Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Centrifugation and Transmembrane Treatment
2.4. Determination of Total Phenolic Content (TPC)
2.5. DPPH Assay
2.6. ABTS Assay
2.7. FRAP Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Standard Curve of TPC, DPPH-Scavenging Ability (DPPH-SA), ABTS-Scavenging Ability (ABTS-SA) and FRAP
3.2. Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols
3.3. Influence of Centrifugation and Transmembrane Treatment on Determination of DPPH-Scavenging Ability (DPPH-SA)
3.4. Influence of Centrifugation and Transmembrane Treatment on Correlation of TPC and Antioxidant Ability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPC | Total phenolic content |
HPLC | High performance liquid chromatography |
GC | Gas chromatography |
GC-MS | Gas chromatography-mass spectrometry |
F-C | Folin-Ciocalteu |
G-B | Prussian Blue |
F-T | Ferrous Tartrate |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2′–azino-bis-(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt |
FRAP | Ferric ion reducing antioxidant power |
ORAC | Oxygen radical absorbance capacity |
TRAP | Total peroxyl radical-trapping antioxidant parameter assay |
TOSC | Total oxyradical scavenging capacity |
DPPH-SA | DPPH-scavenging ability |
ABTS-SA | ABTS-scavenging ability |
PES | Polyether sulfone |
CA | Acetate fiber |
PVDF | Polyvinylidene fluoride hydrophilic |
PTFE | Polytetrafluoroethylene hydrophilic |
PP | Polypropylene membrane |
EC | Epicatechin |
EGC | Epigallocatechin |
EGCG | Epigallocatechin Gallate |
References
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 22, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as antidiabetic and anti-Inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary Polyphenols as natural inhibitors of α-Amylase and α-Glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Boudjouan, F.; Zeghbib, W.; Carneiro, J.; Silva, R.; Morais, J.; Vasconcelos, V.; Lopes, G. Comparison Study on Wild and Cultivated Opuntia sp. Chemical, Taxonomic, and Antioxidant Evaluations. Agriculture 2022, 12, 1755. [Google Scholar] [CrossRef]
- Xu, R.; Zhu, M.; Cao, J.; Guo, M. Tea Polyphenols Protect the Mammary Gland of Dairy Cows by Enhancing Antioxidant Capacity and Regulating the TGF-β1/p38/JNK Pathway. Metabolites 2022, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Vitelli-Storelli, F.; Zamora-Ros, R.; Molina, A.J.; Fernández-Villa, T.; Castelló, A.; Barrio, J.P.; Amiano, P.; Ardanaz, E.; Obón-Santacana, M.; Gómez-Acebo, I.; et al. Association between Polyphenol Intake and Breast Cancer Risk by Menopausal and Hormone Receptor Status. Nutrients 2020, 1212, 994. [Google Scholar] [CrossRef] [Green Version]
- Al-Khayri, J.M.; Upadhya, V.; Pai, S.R.; Naik, P.M.; Al-Mssallem, M.Q.; Alessa, F.M. Comparative Quantification of the Phenolic Compounds, Piperine Content, and Total Polyphenols along with the Antioxidant Activities in the Piper trichostachyon and P. nigrum. Molecules 2022, 27, 5965. [Google Scholar] [CrossRef]
- Dushkova, M.; Mihalev, K.; Dinchev, A.; Vasilev, K.; Georgiev, D.; Terziyska, M. Concentration of Polyphenolic Antioxidants in Apple Juice and Extract Using Ultrafiltration. Membranes 2022, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.P.; Sinha, A.K. Microwave-assisted efficient extraction of different parts of Hippophaë rhamnoides for the comparative evaluation of antioxidant activity and quantifification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). J. Agric. Food Chem. 2007, 56, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Piccolella, S.; Lettieri, A.; Nocera, P.; Bollino, F.; Catauro, M. A metabolic profiling approach to an Italian sage leaf extract ( SoA541) defines its antioxidant and anti-acetylcholinesterase properties. J. Funct. Foods 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Da Ros, A.; Masuero, D.; Riccadonna, S.; Brkić Bubola, K.; Mulinacci, N.; Mattivi, F.; Lukić, I.; Vrhovsek, U. Complementary Untargeted and Targeted Metabolomics for Differentiation of Extra Virgin Olive Oils of Different Origin of Purchase Based on Volatile and Phenolic Composition and Sensory Quality. Molecules 2019, 24, 2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, J.; Oliveira, A.S.; Azevedo, J.; De Freitas, V.; Lopes, P.; Roseira, I.; Cabral, M.; de Pinho, P.G. Assessment of oxidation compounds in oaked Chardonnay wines: A GC–MS and 1 H NMR metabolomics approach. Food Chem. 2018, 257, 120–127. [Google Scholar] [CrossRef]
- Gao, M.; Chen, L.; He, Q.; Sun, Q.; Zeng, W. Influence of different methods and standards on the determination of total phenol contents. Chin. J. Anal. Lab. 2018, 37, 1053–1056. [Google Scholar] [CrossRef]
- Bouslamti, M.; El Barnossi, A.; Kara, M.; Alotaibi, B.S.; Al Kamaly, O.; Assouguem, A.; Lyoussi, B.; Benjelloun, A.S. Total Polyphenols Content, Antioxidant and Antimicrobial Activities of Leaves of Solanum elaeagnifolium Cav. from Morocco. Molecules 2022, 27, 4322. [Google Scholar] [CrossRef]
- Laib, I.; Barkat, M. Optimization of Conditions for Extraction of Polyphenols and the Determination of the Impact of Cooking on Total Polyphenolic, Antioxidant, and Anticholinesterase Activities of Potato. Foods 2018, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, E.A.; Abdalla, I.G.; Alfawaz, M.A.; Mohammed, M.A.; Maiman, S.A.A.; Osman, M.A.; Yagoub, A.E.A.; Hassan, A.B. Effects of Extraction Solvents on the Total Phenolic Content, Total Flavonoid Content, and Antioxidant Activity in the Aerial Part of Root Vegetables. Agriculture 2022, 12, 1820. [Google Scholar] [CrossRef]
- Quah, Y.; Lee, S.-J.; Lee, E.-B.; Birhanu, B.T.; Ali, M.S.; Abbas, M.A.; Boby, N.; Im, Z.-E.; Park, S.-C. Cornus officinalis Ethanolic Extract with Potential Anti-Allergic, Anti-Inflammatory, and Antioxidant Activities. Nutrients 2020, 12, 3317. [Google Scholar] [CrossRef]
- Santonocito, D.; Granata, G.; Geraci, C.; Panico, A.; Siciliano, E.A.; Raciti, G.; Puglia, C. Carob Seeds: Food Waste or Source of Bioactive Compounds? Pharmaceutics 2020, 12, 1090. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Ferro-Luzzi, A. New approaches for measuring plasma or serum antioxidant capacity: A methodogical note. Free. Radic. Biol. Med. 1994, 16, 103–135. [Google Scholar] [CrossRef] [PubMed]
- Winston, G.W.; Regoli, F.; Dugas, A.R., Jr.; Fong, J.H.; Blanchard, K.A. A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free. Radic. Biol. Med. 1998, 24, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Sanwal, N.; Mishra, S.; Sahu, J.K.; Naik, S.N. Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn (Hippophae salicipholia) seed oil. LWT Food Sci. Technol. 2022, 153, 112386. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [Green Version]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzinska, M.; Oszmiański, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophaë rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species—A Review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Najman, K.; Aninowski, M.; Leszczyńska, J.; Głowacka, A.; Bielarska, A.M.; Lasinskas, M.; Hallmann, E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. Molecules 2022, 27, 6083. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Zhang, X.; Li, Y.; Tan, Z.; Duan, S. Effects of Lactobacillus plantarum fermentation on main components, antioxidant and volatile substances of sea buckthorn pulp. China Brew. 2022, 41, 125–131. (In Chinese) [Google Scholar]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef] [Green Version]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Ye, X.; Liu, D.; Chen, J. Effects of Various Micro-filtration Membranes on Physicochemical Properties and Antioxidant Activity of Bayberry Juice. J. Chin. Inst. Food Sci. Technol. 2021, 21, 152–160. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
- Martin, K.R.; Krueger, C.G.; Rodriquez, G.; Dreher, M.; Reed, J.D. Development of a novel pomegranate standard and new method for the quantitative measurement of pomegranate polyphenols. J. Sci. Food Agric. 2000, 89, 157–162. [Google Scholar] [CrossRef]
- Raudone, L.; Puzerytė, V.; Vilkickyte, G.; Niekyte, A.; Lanauskas, J.; Viskelis, J.; Viskelis, P. Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource. Molecules 2021, 26, 4765. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Appiah, K.S.; Suzuki, Y.; Fujii, Y.; Xia, Q. Relationship between the Antioxidant Activity and Allelopathic Activities of 55 Chinese Pharmaceutical Plants. Plants 2022, 11, 2481. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How Does the Phenol Structure Inflfluence the Results of the Folin-Ciocalteu Assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Liang, H.; Gao, D.; Wang, C.; Gao, H.; Guo, Y.; Zhao, Z.; Shi, H. Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. Fermentation 2022, 8, 604. [Google Scholar] [CrossRef]
- Ma, J.; Miao, Y.; Li, J.; Ma, Y.; Wu, M.; Wang, W.; Xu, C.; Jiang, Z.; Hou, J. Incorporation of Blue Honeysuckle Juice into Fermented Goat Milk: Physicochemical, Sensory and Antioxidant Characteristics and In Vitro Gastrointestinal Digestion. Foods 2022, 11, 3065. [Google Scholar] [CrossRef]
- Kidoń, M.; Uwineza, P.A. New Smoothie Products Based on Pumpkin, Banana, and Purple Carrot as a Source of Bioactive Compounds. Molecules 2022, 27, 3049. [Google Scholar] [CrossRef]
- Cai, K.; Dou, R.; Lin, X.; Hu, X.; Wang, Z.; Liu, S.; Li, C.; Li, W. Changes in Phenolic Profiles and Inhibition Potential of Macrophage Foam Cell Formation during Noni (Morinda citrifolia Linn.) Fruit Juice Fermentation. Fermentation 2022, 8, 201. [Google Scholar] [CrossRef]
- Yousefnezhad, B.; Mirsaeedghazi, H.; Arabhosseini, A. Pretreatment of Pomegranate and Red Beet Juices by Centrifugation Before Membrane Clarification: A Comparative Study. J. Food Process. Preserv. 2017, 41, e12765. [Google Scholar] [CrossRef]
- Jie, L.; Wang, X.; Li, X.; Kang, W.; Cui, L. Optimization of extraction process and dynamic changes of kaempferol-3-rutinoside in Syringaoblata Lindl flowers. J. Henan Univ. (Med. Sci.) 2021, 40, 79–83. [Google Scholar] [CrossRef]
- Amirasgari, N.; Mirsaeedghazi, H. Microfifiltration of red beet juice using mixed cellulose ester membrane. J. Food Process. Preserv. 2014, 39, 614–623. [Google Scholar] [CrossRef]
- Girard, B.; Fukumotl, L.R. Membrane processing of fruit juices and beverages: A review. Crit. Rev. Biotechnol. 2000, 20, 109–175. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Díaz-Montaña, E.J.; Asuero, A.G. Recovery of Anthocyanins Using Membrane Technologies: A Review. Crit. Rev. Anal. Chem. 2018, 48, 143–175. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, V.J.; Rodrigo, V.S.J.; Ricardo, P.C.J. Advances in Technologies for Producing Food-relevant Polyphenols; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2016; p. 351. [Google Scholar]
- Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’Antona, N. Polyphenolic profifile and antioxidant activity of olive mill wastewater from two Sicilian olive cultivars: Cerasuola and Nocellara etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [Google Scholar] [CrossRef]
- Wani, T.A.; Wani, S.M.; Ahmad, M.; Gani1, A.; Masoodi1, F.A. Bioactive profifile, health benefifits and safety evaluation of sea buckthorn (Hippophae rhamnoides L.): A review. Cogent. Food. Agric. 2016, 2, 1128519. [Google Scholar]
- Cai, S.; Ruan, C.; Du, W.; Ding, J.; Han, P.; Wang, H. Simultaneous determination of eleven flavonoids in sea buckthorn using high performance liquid chromatography-tandem mass spectrometry. J. Anal. Sci. 2019, 35, 311–316. [Google Scholar] [CrossRef]
Fermentation Time (d) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
TPC (mg GAE/L) | Method (C) | 596.44 ± 23.35 h | 608.77 ± 10.48 hgf | 618.12 ± 8.73 hgf | 631.03 ± 13.92 hgf | 630.54 ± 31.96 hgf | 630.57 ± 27.71 hgf | 633.58 ± 24.09 hgf |
Method (CF) | 602.95 ± 19.46 h | 612.12 ± 15.98 hgf | 622.94 ± 12.68 hgf | 641.46 ± 20.25 hgf | 661.35 ± 11.55 hgfe | 669.03 ± 17.11 hgfe | 689.64 ± 34.07 ef | |
Method (F) | 606.61 ± 17.73 hg | 614.48 ± 26.35 hgf | 620.24 ± 14.50 hgf | 648.42± 42.76 hgf | 659.33 ± 25.03 hgfe | 662.67 ± 8.45 hgfe | 684.79 ± 20.99 gfe | |
Method (N) | 735.39 ± 28.49 de | 810.55 ± 16.84 cd | 850.55 ± 20.25 bc | 875.70 ± 29.41 bc | 905.39 ± 16.50 b | 928.73 ± 28.88 ba | 999.94 ± 65.70 a |
Fermentation Time (d) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
DPPH-SA (mg TE/L) | Method (C) | 438.84 ± 17.83 h | 443.87 ± 20.78 hg | 452.05 ± 13.97 hg | 462.74 ± 36.65 hgf | 479.09 ± 15.44 hgfe | 472.8 ± 13.25 hgf | 480.98 ± 26.61 hgfde |
Method (CF) | 477.83 ± 20.00 hgf | 507.39 ± 10.50 bcdef | 532.54 ± 22.74 dabc | 537.58 ± 6.54 abc | 540.09 ± 15.82 abc | 541.35 ± 8.65 abc | 540.72 ± 12.28 abc | |
Method (F) | 476.58 ± 8.92 hgf | 494.18 ± 14.73 gfcde | 531.92 ± 11.32 abcde | 534.43 ± 13.65 abc | 539.46 ± 14.97 abc | 543.24 ± 5.66 abc | 541.35 ± 11.78 abc | |
Method (N) | 505.5 ± 7.55 bcdef | 534.43 ± 7.14 abc | 553.93 ± 4.75 ab | 571.53 ± 8.22 a | 579.08 ± 11.78 a | 576.57 ± 27.75 a | 582.85 ± 28.49 a | |
ABTS-SA (mg TE/L) | Method (C) | 453.60 ± 16.69 h | 565.21 ± 22.68 efgh | 602.41 ± 28.08 cdefg | 629.23 ± 10.49 cdefg | 645.67 ± 39.31 cdef | 640.48 ± 23.26 cdef | 641.35 ± 27.35 cdef |
Method (CF) | 511.02 ± 38.46 gh | 589.14 ± 20.59 defg | 601.87 ± 49.94 cdefg | 680.84 ± 41.88 cde | 686.79 ± 33.12 bcd | 696.98 ± 20.38 bcd | 703.77 ± 16.96 bcd | |
Method (F) | 525.68 ± 23.56 fgh | 587.27 ± 39.90 defg | 612.09 ± 40.37 cdefg | 684.71 ± 31.00 bcde | 689.31 ± 25.02 bcde | 703.10 ± 38.74 bcd | 704.94 ± 44.12 bcd | |
Method (N) | 682.63 ± 55.58 cde | 723.81 ± 72.09 bc | 809.61 ± 28.35 ab | 895.41 ± 48.08 a | 897.98 ± 25.74 a | 916.86 ± 22.49 a | 922.00 ± 27.76 a | |
FRAP (mg TE/L) | Method (C) | 407.59 ± 10.52 k | 445.86 ± 13.14 jk | 485.06 ± 32.08 efghijk | 523.02 ± 16.98 defghij | 533.83 ± 23.69 defghi | 536.91 ± 21.40 defghi | 548.33 ± 6.07 defg |
Method (CF) | 459.14 ± 6.17 hijk | 477.65 ± 5.58 fghijk | 545.86 ± 20.38 defgh | 560.99 ± 26.78 defg | 562.84 ± 33.67 def | 565.62 ± 18.55 de | 599.57 ± 17.18 cd | |
Method (F) | 457.28 ± 47.97 ijk | 475.8 ± 14.05 ghijk | 552.65 ± 21.84 defg | 562.84 ± 16.31 def | 570.56 ± 15.30 de | 574.26 ± 13.04 d | 600.49 ± 21.96 cd | |
Method (N) | 515.93 ± 11.82 defghij | 671.17 ± 38.00 bc | 722.10 ± 23.90 b | 732.90 ± 33.54 b | 851.11 ± 36.93 a | 844.32 ± 45.45 a | 916.54 ± 65.38 a |
Method (C) | TPC | DPPH-SA | ABTS-SA | FRAP | |
TPC | 1 | ||||
DPPH-SA | 0.8838 ** | 1 | |||
ABTS-SA | 0.9208 ** | 0.8500 * | 1 | ||
FRAP | 0.9491 ** | 0.9528 ** | 0.9488 ** | 1 | |
Method (CF) | TPC | DPPH-SA | ABTS-SA | FRAP | |
TPC | 1 | ||||
DPPH-SA | 0.8032 * | 1 | |||
ABTS-SA | 0.9244 ** | 0.9342 ** | 1 | ||
FRAP | 0.8957 ** | 0.9376 ** | 0.9216 ** | 1 | |
Method (F) | TPC | DPPH-SA | ABTS-SA | FRAP | |
TPC | 1 | ||||
DPPH-SA | 0.8599 * | 1 | |||
ABTS-SA | 0.9410 ** | 0.9356 ** | 1 | ||
FRAP | 0.9244 ** | 0.9780 ** | 0.9352 ** | 1 | |
Method (N) | TPC | DPPH-SA | ABTS-SA | FRAP | |
TPC | 1 | ||||
DPPH-SA | 0.9352 ** | 1 | |||
ABTS-SA | 0.9196 ** | 0.9791 ** | 1 | ||
FRAP | 0.9777 ** | 0.9528 ** | 0.9136 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Xia, Q.; Huang, H.; Tian, J.; Ye, X.; Wang, Y. Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice. Molecules 2023, 28, 2446. https://doi.org/10.3390/molecules28062446
Wu D, Xia Q, Huang H, Tian J, Ye X, Wang Y. Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice. Molecules. 2023; 28(6):2446. https://doi.org/10.3390/molecules28062446
Chicago/Turabian StyleWu, Dan, Qile Xia, Huilin Huang, Jinhu Tian, Xingqian Ye, and Yanbin Wang. 2023. "Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice" Molecules 28, no. 6: 2446. https://doi.org/10.3390/molecules28062446
APA StyleWu, D., Xia, Q., Huang, H., Tian, J., Ye, X., & Wang, Y. (2023). Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice. Molecules, 28(6), 2446. https://doi.org/10.3390/molecules28062446