Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy
Abstract
:1. Introduction
2. Study on Re in Cancer Therapy
2.1. Radioisotopes of Re for RT
2.2. Re Complexes in Cancer Therapy
2.2.1. Regulating the Expression of Related Proteins Causes Cancer Cells to Die
2.2.2. PDT Antiproliferation of Cancer Cells
2.2.3. Interaction with DNA to Inhibit Cancer Cells
2.2.4. Destroy the Function of Mitochondria and Kill Cancer Cells
2.2.5. Other Ways to Kill Cancer Cells
2.3. Re Nanomaterials in Cancer Therapy
3. Application of Re in Biological Imaging
3.1. Optical Imaging
3.2. CT Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Williams, G.M.; Baker, G.T. The potential relationships between aging and cancer. Exp. Gerontol. 1992, 27, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, V.N.; Sikora, E.; Pawelec, G. Relationships between cancer and aging: A multilevel approach. Biogerontology 2009, 10, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Dimri, G.P. What has senescence got to do with cancer? Cancer Cell 2005, 7, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiaowei, L. Exposure to carcinogens and its effects in the formation of cancer. J. Cancer Res. Immunooncol. 2020, 6, 123. [Google Scholar] [CrossRef]
- Anisimov, V.N. The relationship between aging and carcinogenesis: A critical appraisal. Crit. Rev. Oncol. Hematol. 2003, 45, 277–304. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.L.M.; Whitehall, J.C.; Greaves, L.C. Mitochondrial DNA mutations in ageing and cancer. Mol. Oncol. 2020, 16, 3276–3294. [Google Scholar] [CrossRef]
- Guobo, G.; Yuhao, L.; Baolin, L.; Yuqing, M. Recent developments in bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater. Sci. 2022, 10, 5809–5830. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Z.; Huang, C.; Gu, X.; Jia, T.; Zhang, A.; Wu, Z.; Zhu, L.; Luo, X.; Zhao, X.; et al. A functional CT contrast agent for in vivo imaging of tumor hypoxia. Small 2016, 12, 3995–4006. [Google Scholar] [CrossRef]
- Yeh, B.M.; FitzGerald, P.F.; Edic, P.M.; Lambert, J.W.; Colborn, R.E.; Marino, M.E.; Evans, P.M.; Roberts, J.C.; Wang, Z.J.; Wong, M.J.; et al. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies. Adv. Drug Deliv. Rev. 2017, 113, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.-K.; Tsang, S.C.E.; Chou, P.-T. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Mater. Today 2016, 19, 336–348. [Google Scholar] [CrossRef]
- Diao, S.; Blackburn, J.L.; Hong, G.; Antaris, A.L.; Chang, J.; Wu, J.Z.; Zhang, B.; Cheng, K.; Kuo, C.J.; Dai, H. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 2015, 54, 14758–14762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Jones, C.; Baek, Y.; Park, G.K.; Kashiwagi, S.; Choi, H.S. Near-infrared fluorescence imaging in immunotherapy. Adv. Drug Deliver. Rev. 2020, 167, 121–134. [Google Scholar] [CrossRef]
- Owens, E.A.; Henary, M.; El Fakhri, G.; Choi, H.S. Tissue-specific near-infrared fluorescence imaging. Acc. Chem. Res. 2016, 49, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Huang, F.; Zhang, J.; Liu, J.; Li, B.; Ouyang, R.; Miao, Y.; Sun, Y.; Li, Y. PEGylated iridium-based nano-micelle: Self-assembly, selective tumor fluorescence imaging and photodynamic therapy. Dyes Pigments 2020, 182, 108651. [Google Scholar] [CrossRef]
- Cui, L.; Rao, J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1418. [Google Scholar] [CrossRef] [Green Version]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Averkiou, M.A.; Bruce, M.F.; Powers, J.E.; Sheeran, P.S.; Burns, P.N. Imaging methods for ultrasound contrast agents. Ultrasound Med. Biol. 2020, 46, 498–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borden, M.A.; Song, K.-H. Reverse engineering the ultrasound contrast agent. Adv. Colloid Interface Sci. 2018, 262, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-L.; Eckersley, R.J.; Hall, E.A.H. Ultrabubble: A laminated ultrasound contrast agent with narrow size range. Adv. Mater. 2009, 21, 3949–3952. [Google Scholar] [CrossRef]
- Chen, F.; Goel, S.; Hernandez, R.; Graves, S.A.; Shi, S.; Nickles, R.J.; Cai, W. Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small 2016, 12, 2775–2782. [Google Scholar] [CrossRef] [Green Version]
- Bongarzone, S.; Sementa, T.; Dunn, J.; Bordoloi, J.; Sunassee, K.; Blower, P.J.; Gee, A. Imaging biotin trafficking in vivo with positron emission tomography. J. Med. Chem. 2020, 63, 8265–8275. [Google Scholar] [CrossRef]
- Hou, S.; Choi, J.S.; Garcia, M.A.; Xing, Y.; Chen, K.J.; Chen, Y.M.; Jiang, Z.K.; Ro, T.; Wu, L.; Stout, D.B.; et al. Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano 2016, 10, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Black, K.C.; Akers, W.J.; Sudlow, G.; Xu, B.; Laforest, R.; Achilefu, S. Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 2015, 7, 440–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Lyu, Z.; Tintaru, A.; Laurini, E.; Marson, D.; Louis, B.; Bouhlel, A.; Balasse, L.; Fernandez, S.; Garrigue, P.; et al. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chem. Commun. 2019, 56, 301–304. [Google Scholar] [CrossRef]
- Aslan, T.N.; Aşık, E.; Volkan, M. Preparation and labeling of surface-modified magnetoferritin protein cages with a rhenium(I) carbonyl complex for magnetically targeted radiotherapy. RSC Adv. 2016, 6, 8860–8869. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Lee, A.; Patel, S.A.; Chakravorty, A.; Yu, J.B.; Kishan, A.U.; Chang, A.J. Trends in use and comparison of stereotactic body radiation therapy, brachytherapy, and dose-escalated external beam radiation therapy for the management of localized, intermediate-risk prostate cancer. JAMA Netw. Open 2020, 3, e2017144. [Google Scholar] [CrossRef]
- Yang, J.; Yao, H.; Guo, Y.; Yang, B.; Shi, J. Enhancing tumor catalytic therapy by co-catalysis. Angew. Chem. Int. Ed. 2022, 61, e202200480. [Google Scholar] [CrossRef]
- Wu, S.; Wang, P.; Qin, J.; Pei, Y.; Wang, Y. GSH-Depleted nanozymes with dual-radicals enzyme activities for tumor synergic therapy. Adv. Funct. Mater. 2021, 31, 2102160. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, Z.; Ali, Z.; Zhang, H.; Wang, Y.; Xu, N.; Yin, H.; Sheng, F.; Hou, Y. A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors. Nano Res. 2022, 15, 4274–4284. [Google Scholar] [CrossRef]
- Abuduwaili, W.; Wang, X.; Huang, A.-T.; Sun, J.-L.; Xu, R.-C.; Zhang, G.-C.; Liu, Z.-Y.; Wang, F.; Zhu, C.-F.; Liu, T.-T.; et al. Iridium complex-loaded sorafenib nanocomposites for synergistic chemo-photodynamic therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2022, 14, 37356–37368. [Google Scholar] [CrossRef]
- Luo, T.; Fan, Y.; Mao, J.; Yuan, E.; You, E.; Xu, Z.; Lin, W. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Xu, J.; Dong, S.; He, F.; Zhong, C.; Yang, G.; Bi, H.; Xu, M.; Hu, Y.; Yang, D.; et al. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem. Sci. 2019, 10, 8618–8633. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Feng, J.; Song, S.; Liu, K.; Du, K.; Zhou, Y.; Lv, K.; Zhang, H. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy. Nano Today 2022, 43, 101433. [Google Scholar] [CrossRef]
- Wang, X.; Song, K.; Deng, Y.; Liu, J.; Peng, Q.; Lao, X.; Xu, J.; Wang, D.; Shi, T.; Li, Y.; et al. Benzothiazole-decorated iridium-based nanophotosensitizers for photodynamic therapy of cancer cells. Dalton Trans. 2022, 51, 3666–3675. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Song, K.; Du, J.; Liu, J.; Miao, Y.; Li, Y. BSA-encapsulated cyclometalated iridium complexes as nano-photosensitizers for photodynamic therapy of tumor cells. RSC Adv. 2021, 11, 15323–15331. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, S.; Zheng, J.; Hong, Y.; Liu, J.; Chang, H.; Miao, Y.; Sun, Y.; Li, Y. Electrostatic self-assembled iridium(III) nano-photosensitizer for selectively disintegrated and mitochondria targeted photodynamic therapy. Dyes Pigments 2020, 175, 108105. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, F.; Sun, J.; Wang, F.; Liu, K. Biomacromolecule-based photo-thermal agents for tumor treatment. J. Mater. Chem. B 2021, 9, 7007–7022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Xue, Y.; Wu, Y.; Wang, Q.; Xue, L.; Su, Z.; Zhang, C. Transforming weakness into strength: Photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 2019, 31, e1805936. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Liu, Y.; Xu, Y.; Zhang, J.; Huang, F.; Li, B.; Miao, Y.; Sun, Y.; Li, Y. Dual-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia therapy. Acta Biomater. 2021, 119, 323–336. [Google Scholar] [CrossRef]
- Geng, P.; Yu, N.; Liu, X.; Zhu, Q.; Wen, M.; Ren, Q.; Qiu, P.; Zhang, H.; Li, M.; Chen, Z. Sub 5 nm Gd3+ -hemoporfin framework nanodots for augmented sonodynamic theranostics and fast renal clearance. Adv. Healthcare Mater. 2021, 10, e2100703. [Google Scholar] [CrossRef]
- Gong, F.; Cheng, L.; Yang, N.; Betzer, O.; Feng, L.; Zhou, Q.; Li, Y.; Chen, R.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, e1900730. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Chen, G.; He, Z.; Shen, J.; Ping, J.; Li, Y.; Zheng, L.; Miao, Y.; Zhang, D. Protoporphyrin-sensitized degradable bismuth nanoformulations for enhanced sonodynamic oncotherapy. Acta Biomater. 2023, 158, 637–648. [Google Scholar] [CrossRef]
- Wei, D.; Chen, Y.; Huang, Y.; Li, P.; Zhao, Y.; Zhang, X.; Wan, J.; Yin, X.; Liu, T.; Yin, J.; et al. NIR-light triggered dual-cascade targeting core-shell nanoparticles enhanced photodynamic therapy and immunotherapy. Nano Today 2021, 41, 101288. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Z.; Gao, Y.; Zhang, S.; Yang, C.; Qian, Z.; Jin, L.; Zhang, J.; Zeng, C.; Mao, Z.; et al. Plasmon-driven catalytic chemotherapy augments cancer immunotherapy through induction of immunogenic cell death and blockage of IDO pathway. Adv. Mater. 2021, 33, e2102188. [Google Scholar] [CrossRef]
- Zheng, L.; Fan, Y.; Wang, X.; Yang, Z.; Zhang, Y.; Liu, T.; Chen, M.; Kang, S.; Guo, S.; Shi, Z.; et al. Nanoagonist-mediated GSDME-dependent pyroptosis remodels the inflammatory microenvironment for tumor photoimmunotherapy. Adv. Funct. Mater. 2022, 33, 2200811. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Zeng, X.; Chen, X.; Gu, Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019, 9, 8026–8047. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ding, L.; Chen, Y.; Shi, J. Augmenting tumor-starvation therapy by cancer cell autophagy inhibition. Adv. Sci. 2020, 7, 1902847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beola, L.; Asin, L.; Roma-Rodrigues, C.; Fernandez-Afonso, Y.; Fratila, R.M.; Serantes, D.; Ruta, S.; Chantrell, R.W.; Fernandes, A.R.; Baptista, P.V.; et al. The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment. ACS Appl. Mater. Interfaces 2020, 12, 43474–43487. [Google Scholar] [CrossRef]
- Yoo, D.; Jeong, H.; Noh, S.H.; Lee, J.H.; Cheon, J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem. Int. Ed. 2013, 52, 13047–13051. [Google Scholar] [CrossRef]
- Tu, W.; Denizot, B. Synthesis of small-sized rhenium sulfide colloidal nanoparticles. J. Colloid Interface Sci. 2007, 310, 167–170. [Google Scholar] [CrossRef]
- Collery, P.; Desmaele, D.; Vijaykumar, V. Design of rhenium compounds in targeted anticancer therapeutics. Curr. Pharm. Des. 2019, 25, 3306–3322. [Google Scholar] [CrossRef] [PubMed]
- Häfeli, U.; Tiefenauer, X.L.; Schbiger, P.A.; Weder, H.G. A lipophilic complex with 186Re/188Re incorporated in liposomes suitable for radiotherapy. Nucl. Med. Biol. 1991, 18, 449–454. [Google Scholar] [CrossRef]
- Junfeng, Y.; Duanzhi, D.; Xiaofeng, M.; Zili, G.; Jiong, Z.; Yongxian, W.; Knapp, F.F. [188Re]Rhenium sulfide suspension: A potential radiopharmaceutical for tumor treatment following intra-tumor injection. Nucl. Med. Biol. 1999, 26, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Edward, D.; Karen, L.; Jean-Luc, V.; Alan, R.K.; Harry, R.M. The chemistry of rhenium and technetium as related to the use of isotopes of these elements in therapeutic and diagnostic nuclear medicine. Nucl. Med. Biol. 1986, 13, 465–477. [Google Scholar] [CrossRef]
- Venkatesan, P.P.; Shortkroff, S.; Zalutsky, M.R.; Sledge, C.B. Rhenium heptasulfide: A potential carrier system for radiation synovectomy. Nucl. Med. Biol. 1990, 17, 357–362. [Google Scholar] [CrossRef]
- Jeong, J.M.; Chung, J.-K. Therapy with 188Re-labeled radiopharmaceuticals: An overview of promising results from initial clinical trials. Cancer Biother. Radiopharm. 2003, 18, 707–717. [Google Scholar] [CrossRef]
- Wang, S.J.; Lin, W.Y.; Hsieh, B.T.; Shen, L.H.; Tsai, Z.T.; Ting, G.; Knapp, F.F. Rhenium-188 sulphur colloid as a radiation synovectomy agent. Eur. J. Nucl. Med. Mol. Imaging 1995, 22, 505–507. [Google Scholar] [CrossRef]
- Rhodes, B.A.; Lambert, C.R.; Marek, M.J.; Knapp, F.F.; Harvey, E.B. Re-188 labelled antibodies. Appl. Radiat. Isot. 1996, 47, 7–14. [Google Scholar] [CrossRef]
- Bunjes, D.; Buchmann, I.; Duncker, C.; Seitz, U.; Kotzerke, J.; Wiesneth, M.; Dohr, D.; Stefanic, M.; Buck, A.; Harsdorf, S.V.; et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: Results of a phase I-II study. Blood 2001, 98, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Quadri, S.M.; Wessels, B.W. Radiolabeled biomolecules with 186Re: Potential for radioimmunotherapy. Nucl. Med. Biol. 1986, 13, 447–451. [Google Scholar] [CrossRef]
- Zamora, P.O.; Gulhke, S.; Bender, H.; Diekmann, D.; Rhodes, B.A.; Biersack, H.J.; Knapp, F.F. Experimental radiotherapy of receptor-positive human prostate adenocarcinoma with 188Re-RC-160, a directly-radiolabeled somatostatin analogue. Int. J. Cancer 1996, 65, 214–220. [Google Scholar] [CrossRef]
- Zamora, P.O.; Marek, M.J.; Knapp, F.F. Preparation of 188Re-RC-160 somatostatin analog: A peptide for local/regional radiotherapy. Appl. Radiat. lsot. 1997, 48, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Owen, N.K.; Whitener, D.; Gallazzi, F.; Hoffman, T.J.; Quinn, T.P. In vivo evaluation of 188Re-labeled alpha-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int. J. Cancer 2002, 101, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.Y.; Miwon, S.; Jun, K., II; Mi, Y.J.; Lee, I.K.; Kim, S.H.; Kim, W.B.; Jeong, J.M.; Song, Y.W. DA-7911, 188rhenium-tin colloid, as a new therapeutic agent of rheumatoid arthritis. Arch. Pharm. Res. 2003, 26, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.M.; Lee, Y.J.; Kim, Y.J.; Chang, Y.S.; Lee, D.S.; Chung, J.K.; Song, Y.W.; Lee, M.C. Preparation of rhenium-188–tin colloid as a radiation synovectomy agent and comparison with rhenium-188–sulfur colloid. Appl. Radiat. Isot. 2000, 52, 851–855. [Google Scholar] [CrossRef]
- Wang, S.J.; Lin, W.Y.; Chen, M.N.; Hsieh, B.T.; Shen, L.H.; Tsai, Z.T.; Ting, G.; Knapp, F.F. Radiolabelling of lipiodol with generator-produced 188Re for hepatic tumor therapy. Appl. Radiat. Isot. 1996, 47, 267–271. [Google Scholar] [CrossRef]
- Häfeli, U.O.; Casillas, S.; Dietz, D.W.; Pauer, G.J.; Rybicki, L.A.; Conzone, S.D.; Day, D.E. Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 189–199. [Google Scholar] [CrossRef]
- Radhakrishnan, E.R.; Chirayil, V.; Pandiyan, A.; Subramanian, S.; Mallia, M.B.; Kamaleshwaran, K.K.; Shinto, A. Preparation of Rhenium-188-Lipiodol Using Freeze-Dried Kits for Transarterial Radioembolization: An Overview and Experience in a Hospital Radiopharmacy. Cancer Biother. Radiopharm. 2022, 37, 63–70. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Chen, Z.; Liu, H.; Yang, S.; Liu, G.; Zhao, Y.; Fu, W.; Liu, L.; Xiang, K.; et al. Preparation, Characterization, and Preliminary Imaging Study of [188Re]Re-Ibandronate as a Novel Theranostic Radiopharmaceutical for Bone Metastasis. Contrast Media Mol. Imaging 2022, 2022, 7684076. [Google Scholar] [CrossRef]
- Pete, S.; Roy, N.; Kar, B.; Paira, P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord. Chem. Rev. 2022, 460, 214462. [Google Scholar] [CrossRef]
- Quispe-Tintaya, W.; Chandra, D.; Jahangir, A.; Harris, M.; Casadevall, A.; Dadachova, E.; Gravekamp, C. Nontoxic radioactive Listeria(at) is a highly effective therapy against metastatic pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 8668–8673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, Y.; Wang, G.; Liang, C.; Yi, X.; Zhong, X.; Liu, J.; Gao, M.; Yang, K.; Cheng, L.; Liu, Z. Rhenium-188 labeled tungsten disulfide nanoflakes for self-sensitized, near-infrared enhanced radioisotope therapy. Small 2016, 12, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- Lepareur, N.; Lacoeuille, F.; Bouvry, C.; Hindre, F.; Garcion, E.; Cherel, M.; Noiret, N.; Garin, E.; Knapp, F.F. Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uccelli, L.; Martini, P.; Urso, L.; Ghirardi, T.; Marvelli, L.; Cittanti, C.; Carnevale, A.; Giganti, M.; Bartolomei, M.; Boschi, A. Rhenium radioisotopes for medicine, a focus on production and applications. Molecules 2022, 27, 5283. [Google Scholar] [CrossRef]
- Dilworth, J.R. Rhenium chemistry—Then and now. Coord. Chem. Rev. 2021, 436, 213822. [Google Scholar] [CrossRef]
- Szliszka, E.; Czuba, Z.P.; Domino, M.; Mazur, B.; Zydowicz, G.; Krol, W. Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Molecules 2009, 14, 738–754. [Google Scholar] [CrossRef]
- Mkhatshwa, M.; Moremi, J.M.; Makgopa, K.; Manicum, A.E. Nanoparticles functionalised with Re(I) tricarbonyl complexes for cancer theranostics. Int. J. Mol. Sci. 2021, 22, 6546. [Google Scholar] [CrossRef]
- Bauer, E.B.; Haase, A.A.; Reich, R.M.; Crans, D.C.; Kühn, F.E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev. 2019, 393, 79–117. [Google Scholar] [CrossRef]
- Liew, H.S.; Mai, C.W.; Zulkefeli, M.; Madheswaran, T.; Kiew, L.V.; Delsuc, N.; Low, M.L. Recent emergence of rhenium(I) tricarbonyl complexes as photosensitisers for cancer therapy. Molecules 2020, 25, 4176. [Google Scholar] [CrossRef]
- Feng, W.-W.; Liang, B.-F.; Chen, B.-H.; Liu, Q.-Y.; Pan, Z.-Y.; Liu, Y.-J.; He, L. A tricarbonyl rhenium(I) complex decorated with boron dipyrromethene for endoplasmic reticulum-targeted photodynamic therapy. Dyes Pigments 2023, 211, 111077. [Google Scholar] [CrossRef]
- Simpson, P.V.; Casari, I.; Paternoster, S.; Skelton, B.W.; Falasca, M.; Massi, M. Defining the anti-cancer activity of tricarbonyl rhenium complexes: Induction of G2/M cell cycle arrest and blockade of Aurora-A kinase phosphorylation. Chem. Eur. J. 2017, 23, 6518–6521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konkankit, C.C.; King, A.P.; Knopf, K.M.; Southard, T.L.; Wilson, J.J. In vivo anticancer activity of a rhenium(I) tricarbonyl complex. ACS Med. Chem. Lett. 2019, 10, 822–827. [Google Scholar] [CrossRef]
- Konkankit, C.C.; Vaughn, B.A.; MacMillan, S.N.; Boros, E.; Wilson, J.J. Combinatorial synthesis to identify a potent, necrosis-inducing rhenium anticancer agent. Inorg. Chem. 2019, 58, 3895–3909. [Google Scholar] [CrossRef] [PubMed]
- Suntharalingam, K.; Awuah, S.G.; Bruno, P.M.; Johnstone, T.C.; Wang, F.; Lin, W.; Zheng, Y.R.; Page, J.E.; Hemann, M.T.; Lippard, S.J. Necroptosis-inducing rhenium(V) oxo complexes. J. Am. Chem. Soc. 2015, 137, 2967–2974. [Google Scholar] [CrossRef] [Green Version]
- Giffard, D.; Fischer-Fodor, E.; Vlad, C.; Achimas-Cadariu, P.; Smith, G.S. Synthesis and antitumour evaluation of mono- and multinuclear [2+1] tricarbonylrhenium(I) complexes. Eur. J. Med. Chem. 2018, 157, 773–781. [Google Scholar] [CrossRef]
- Ye, R.R.; Chen, B.C.; Lu, J.J.; Ma, X.R.; Li, R.T. Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J. Inorg. Biochem. 2021, 223, 111537. [Google Scholar] [CrossRef]
- Shtemenko, N.; Collery, P.; Shtemenko, A. Dichlorotetra-μ-isobutyratodirhenium(III): Enhancement of cisplatin action and RBC-stabilizing properties. Anticancer Res. 2007, 27, 2487–2492. [Google Scholar] [PubMed]
- Ashok Kumar, C.; Karthikeyan, S.; Varghese, B.; Veena, V.; Sakthivel, N.; Manimaran, B. Synthesis, characterisation and cytotoxicity evaluation of rhenium(I) based ester functionalised dinuclear metallacyclophanes. J. Organomet. Chem. 2014, 766, 86–94. [Google Scholar] [CrossRef]
- King, A.P.; Marker, S.C.; Swanda, R.V.; Woods, J.J.; Qian, S.B.; Wilson, J.J. A rhenium isonitrile complex induces unfolded protein response-mediated apoptosis in cancer cells. Chem. Eur. J. 2019, 25, 9206–9210. [Google Scholar] [CrossRef]
- Pan, Z.Y.; Cai, D.H.; He, L. Dinuclear phosphorescent rhenium(I) complexes as potential anticancer and photodynamic therapy agents. Dalton Trans. 2020, 49, 11583–11590. [Google Scholar] [CrossRef]
- Kastl, A.; Dieckmann, S.; Wahler, K.; Volker, T.; Kastl, L.; Merkel, A.L.; Vultur, A.; Shannan, B.; Harms, K.; Ocker, M.; et al. Rhenium complexes with visible-light-induced anticancer activity. ChemMedChem 2013, 8, 924–927. [Google Scholar] [CrossRef]
- Mion, G.; Gianferrara, T.; Bergamo, A.; Gasser, G.; Pierroz, V.; Rubbiani, R.; Vilar, R.; Leczkowska, A.; Alessio, E. Phototoxic activity and DNA interactions of water-soluble porphyrins and their rhenium(I) conjugates. ChemMedChem 2015, 10, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Leonidova, A.; Pierroz, V.; Rubbiani, R.; Heier, J.; Ferrari, S.; Gasser, G. Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes. Dalton Trans. 2014, 43, 4287–4294. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Zhao, J.; Ai, X.; Budanovic, M.; Mu, J.; Webster, R.D.; Cao, Q.; Mao, Z.; Xing, B. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans. 2016, 45, 14101–14108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marker, S.C.; MacMillan, S.N.; Zipfel, W.R.; Li, Z.; Ford, P.C.; Wilson, J.J. Photoactivated in vitro anticancer activity of rhenium(I) tricarbonyl complexes bearing water-soluble phosphines. Inorg. Chem. 2018, 57, 1311–1331. [Google Scholar] [CrossRef]
- Medley, J.; Payne, G.; Banerjee, H.N.; Giri, D.; Winstead, A.; Wachira, J.M.; Krause, J.A.; Shaw, R.; Pramanik, S.K.; Mandal, S.K. DNA-binding and cytotoxic efficacy studies of organorhenium pentylcarbonate compounds. Mol. Cell. Biochem. 2015, 398, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Parson, C.; Smith, V.; Krauss, C.; Banerjee, H.N.; Reilly, C.; Krause, J.A.; Wachira, J.M.; Giri, D.; Winstead, A.; Mandal, S.K. The effect of novel rhenium compounds on lymphosarcoma, PC-3 prostate and myeloid leukemia cancer cell lines and an investigation on the DNA binding properties of one of these compounds through electronic spectroscopy. J. Bioprocess. Biotech. 2013, 4, 141. [Google Scholar] [CrossRef]
- Zobi, F.; Spingler, B.; Fox, T.; Alberto, R. Toward novel DNA binding metal complexes: Structure and basic kinetic data of [M(9MeG)2(CH3OH)(CO)3]+ (M) 99Tc, Re). Inorg. Chem. 2003, 42, 2818–2820. [Google Scholar] [CrossRef] [PubMed]
- Zobi, F.; Spingler, B.; Alberto, R. Guanine and plasmid DNA binding of mono- and trinuclear fac-[Re(CO)3]+ complexes with amino acid ligands. Chembiochem 2005, 6, 1397–1405. [Google Scholar] [CrossRef]
- Ismail, M.B.; Booysen, I.N.; Akerman, M.P. Oxorhenium(V) complexes with bidentate carbohydrazide Schiff bases: Synthesis, characterization and DNA interaction studies. Transit. Met. Chem. 2017, 42, 405–412. [Google Scholar] [CrossRef]
- Kaplanis, M.; Stamatakis, G.; Papakonstantinou, V.D.; Paravatou-Petsotas, M.; Demopoulos, C.A.; Mitsopoulou, C.A. Re(I) tricarbonyl complex of 1,10-phenanthroline-5,6-dione: DNA binding, cytotoxicity, anti-inflammatory and anti-coagulant effects towards platelet activating factor. J. Inorg. Biochem. 2014, 135, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Viola-Villegas, N.; Rabideau, A.E.; Cesnavicious, J.; Zubieta, J.; Doyle, R.P. Targeting the folate receptor (FR): Imaging and cytotoxicity of ReI conjugates in FR-overexpressing cancer cells. ChemMedChem 2008, 3, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Viola-Villegas, N.; Rabideau, A.E.; Bartholoma, M.; Zubieta, J.; Doyle, R.P. Targeting the cubilin receptor through the vitamin B12 uptake pathway: Cytotoxicity and mechanistic insight through fluorescent Re(I) delivery. J. Med. Chem. 2009, 52, 5253–5261. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, Q.; Zhang, H.; Hao, L.; Zhou, D.; Gan, Z.; Li, Z.; Tong, Y.X.; Ji, L.N.; Mao, Z.W. Targeted reversal and phosphorescence lifetime imaging of cancer cell metabolism via a theranostic rhenium(I)-DCA conjugate. Biomaterials 2018, 176, 94–105. [Google Scholar] [CrossRef] [PubMed]
- He, S.F.; Pan, N.L.; Chen, B.B.; Liao, J.X.; Huang, M.Y.; Qiu, H.J.; Jiang, D.C.; Wang, J.J.; Chen, J.X.; Sun, J. Mitochondria-targeted Re(I) complexes bearing guanidinium as ligands and their anticancer activity. J. Biol. Inorg. Chem. 2020, 25, 1107–1116. [Google Scholar] [CrossRef]
- Kitanovic, I.; Can, S.; Alborzinia, H.; Kitanovic, A.; Pierroz, V.; Leonidova, A.; Pinto, A.; Spingler, B.; Ferrari, S.; Molteni, R.; et al. A deadly organometallic luminescent probe: Anticancer activity of a ReI bisquinoline complex. Chem. Eur. J. 2014, 20, 2496–2507. [Google Scholar] [CrossRef]
- Wang, F.X.; Liang, J.H.; Zhang, H.; Wang, Z.H.; Wan, Q.; Tan, C.P.; Ji, L.N.; Mao, Z.W. Mitochondria-accumulating rhenium(I) tricarbonyl complexes induce cell death via irreversible oxidative stress and glutathione metabolism disturbance. ACS Appl. Mater. Interfaces 2019, 11, 13123–13133. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.X.; Cao, Q.; Hao, L.; Zhou, D.; Gan, Z.; Ji, L.N.; Mao, Z.W. Simultaneously inducing and tracking cancer cell metabolism repression by mitochondria-immobilized rhenium(I) complex. ACS Appl. Mater. Interfaces 2017, 9, 13900–13912. [Google Scholar] [CrossRef]
- Skiba, J.; Bernas, T.; Trzybinski, D.; Wozniak, K.; Ferraro, G.; Marasco, D.; Merlino, A.; Shafikov, M.Z.; Czerwieniec, R.; Kowalski, K. Mitochondria targeting with luminescent rhenium(I) complexes. Molecules 2017, 22, 809. [Google Scholar] [CrossRef] [Green Version]
- Konig, M.; Siegmund, D.; Raszeja, L.J.; Prokop, A.; Metzler-Nolte, N. Resistance-breaking profiling and gene expression analysis on an organometallic Re(I)-phenanthridine complex reveal parallel activation of two apoptotic pathways. RSC Med. Chem. 2018, 9, 173–180. [Google Scholar] [CrossRef]
- Ye, R.R.; Tan, C.P.; Chen, M.H.; Hao, L.; Ji, L.N.; Mao, Z.W. Mono- and dinuclear phosphorescent rhenium(I) complexes: Impact of subcellular localization on anticancer mechanisms. Chem. Eur. J. 2016, 22, 7800–7809. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, N.; Lin, Q.; Wang, H.; Liang, Z.; Lu, Y.; Zhang, P. Sono-ReCORMs for synergetic sonodynamic-gas therapy of hypoxic tumor. Chin. Chem. Lett. 2023, 34, 107653. [Google Scholar] [CrossRef]
- Su, X.; Wang, W.J.; Cao, Q.; Zhang, H.; Liu, B.; Ling, Y.; Zhou, X.; Mao, Z.W. A carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer evokes pyroptosis for enhanced anti-tumor immunity. Angew. Chem. Int. Ed. 2022, 61, e202115800. [Google Scholar] [CrossRef]
- Imstepf, S.; Pierroz, V.; Rubbiani, R.; Felber, M.; Fox, T.; Gasser, G.; Alberto, R. Organometallic rhenium complexes divert doxorubicin to the mitochondria. Angew. Chem. 2016, 128, 2842–2845. [Google Scholar] [CrossRef]
- Brink, A.; Helliwell, J.R. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents. IUCrJ 2017, 4, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Asik, E.; Aslan, T.N.; Guray, N.T.; Volkan, M. Cellular uptake and apoptotic potential of rhenium labeled magnetic protein cages in MDA-MB-231 cells. Environ. Toxicol. Pharmacol. 2018, 63, 127–134. [Google Scholar] [CrossRef]
- Hostachy, S.; Policar, C.; Delsuc, N. Re(I) carbonyl complexes: Multimodal platforms for inorganic chemical biology. Coord. Chem. Rev. 2017, 351, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Yip, A.M.-H.; Lo, K.K.-W. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord. Chem. Rev. 2018, 361, 138–163. [Google Scholar] [CrossRef]
- Solovieva, A.O.; Kirakci, K.; Ivanov, A.A.; Kubat, P.; Pozmogova, T.N.; Miroshnichenko, S.M.; Vorontsova, E.V.; Chechushkov, A.V.; Trifonova, K.E.; Fufaeva, M.S.; et al. Singlet oxygen production and biological activity of hexanuclear chalcocyanide rhenium cluster complexes [{Re6Q8}(CN)6]4− (Q=S, Se, Te). Inorg. Chem. 2017, 56, 13491–13499. [Google Scholar] [CrossRef]
- Maisuls, I.; Cabrerizo, F.M.; David-Gara, P.M.; Epe, B.; Ruiz, G.T. DNA oxidation photoinduced by norharmane rhenium(I) polypyridyl complexes: Effect of the bidentate N,N’-ligands on the damage profile. Chem. Eur. J. 2018, 24, 12902–12911. [Google Scholar] [CrossRef] [Green Version]
- Moan, J.; Pettersen, E.O.; Christensen, T. The mechanism of photodynamic inactivation of human cells in vitro in the presence of haematoporphyrin. Br. J. Cancer 1979, 39, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wähler, K.; Ludewig, A.; Szabo, P.; Harms, K.; Meggers, E. Rhenium complexes with red-light-induced anticancer activity. Eur. J. Inorg. Chem. 2014, 2014, 807–811. [Google Scholar] [CrossRef] [Green Version]
- Wilder, P.T.; Weber, D.J.; Winstead, A.; Parnell, S.; Hinton, T.V.; Stevenson, M.; Giri, D.; Azemati, S.; Olczak, P.; Powell, B.V.; et al. Unprecedented anticancer activities of organorhenium sulfonato and carboxylato complexes against hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells. Mol. Cell. Biochem. 2018, 441, 151–163. [Google Scholar] [CrossRef]
- Zobi, F.; Blacque, O.; Sigel, K.O.R.; Alberto, R. Binding interaction of [Re(H2O)3(CO)3]+ with the DNA fragment d(CpGpG). Inorg. Chem. 2007, 46, 10458–10460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, R.R.; Tan, C.P.; Lin, Y.N.; Ji, L.N.; Mao, Z.W. A phosphorescent rhenium(I) histone deacetylase inhibitor: Mitochondrial targeting and paraptosis induction. Chem. Commun. 2015, 51, 8353–8356. [Google Scholar] [CrossRef]
- Sperandio, S.; Poksay, K.; de Belle, I.; Lafuente, M.J.; Liu, B.; Nasir, J.; Bredesen, D.E. Paraptosis: Mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004, 11, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Ouyang, A.; He, J.; Xie, J.; Banerjee, S.; Zhang, Q.; Zhang, P. An ultrasound activated cyanine-rhenium(I) complex for sonodynamic and gas synergistic therapy. Chem. Commun. 2022, 58, 3314–3317. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Carrington, S.J.; Roseman, G.; Mascharak, P.K. Synthesis, structures, and CO release capacity of a family of water-soluble photoCORMs: Assessment of the biocompatibility and their phototoxicity toward human breast cancer cells. Inorg. Chem. 2017, 56, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef]
- Miao, Z.; Chen, S.; Xu, C.Y.; Ma, Y.; Qian, H.; Xu, Y.; Chen, H.; Wang, X.; He, G.; Lu, Y.; et al. PEGylated rhenium nanoclusters: A degradable metal photothermal nanoagent for cancer therapy. Chem. Sci. 2019, 10, 5435–5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Z.H.; Lv, L.X.; Li, K.; Liu, P.Y.; Li, Z.; Yang, H.; Zhao, Q.; Chang, M.; Zhen, L.; Xu, C.Y. Liquid exfoliation of colloidal rhenium disulfide nanosheets as a multifunctional theranostic agent for in vivo photoacoustic/CT imaging and photothermal therapy. Small 2018, 14, 1703789. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Chao, Y.; Dong, Z.; Wang, G.; Yi, X.; Song, G.; Yang, K.; Liu, Z.; Cheng, L. Bottom-up preparation of uniform ultrathin rhenium disulfide nanosheets for image-guided photothermal radiotherapy. Adv. Funct. Mater. 2017, 27, 1700250. [Google Scholar] [CrossRef]
- Song, Y.; Yuan, Y.; Peng, X.; Peng, Z.; Liu, H.; Zhou, Y.; Zhang, X.; Zhou, F.; Song, J.; Qu, J. Promising colloidal rhenium disulfide nanosheets: Preparation and applications for in vivo breast cancer therapy. Nanomaterials 2022, 12, 1937. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; Zhou, J.; Zhong, X.; Huang, Y. Albumin-assisted exfoliated ultrathin rhenium disulfide nanosheets as a tumor targeting and dual-stimuli-responsive drug delivery system for a combination chemo-photothermal treatment. RSC Adv. 2018, 8, 4624–4633. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, J.; Pan, J.; Zhao, F.; Kan, D.; Cheng, R.; Zhang, X.; Sun, S.K. Rhenium sulfide nanoparticles as a biosafe spectral CT contrast agent for gastrointestinal tract imaging and tumor theranostics in vivo. ACS Appl. Mater. Interfaces 2019, 11, 33650–33658. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, G.; Li, B.; Zhao, X.; Ji, T.; Song, G.; Xiao, Z.; Cao, Q.; Xiao, J.; Huang, X.; et al. Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 2018, 159, 68–81. [Google Scholar] [CrossRef]
- Lo, K.K.W.; Zhang, K.Y.; Li, S.P.Y. Recent exploitation of luminescent rhenium(I) tricarbonyl polypyridine complexes as biomolecular and cellular probes. Eur. J. Inorg. Chem. 2011, 2011, 3551–3568. [Google Scholar] [CrossRef]
- Clede, S.; Policar, C. Metal-carbonyl units for vibrational and luminescence imaging: Towards multimodality. Chem. Eur. J. 2015, 21, 942–958. [Google Scholar] [CrossRef] [Green Version]
- Moherane, L.; Alexander, O.T.; Schutte-Smith, M.; Kroon, R.E.; Mokolokolo, P.P.; Biswas, S.; Prince, S.; Visser, H.G.; Manicum, A.-L.E. Polypyridyl coordinated rhenium(I) tricarbonyl complexes as model devices for cancer diagnosis and treatment. Polyhedron 2022, 228, 116178. [Google Scholar] [CrossRef]
- Sharma, S.A.; Vaibhavi, N.; Kar, B.; Das, U.; Paira, P. Target-specific mononuclear and binuclear rhenium(I) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv. 2022, 12, 20264–20295. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, Z.; Song, Y.; Yuan, Y.; Peng, X.; Song, J.; Qu, J. Rhenium disulfide nanosheets as a promising probe for intracellular two-photon luminescence imaging. Sens. Actuators B Chem. 2022, 362, 131781. [Google Scholar] [CrossRef]
Compound | Cell Line | Mechanism of Action | Ref. |
---|---|---|---|
Re-1a | HPAF-II, ASPC1, CFPAC | Inhibit Growth | [81] |
Re-2a | A2780, A2780CP70 | Inhibit Growth | [82] |
Re-3a | A2780, A2780CP70 | Cell Necrosis | [83] |
Re-4a | A549 | Cell Necrosis | [84] |
Re-4b | A549 | Cell Necrosis | [84] |
Re-5a | A431, DLD-1, A2780 | Cell Apoptosis | [85] |
Re-6a | HeLa | Cell Apoptosis and Ferroptosis | [86] |
Re-7a | Guerink (T-8) | Cell Apoptosis | [87] |
Re-8a | A549, HCT-15, HeLa, K562 | Cell Apoptosis | [88] |
Re-9a | A2780 | Cell Apoptosis | [89] |
Re-10a | A549 | Photodynamic Therapy | [90] |
Re-10b | A549 | Photodynamic Therapy | [90] |
Re-11a | HeLa | Photodynamic Therapy | [91] |
Re-12a | HeLa, H460M2, HBL-100 | Photodynamic Therapy | [92] |
Re-13a | HeLa | Photodynamic Therapy | [93] |
Re-13b | HeLa | Photodynamic Therapy | [93] |
Re-14a | A2780, A2780cis | Photodynamic Therapy | [94] |
Re-15a | HeLa, A2780, A2780CP70 | Photodynamic Therapy | [95] |
Re-16a | PC-3, MDA-MB-231, CCl-227 | Insert DNA | [96] |
Re-17a | PC-3 | Insert DNA | [97] |
Re-18a | / | Base Bind | [98] |
Re-19a | / | Base Bind | [99] |
Re-20a | / | DNA Groove Bind | [100] |
Re-21a | T98G, PC3, MCF-7 | DNA Groove Bind | [101] |
Re-22a | A2780/AD | DNA Groove Bind | [102] |
Re-23a | BeWo | DNA Groove Bind | [103] |
Re-24a | NCI-1229 | Cell Apoptosis | [104] |
Re-25a | HepG2, HeLa, MCF-7, A549 | Cell Apoptosis | [105] |
Re-26a | MCF-7 | Cell Apoptosis | [106] |
Re-27a | HeLa, A549, MCF-7 | Cell Apoptosis | [107] |
Re-27b | HeLa, A549, MCF-7 | Cell Apoptosis | [107] |
Re-28a | A549 | Cell Apoptosis | [108] |
Re-29a | HeLa | Cell Apoptosis | [109] |
Re-30a | NALM-6, BJAB, MelHO | Cell Apoptosis | [110] |
Re-31a | HeLa, A549, HepG2 | Cell Apoptosis | [111] |
Re-31b | HeLa, A549, HepG2 | Cell Paraptosis | [111] |
Re-32a | 4T1 | Sonodynamic–Gas Therapy | [112] |
Re-33a | MDA-MB-231 | Photodynamic and Immunotherapy | [113] |
Re-34a | HeLa | Cell Apoptosis | [114] |
Nanomaterials | Cell Line | Therapy Methods | Ref. |
---|---|---|---|
Re NCs | 4T1 | Photothermal Therapy | [131] |
PVP capped ReS2 | HeLa | Photothermal Therapy | [132] |
ReS2-PEG | 4T1 | Photothermal Radiotherapy | [133] |
PEG-ReS2 | 4T1 | Photothermal Therapy | [134] |
utReS2@RSV–FA | HepG2 | Chemo-Photothermal Therapy | [135] |
ReS2 NPs | 4T1 | Photothermal Therapy | [136] |
ReO3 NCs | HeLa | Photothermal Therapy | [137] |
Types of Materials | Therapy Methods | Advantage | Limitation |
---|---|---|---|
Re Radiopharmaceuticals | Radiotherapy | Simplicity of Operator | Kill Normal Cells |
Re Complexes | Regulating the Expression of Proteins | Extensive Mechanism | Unclear mechanism |
Photodynamic Therapy | Minimally Invasive | Limited Penetration | |
Interaction with DNA | Strong Targeting | Develop Resistance | |
Destroy the Function of Mitochondria | High Selectivity | Low Intake | |
Sonodynamic Therapy | Good Penetration | Oxygen Dependence | |
Immunotherapy | Wide Effect | Slow Action | |
Re Nanomaterials | Photothermal Therapy | High Efficiency | Limited Penetration |
Types of Materials | Imaging Techniques | Advantage | Limitation |
Re Nanomaterials | Infrared Thermal Imaging | Non-photobleach | Temperature-dependent |
Re Nanomaterials | Photoacoustic Imaging | High-resolution | Limited Penetration Depth |
Re Complexes | Fluorescence Imaging | Sensitive | Limited Penetration Depth |
Re Complexes | Phosphorescence Lifetime Imaging | Sensitive | Limited Penetration Depth |
Re Nanomaterials | Computed Tomography | High-resolution | Tissue Damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Q.; Wang, Q.; Li, Y.; Silva, D.Z.; Ruiz, M.E.L.; Ouyang, R.; Liu, B.; Miao, Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023, 28, 2733. https://doi.org/10.3390/molecules28062733
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules. 2023; 28(6):2733. https://doi.org/10.3390/molecules28062733
Chicago/Turabian StyleQi, Qingwen, Qian Wang, Yuhao Li, Dionisio Zaldivar Silva, Maria Eliana Lanio Ruiz, Ruizhuo Ouyang, Baolin Liu, and Yuqing Miao. 2023. "Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy" Molecules 28, no. 6: 2733. https://doi.org/10.3390/molecules28062733
APA StyleQi, Q., Wang, Q., Li, Y., Silva, D. Z., Ruiz, M. E. L., Ouyang, R., Liu, B., & Miao, Y. (2023). Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules, 28(6), 2733. https://doi.org/10.3390/molecules28062733