–3961. [Google Scholar] [CrossRef] [PubMed]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef] [PubMed]
- Chernyshev, V.M.; Denisova, E.A.; Eremin, D.B.; Ananikov, V.P. The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem. Sci. 2020, 11, 6957–6977. [Google Scholar] [CrossRef] [PubMed]
- Dorel, R.; Echavarren, A.M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashmi, A.S.K. Gold-Catalyzed Organic Reactions. Chem. Rev. 2007, 107, 3180–3211. [Google Scholar] [CrossRef]
- Petronilho, A.; Müller-Bunz, H.; Albrecht, M. Mesoionic oxides: Facile access from triazolium salts or triazolylidene copper precursors, and catalytic relevance. Chem. Commun. 2012, 48, 6499–6501. [Google Scholar] [CrossRef] [Green Version]
- Nandy, A.; Samanta, T.; Mallick, S.; Mitra, P.; Seth, S.K.; Saha, K.D.; Al-Deyab, S.S.; Dinda, J. Synthesis of gold(iii) ← gold(i)–NHC through disproportionation: The role of gold(i)–NHC in the induction of apoptosis in HepG2 cells. New J. Chem. 2016, 40, 6289–6298. [Google Scholar] [CrossRef]
- Font, P.; Valdés, H.; Guisado-Barrios, G.; Ribas, X. Hemilabile MIC^N ligands allow oxidant-free Au(i)/Au(iii) arylation-lactonization of γ-alkenoic acids. Chem. Sci. 2022, 13, 9351–9360. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Reddy, S.M.; Verrall, M. Gold nuggets: Supergene or hypogene? Aust. J. Earth. Sci. 2007, 54, 959–964. [Google Scholar] [CrossRef]
- Bütof, L.; Wiesemann, N.; Herzberg, M.; Altzschner, M.; Holleitner, A.; Reith, F.; Nies, D.H. Synergistic gold–copper detoxification at the core of gold biomineralisation in Cupriavidus metallidurans. Metallomics 2018, 10, 278–286. [Google Scholar] [CrossRef]
- Reith, F.; Rogers, S.L.; McPhail, D.C.; Webb, D. Biomineralization of Gold: Biofilms on Bacterioform Gold. Science 2006, 313, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.T.; Gasilova, N.; Yang, S.; Oveisi, E.; Queen, W.L. Rapid, Selective Extraction of Trace Amounts of Gold from Complex Water Mixtures with a Metal–Organic Framework (MOF)/Polymer Composite. J. Am. Chem. Soc. 2018, 140, 16697–16703. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Sun, H.; Liu, W.-J.; Guan, B.; Deng, X.; Zhang, X.; Yang, P. Environmentally Benign, Rapid, and Selective Extraction of Gold from Ores and Waste Electronic Materials. Angew. Chem. Int. Ed. 2017, 56, 9331–9335. [Google Scholar] [CrossRef]
- Papastavrou, A.T.; Pauze, M.; Gómez-Bengoa, E.; Vougioukalakis, G.C. Unprecedented Multicomponent Organocatalytic Synthesis of Propargylic Esters via CO2 Activation. ChemCatChem 2019, 11, 5379–5386. [Google Scholar] [CrossRef]
- Liori, A.A.; Stamatopoulos, I.K.; Papastavrou, A.T.; Pinaka, A.; Vougioukalakis, G.C. A Sustainable, User-Friendly Protocol for the Pd-Free Sonogashira Coupling Reaction. Eur. J. Org. Chem. 2018, 2018, 6134–6139. [Google Scholar] [CrossRef]
- Collado, A.; Gómez-Suárez, A.; Martin, A.R.; Slawin, A.M.Z.; Nolan, S.P. Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun. 2013, 49, 5541–5543. [Google Scholar] [CrossRef]
- Visbal, R.; Laguna, A.; Gimeno, M.C. Simple and efficient synthesis of [MCI(NHC)] (M = Au, Ag) complexes. Chem. Commun. 2013, 49, 5642–5644. [Google Scholar] [CrossRef]
- Catalano, V.J.; Moore, A.L. Mono-, Di-, and Trinuclear Luminescent Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes Derived from the Picolyl-Substituted Methylimidazolium Salt: 1-Methyl-3-(2-pyridinylmethyl)-1H-imidazolium Tetrafluoroborate. Inorg. Chem. 2005, 44, 6558–6566. [Google Scholar] [CrossRef]
- Navarro, M.; Tabey, A.; Szalóki, G.; Mallet-Ladeira, S.; Bourissou, D. Stable Au(III) Complexes Bearing Hemilabile P∧N and C∧N Ligands: Coordination of the Pendant Nitrogen upon Oxidation of Gold. Organometallics 2021, 40, 1571–1576. [Google Scholar] [CrossRef]
- Reddy, K.S.K.; Narender, N.; Rohitha, C.N.; Kulkarni, S.J. Iodination of Aromatic Compounds Using Potassium Iodide and Hydrogen Peroxide. Synth. Commun. 2008, 38, 3894–3902. [Google Scholar] [CrossRef]
- Manke, D.R.; Golen, J.A.; Stennett, C.R.; Naeem, M.; Javier-Jimenez, D.R.; Power, P.P. Reusing meta-terphenyl ligands: Synthesis, metalation and recycling of 5-pyrrolidino-m-terphenyl. Polyhedron 2022, 222, 115947. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Choudhary, P. Ni-Catalyzed Regioselective C-5 Halogenation of 8-Aminoquinoline and Co-Catalyzed Chelation Assisted C−H Iodination of Aromatic Sulfonamides with Molecular Iodine. Chem. Asian J. 2022, 17, e202200874. [Google Scholar] [CrossRef]
- Motati, D.R.; Uredi, D.; Watkins, E.B. A general method for the metal-free, regioselective, remote C–H halogenation of 8-substituted quinolines. Chem. Sci. 2018, 9, 1782–1788. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, T.; Liu, Y.; Wang, T.; Lin, A.; Yao, H.; Xu, J. Metal-free C5-selective halogenation of quinolines under aqueous conditions. Org. Chem. Front. 2017, 4, 622–626. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, E.; Qiu, R.; Sohail, M.; Wu, S.; Chen, F.-X. Oxygen-atom insertion of NHC–copper complex: The source of oxygen from N,N-dimethylformamide. J. Organomet. Chem. 2013, 743, 44–48. [Google Scholar] [CrossRef]
- Tomás-Mendivil, E.; Toullec, P.Y.; Borge, J.; Conejero, S.; Michelet, V.; Cadierno, V. Water-Soluble Gold(I) and Gold(III) Complexes with Sulfonated N-Heterocyclic Carbene Ligands: Synthesis, Characterization, and Application in the Catalytic Cycloisomerization of γ-Alkynoic Acids into Enol-Lactones. ACS Catal. 2013, 3, 3086–3098. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Mendivil, E.; Toullec, P.Y.; Díez, J.; Conejero, S.; Michelet, V.; Cadierno, V. Cycloisomerization versus Hydration Reactions in Aqueous Media: A Au(III)-NHC Catalyst That Makes the Difference. Org. Lett. 2012, 14, 2520–2523. [Google Scholar] [CrossRef]
- Ghavami, Z.S.; Anneser, M.R.; Kaiser, F.; Altmann, P.J.; Hofmann, B.J.; Schlagintweit, J.F.; Grivani, G.; Kühn, F.E. A bench stable formal Cu(iii) N-heterocyclic carbene accessible from simple copper(ii) acetate. Chem. Sci. 2018, 9, 8307–8314. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Qin, Z.; Xu, H.; Li, G. Heterogeneous Cross-Coupling over Gold Nanoclusters. Nanomaterials 2019, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shen, R.; Chen, C.; Li, J.; Li, Y. Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling. Chem. Commun. 2018, 54, 13155–13158. [Google Scholar] [CrossRef]
- Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem. 2007, 9, 742–745. [Google Scholar] [CrossRef]
- Li, Q.; Das, A.; Wang, S.; Chen, Y.; Jin, R. Highly efficient three-component coupling reaction catalysed by atomically precise ligand-protected Au38(SC2H4Ph)24 nanoclusters. Chem. Commun. 2016, 52, 14298–14301. [Google Scholar] [CrossRef]
- Kyriakou, G.; Beaumont, S.K.; Humphrey, S.M.; Antonetti, C.; Lambert, R.M. Sonogashira Coupling Catalyzed by Gold Nanoparticles: Does Homogeneous or Heterogeneous Catalysis Dominate? ChemCatChem 2010, 2, 1444–1449. [Google Scholar] [CrossRef]
- Prasad, B.; Gilbertson, S. One-Pot Synthesis of N-Heterocyclic Carbene Ligands From a N-(2-iodoethyl)arylamine salts. Org. Lett. 2009, 11, 3710–3713. [Google Scholar] [CrossRef]
Entry | Complex | Oxidant | Additive | Solvent | T (°C) | Yield % Au(0) | NHC=O (yield %) * |
---|---|---|---|---|---|---|---|
1 | 1 | PhI(OAc)2 | AgOAc | 1,2-DCE | 90 | 75 | Detected MS |
2 | 1 | PhI(OAc)2 | - | 1,2-DCE | 90 | 46 | Detected MS |
3 | 1 | PhI(OAc)2 | - | MeCN | 90 | 60 | L1ox-I (53) |
4 | 1 | H2O2 | AgOAc | 1,2-DCE | 90 | 0 | 0 |
5 | 1 | H2O2 | - | 1,2-DCE | 90 | 0 | Detected MS |
6 | 1 | PhI(Cl)2 | - | DCM | rt | 0 | Detected MS |
7 | 2 | - | - | 1,2-DCE | 100 | 0 | 0 |
8 | 2 | PhI(OAc)2 | AgOAc | 1,2-DCE | 90 | 85 | Detected MS |
9 | 2 | PhI(OAc)2 | - | 1,2-DCE | 90 | 90 | L2ox (22) and L2ox-I (17) |
10 | 2 | PhI(OAc)2 | AgOAc | DCM | 70 | 91 | Detected MS |
11 | 2 | PhI(OAc)2 | - | MeCN | 90 | 56 | L2ox (34) |
12 | 2 | CH3CO3H | - | 1,2-DCE | 90 | 34 | Detected NMR |
13 | 3 | PhI(OAc)2 | AgOAc | 1,2-DCE | 90 | >99 | L3ox (60) |
14 | 3 | XeF2 | - | CDCl3 | rt | 0 | Detected MS |
15 | 4 | PhI(OAc)2 | - | DCM | rt | 0 | 0 |
16 a | 4 | PhI(OAc)2 | - | DCM | 100 | 97 | Detected MS |
17 | 4 | PhI(OAc)2 | - | 1,2-DCE | 90 | 32 | Detected MS |
18 | IPrAuCl | PhI(OAc)2 | AgOAc | 1,2-DCE | 90 | 0 | 0 |
19 | IPrAuCl | PhI(OAc)2 | - | 1,2-DCE | 90 | 0 | 0 |
20 | SIPrAuCl | PhI(OAc) | AgOAc | 1,2-DCE | 90 | 0 | 0 |
21 | SIPrAuCl | PhI(OAc) | - | 1,2-DCE | 90 | 11 | 6 |
22 b | 2 | PhI(OAc)2 | H2O | MeCN | 90 | 88 | L2ox (48) |
23 b | 2 | PhI(OAc)2 | H218O | MeCN | 90 | 97 | L2ox (41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Font, P.; Tzouras, N.V.; Papastavrou, A.T.; Vougioukalakis, G.C.; Ribas, X. Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions. Molecules 2023, 28, 2302. https://doi.org/10.3390/molecules28052302
Font P, Tzouras NV, Papastavrou AT, Vougioukalakis GC, Ribas X. Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions. Molecules. 2023; 28(5):2302. https://doi.org/10.3390/molecules28052302
Chicago/Turabian StyleFont, Pau, Nikolaos V. Tzouras, Argyro T. Papastavrou, Georgios C. Vougioukalakis, and Xavi Ribas. 2023. "Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions" Molecules 28, no. 5: 2302. https://doi.org/10.3390/molecules28052302
APA StyleFont, P., Tzouras, N. V., Papastavrou, A. T., Vougioukalakis, G. C., & Ribas, X. (2023). Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions. Molecules, 28(5), 2302. https://doi.org/10.3390/molecules28052302