Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Content and Antioxidant Capacity
2.2. HPLC Analysis of Phenolic Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material and Fruit Sampling
4.2. Total Phenolic Content and Antioxidant Capacity
4.3. Reverse Phase-High-Performance Liquid Chromatography (RP-HPLC) Analysis of Phenolic Compounds
4.4. Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azzini, E.; Maiani, G.; Durazzo, A.; Foddai, M.S.; Intorre, F.; Venneria, E.; Polito, A.S. Giovanni varieties (Pyrus communis L.): Antioxidant properties and phytochemical characteristics. Oxid. Med. Cell. Longev. 2019, 2019, 6714103. [Google Scholar] [CrossRef] [PubMed]
- Ghazouani, T.; Talbi, W.; Sassi, C.B.; Fattouch, S. Pears. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 671–680. [Google Scholar]
- Reiland, H.; Slavin, J. Systematic review of pears and health. Nutr. Today 2015, 50, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Navaei, N.; Pourafshar, S.; Akhavan, N.S.; Elam, M.L.; Foley, E.; Clark, E.A.; Payton, M.E.; Arjmandi, B.H. Fresh pear (Pyrus communis) consumption may improve blood pressure in middle-aged men and women with metabolic syndrome. FASEB J. 2016, 30, 1175-12. [Google Scholar]
- Navaei, N.; Pourafshar, S.; Akhavan, N.S.; Foley, E.M.; Litwin, N.S.; George, K.S.; Hartley, S.C.; Elam, M.L.; Rao, S.; Arjmandi, B.H. Effects of Fresh Pear Consumption on Biomarkers of Cardiometabolic Health in Middle-Aged and Older Adults with Metabolic Syndrome. FASEB J. 2017, 31, lb346. [Google Scholar]
- Hu, D.; Huang, J.; Wang, Y.; Zhang, D.; Qu, Y. Fruits and vegetables consumption and risk of stroke: A meta-analysis of prospective cohort studies. Stroke 2014, 45, 1613–1619. [Google Scholar] [CrossRef]
- Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life. An overview. Antioxidants 2021, 10, 507. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lansky, E.; Kang, S.S.; Yang, M. A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complement. Med. Ther. 2021, 21, 219. [Google Scholar] [CrossRef]
- Akagić, A.; Oras, A.; Gaši, F.; Meland, M.; Drkenda, P.; Memić, S.; Hudina, M. A comparative study of ten pear (Pyrus communis L.) cultivars in relation to the content of sugars, organic acids, and polyphenol compounds. Foods 2022, 11, 3031. [Google Scholar] [CrossRef]
- Öztürk, A.; Demirsoy, L.; Demirsoy, H.; Asan, A.; Gül, O. Phenolic compounds and chemical characteristics of pears (Pyrus Communis L.). Int. J. Food Prop. 2015, 18, 536–546. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2016; pp. 573–608. [Google Scholar]
- Pes, G.M.; Dore, M.P.; Tsofliou, F.; Poulain, M. Diet and longevity in the Blue Zones: A set-and-forget issue? Maturitas 2022, 164, 31–37. [Google Scholar] [CrossRef]
- Puddu, G.; Falcucci, A.; Maiorano, L. Forest changes over a century in Sardinia: Implications for conservation in a Mediterranean hotspot. Agrofor. Syst. 2012, 85, 319–330. [Google Scholar] [CrossRef]
- Fois, M.; Bacchetta, G.; Cogoni, D.; Fenu, G. Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: A nice and complex strategy in its raw state? J. Environ. Plan. Manag. 2018, 61, 332–347. [Google Scholar] [CrossRef]
- Sulas, L.; Re, G.A.; D’hallewin, G. Agroforestry & Transumance in Sardinia; World Agroforestry in Practice Platform: Nairobi, Kenya; Association Française d’Agroforesterie: Auch, France, 2019; Available online: https://www.agroforesterie.fr/World-Agroforestry-In-Practice.php (accessed on 10 January 2023).
- Agabbio, M.; Ansaldi, N.; Beccaro, G.L.; Berra, L.; Botta, R.; Brunu, A. Frutti dimenticati e biodiversità recuperata. Il germoplasma frutticolo e viticolo delle agriculture tradizionali italiane. Casi di studio: Piemonte e Sardegna. Quad. Nat. Biodivers. 2015, 7, 123–133. [Google Scholar]
- Sau, S.; Pastore, C.; D’hallewin, G.; Dondini, L.; Bacchetta, G. Characterisation of microsatellite loci in Sardinian pears (Pyrus communis L. and P. spinosa Forssk.). Sci. Hortic. 2020, 270, 109443. [Google Scholar] [CrossRef]
- Loru, L.; D’hallewin, G.; Satta, A.; Sulas, L.; Molinu, M.G.; Piluzza, G.; Pusceddu, M.; Pantaleoni, R.A. FOR[m]AGE, BEES & FRUITS: Bee-fruit synergies with forage farming systems in rainfed Mediterranean environment. Agroforestry for the transition towards sustainability and bioeconomy, P3.3-5_216. In Proceedings of the 5th European Agroforestry Conference, Nuoro, Italy, 17–19 May 2021; pp. 3–19. [Google Scholar]
- Agabbio, M.; D’Aquino, S.; Piga, A. Risposta alla frigoconservazione di alcune cultivar di pere estive del germoplasma autoctono. In Proceedings of the Atti del 2 Convegno Nazionale Biodiversità e Produzioni Biologiche, Matera, Italy, 11 June 1996; pp. 227–244. [Google Scholar]
- D’Aquino, S.; Agabbio, M.; Molinu, M.G.; Petretto, A.; Rosas, G. Varietà di pero a maturazione autunnale e invernale del germoplasma autoctono: Aspetti qualitativi e fisiologia postraccolta. In Proceedings of the Atti del 4° Convegno Nazionale Biodiversità Germoplasma Locale e Sua Valorizzazione, Alghero, Italy, 8–11 September 1998; pp. 535–538. [Google Scholar]
- Manzoor, M.; Anwar, F.; Bhatti, I.A.; Jamil, A. Variation of phenolics and antioxidant activity between peel and pulp parts of pear (Pyrus communis L.) fruit. Pak. J. Bot. 2013, 45, 1521–1525. [Google Scholar]
- Du, B.; Cheng, C.; Chen, Y.; Wu, J.; Zhu, F.; Yang, Y.; Peng, F. Phenolic profiles and antioxidant activities of exocarp, endocarp, and hypanthium of three pear cultivars grown in China. J. Food Bioact. 2021, 14, 75–80. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymonė, K.; Viškelis, J.; Klevinskas, A.; Janulis, V. Determination of the phenolic composition and antioxidant activity of pear extracts. J. Chem. 2017, 2017, 7856521. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidant 2021, 10, 151. [Google Scholar] [CrossRef]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, F.; Jiang, X.; Pu, Y.F.; Shen, L.R.; Wu, C.Y.; Bai, H.J. Antioxidative, cytoprotective and whitening activities of fragrant pear fruits at different growth stages. Front. Nutr. 2022, 9, 1020855. [Google Scholar] [CrossRef]
- Hameed, A.; Liu, Z.; Wu, H.; Zhong, B.; Ciborowski, M.; Suleria, H.A.R. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022, 12, 271. [Google Scholar] [CrossRef]
- Decros, G.; Baldet, P.; Beauvoit, B.; Stevens, R.; Flandin, A.; Colombié, S.; Gibon, Y.; Pétriacq, P. Get the balance right: ROS homeostasis and redox signalling in fruit. Front. Plant Sci. 2019, 10, 1091. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Pascoalino, L.A.; Reis, F.S.; Prieto, M.A.; Barreira, J.C.; Ferreira, I.C.; Barros, L. Valorization of bio-residues from the processing of main Portuguese fruit crops: From discarded waste to health promoting compounds. Molecules 2021, 26, 2624. [Google Scholar] [CrossRef] [PubMed]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Paquot, M.; Wathelet, B. Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 2014, 61, 254–264. [Google Scholar] [CrossRef]
- Yan, L.; Li, T.; Liu, C.; Zheng, L. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre. LWT 2019, 107, 171–177. [Google Scholar] [CrossRef]
- Malhi, N.; Carragher, J.; Saarela, M.; Pahl, S. A Review of Opportunities to Recover Value from Apple and Pear Pomace; Fight Food Waste Cooperative Research Centre: Adelaide, Australia, 2021. [Google Scholar]
- Fernandes, A.; Simões, S.; Ferreira, I.M.; Alegria, M.J.; Mateus, N.; Raymundo, A.; de Freitas, V. Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. Molecules 2022, 28, 179. [Google Scholar] [CrossRef] [PubMed]
- Sad, T.G.; Djafaridze, I.; Kalandia, A.; Vanidze, M.; Smilkov, K.; Jacob, C. Antioxidant Properties of the Native Khechechuri Pear from Western Georgia. Science 2021, 3, 10. [Google Scholar]
- Lomba-Viana, X.; Raymundo, A.; Prista, C.; Alegria, M.J.; Sousa, I. Clean Label “Rocha” Pear (Pyrus communis L.) Snack Containing Juice by-Products and Euglena gracilis Microalgae. Front. Nutr. 2022, 9, 825999. [Google Scholar] [CrossRef] [PubMed]
- Hudina, M.; Orazem, P.; Jakopic, J.; Stampar, F. The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). J. Plant Physiol. 2014, 171, 76–84. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Veluchamy, R.S.; Mary, R.; Puthiya, P.S.B.; Pandiselvam, R.; Padmanabhan, S.; Sathyan, N.; Shil, S.; Niral, V.; Ramarathinam, M.M.; Lokesha, A.N.; et al. Physicochemical characterization and fatty acid profiles of testa oils from various coconut (Cocos nucifera L.) genotypes. J. Sci. Food Agric. 2023, 103, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Salkić, B.; Cvrk, R.; Imširović, E.; Salkić, A.; Salkić, E. Comparison of pomological and chemical properties of autochthonous pear varieties with standard pear varieties. Int. J. Plant Soil Sci. 2020, 32, 36–42. [Google Scholar] [CrossRef]
- Brahem, M.; Renard, C.M.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J.; Oszmiański, J. Characterization of phenolic compounds in different anatomical pear (Pyrus communis L.) parts by ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS). Int. J. Mass Spectrum. 2015, 392, 154–163. [Google Scholar] [CrossRef]
- Cui, T.; Nakamura, K.; Ma, L.; Li, J.Z.; Kayahara, H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear. J. Agric. Food Chem. 2005, 53, 3882–3887. [Google Scholar] [CrossRef] [PubMed]
- Bacchiocca, M.; Biagiotti, E.; Ninfali, P. Nutritional and technological reasons for evaluating the antioxidant capacity of vegetable products. Ital. J. Food Sci. 2006, 18, 209–217. [Google Scholar]
- Lin, L.Z.; Harnly, J.M. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J. Agric. Food Chem. 2008, 56, 9094–9101. [Google Scholar] [CrossRef]
- Azzini, E.; Durazzo, A.; Polito, A.; Veneria, E.; Foddai, M.S.; Zaccaria, M.; Mauro, B.; Intorre, F.; Maiani, G. Biodiversity and local food products in Italy. Sustain. Diets Biodivers. 2012, 244–252, ISBN 978-92-5-107311-7. [Google Scholar]
- Kolniak-Ostek, J. Content of bioactive compounds and antioxidant capacity in skin tissues of pear. J. Funct. Foods 2016, 23, 40–51. [Google Scholar] [CrossRef]
- Hudina, M.; Stampar, F.; Orazem, P.; Petkovsek, M.M.; Veberic, R. Phenolic compounds profile, carbohydrates and external fruit quality of the ‘Concorde’pear (Pyrus communis L.) after bagging. Can. J. Plant Sci. 2012, 92, 67–75. [Google Scholar] [CrossRef]
- Galvis-Sanchez, A.C.; Gill-Izquierdo, A.; Gill, M.I. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. J. Sci. Food Agric. 2003, 83, 995–1003. [Google Scholar] [CrossRef]
- Takebayashi, J.; Ishii, R.; Chen, J.; Matsumoto, T.; Ishimi, Y.; Tai, A. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radic. Res. 2010, 44, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Dell’Arca, A.M. Agricoltura di Sardegna; Vicenzo Orsino, Napoli 1780, a cura di Ortu GG, Illisso edizioni; Centro Di Studi Folologici Sardi: Nuoro, Italy, 2000; p. 169. ISBN 88-87825-16-5. [Google Scholar]
- Molinu, M.G.; Sulas, L.; Campesi, G.; Re, G.A.; Sanna, F.; Piluzza, G. Subterranean Clover and Sulla as Valuable and Complementary Sources of Bioactive Compounds for Rainfed Mediterranean Farming Systems. Plants 2023, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Sanna, F.; Piluzza, G.; Campesi, G.; Molinu, M.G.; Re, G.A.; Sulas, L. Antioxidant Contents in a Mediterranean Population of Plantago lanceolata L. Exploited for Quarry Reclamation Interventions. Plants 2022, 11, 791. [Google Scholar] [CrossRef]
- Re, G.A.; Piluzza, G.; Sanna, F.; Molinu, M.G.; Sulas, L. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system. J. Sci. Food Agric. 2019, 99, 191–198. [Google Scholar] [CrossRef]
- Molinu, M.G.; Piluzza, G.; Campesi, G.; Sulas, L.; Re, G.A. Antioxidant sources from leaves of Russian dandelion. Chem. Biodivers. 2019, 16, e1900250. [Google Scholar] [CrossRef]
- StatPoint Technologies Inc. Statgraphics Centurion XVI. User Manual; StatPoint Technologies Inc.: Warrenton, VA, USA, 2009. [Google Scholar]
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Camusina | 1.5 ± 0.20 b | 1.2 ± 0.02 b | 8.9 ± 0.09 b | 5.9 ± 0.36 ab | 3.1 ± 0.46 b | 1.2 ± 0.08 b | 4.3 ± 0.12 b |
Buttiru | 2.7 ± 0.10 a | 2.4 ± 0.09 a | 17.7 ± 0.32 a | 6.1 ± 0.78 a | 11.5 ± 0.53 a | 2.7 ± 0.06 a | 8.2 ± 0.03 a |
Spadona | 0.9 ± 0.10 c | 0.9 ± 0.06 c | 6.7 ± 0.19 c | 4.6 ± 0.12 bc | 2.1 ± 0.26 b | 0.9 ± 0.01 c | 3.6 ± 0.36 c |
Coscia | 0.7 ± 0.06 c | 0.8 ± 0.07 c | 6.4 ± 0.28 c | 4.2 ± 0.21 c | 2.2 ± 0.23 b | 0.6 ± 0.04 d | 1.6 ± 0.01 d |
Mean | 1.4 | 1.3 | 9.9 | 5.2 | 4.7 | 7.4 | 4.4 |
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Camusina | 6.4 ± 0.22 a | 5.9 ± 0.29 a | 40.3 ± 0.73 a | 15.1 ± 0.08 a | 25.3 ± 0.81 a | 7.2 ± 0.16 a | 6.0 ± 0.03 b |
Buttiru | 5.5 ± 0.25 b | 6.1 ± 0.55 a | 36.3 ± 1.19 b | 9.9 ± 0.75 bc | 26.3 ± 0.86 a | 6.2 ± 0.14 b | 8.7 ± 0.42 a |
Spadona | 2.5 ± 0.06 c | 2.1 ± 0.07 b | 16.5 ± 0.52 c | 8.9 ± 0.28 c | 7.7 ± 0.61 b | 2.4 ± 0.13 c | 1.2 ± 0.06 c |
Coscia | 2.8 ± 0.17 c | 2.5 ± 0.12 b | 18.9 ± 0.27 c | 11.5 ± 0.67 b | 7.4 ± 0.94 b | 2.6 ± 0.14 c | 1.9 ± 0.01 c |
Mean | 4.3 | 4.2 | 28.0 | 11.4 | 16.7 | 4.6 | 4.4 |
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Camusina | 5.8 ± 0.11 b | 5.3 ± 0.09 b | 34.9 ± 1.21 b | 8.9 ± 0.14 c | 26.0 ± 1.15 b | 7.0 ± 0.22 b | 12.0 ± 0.44 b |
Buttiru | 7.0 ± 0.05 a | 6.8 ± 0.10 a | 40.4 ± 0.59 a | 11.6 ± 0.65 a | 28.8 ± 0.06 a | 8.6 ± 0.06 a | 15.2 ± 0.51 a |
Spadona | 2.6 ± 0.15 d | 2.1 ± 0.05 d | 18.3 ± 0.34 d | 8.2 ± 0.18 c | 10.0 ± 0.18 d | 2.9 ± 0.06 d | 6.5 ± 0.15 d |
Coscia | 4.4 ± 0.05 c | 3.4 ± 0.03 c | 27.2 ± 0.66 c | 10.2 ± 0.17 b | 17.0 ± 0.52 c | 4.1 ± 0.09 c | 10.2 ± 0.03 c |
Mean | 5.0 | 4.4 | 30.2 | 9.7 | 20.5 | 5.7 | 10.1 |
TEAC | TotP | NTP | TP | TotF | CT | ||
---|---|---|---|---|---|---|---|
(mmol 100 g−1 DM) | (g GAE kg−1 DM) | (g CE kg−1 DM) | (g DE kg−1 DM) | ||||
ABTS | DPPH | ||||||
Camusina | 9.9 ± 0.41 ab | 7.9 ± 0.13 a | 58.8 ± 2.29 a | 26.9 ± 0.43 a | 32.0 ± 2.03 b | 10.5 ± 0.12 a | 7.0 ± 0.05 a |
Buttiru | 10.4 ± 0.05 a | 8.1 ± 0.33 a | 56.8 ± 0.85 a | 20.5 ± 0.35 b | 36.2 ± 1.00 a | 11.3 ± 0.52 a | 5.3 ± 0.14 b |
Spadona | 9.2 ± 0.23 bc | 5.6 ± 0.09 b | 42.2 ± 0.10 b | 21.0 ± 0.05 b | 20.5 ± 0.71 d | 7.8 ± 0.08 b | 4.2 ± 0.06 c |
Coscia | 8.8 ± 0.09 c | 5.9 ± 0.27 b | 45.4 ± 0.54 b | 20.2 ± 0.21 b | 25.3 ± 0.42 c | 8.3 ± 0.08 b | 4.2 ± 0.37 c |
Mean | 9.6 | 6.9 | 50.8 | 22.2 | 28.5 | 9.5 | 5.2 |
Phenolic Compounds | tR * (min) | λmax ** (nm) | Camusina | Buttiru | Spadona | Coscia |
---|---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 0.21 ± 0.02 a | 0.06 ± 0.001 d | 0.09 ± 0.01 c | 0.16 ± 0.001 b |
Gallic acid | 6.50 | 280 | ≤LOQ | ≤LOQ | 0.01 ± 0.0003 | ≤LOQ |
Chlorogenic acid | 10.69 | 330 | 0.67 ± 0.02 a | 0.57 ± 0.06 ab | 0.48 ± 0.04 b | 0.50 ± 0.05 b |
Catechin | 11.40 | 280 | 0.04 ± 0.001 | 0.12 ± 0.001 | nd | ≤LOQ |
Epicatechin | 13.06 | 280 | 0.07 ± 0.001 | 0.07 ± 0.001 | nd | nd |
Sum | 0.99 | 0.82 | 0.58 | 0.66 |
Phenolic Compounds | tR * (min) | λmax ** (nm) | Camusina | Buttiru | Spadona | Coscia |
---|---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 1.71 ± 0.10 a | 0.12 ± 0.004 d | 0.46 ± 0.01 c | 0.85 ± 0.02 b |
Gallic acid | 6.50 | 280 | 0.02 ± 0.0006 a | ≤LOQ | 0.02 ± 0.001 a | 0.01 ± 0.0003 b |
Chlorogenic acid | 10.69 | 330 | 1.34 ± 0.03 a | 0.61 ± 0.05 b | 0.32 ± 0.02 c | 1.28 ± 0.05 a |
Catechin | 11.4 | 280 | 0.26 ± 0.02 b | 0.37 ± 0.01 a | 0.03 ± 0.0003 c | 0.03 ± 0.004 c |
Epicatechin | 13.06 | 280 | 0.58 ± 0.01 a | 0.35 ± 0.01 b | 0.11 ± 0.01 c | 0.07 ± 0.004 d |
Rutin | 20.4 | 350 | 0.37 ± 0.008 a | 0.22 ± 0.002 b | 0.16 ± 0.004 c | 0.24 ± 0.006 b |
Quercetin 3-galattoside | 20.90 | 350 | 0.37 ± 0.002 a | 0.38 ± 0.004 a | 0.12 ± 0.003 b | 0.05 ± 0.004 c |
Quercetin 3-glucoside | 21.4 | 350 | nd | nd | 0.25 ± 0.02 | nd |
Quercetin 3-O-(6″-O-malonyl)-β-glucoside | 22.3 | 350 | 0.03 ± 0.001 a | 0.04 ± 0.001 a | ≤LOQ | ≤LOQ |
Isorhamnetin derivative | 22.87 | 350 | 0.83 ± 0.028 a | 0.52 ± 0.004 b | 0.09 ± 0.002 d | 0.20 ± 0.0004 c |
Isorhamnetin 3-rutinoside | 23.09 | 350 | 0.62 ± 0.036 a | 0.45 ± 0.011 b | 0.14 ± 0.002 c | 0.18 ± 0.005 c |
Isorhamnetin derivative | 23.4 | 350 | 0.21 ± 0.004 a | 0.09 ± 0.001 d | 0.17 ± 0.011 b | 0.11 ± 0.002 c |
Isorhamnetin derivative | 23.97 | 350 | 0.17 ± 0.005 b | 0.20 ± 0.005 a | 0.11 ± 0.001 c | 0.05 ± 0.001 d |
Isorhamnetin derivative | 24.4 | 350 | 0.16 ± 0.007 c | 0.29 ± 0.001 a | 0.23 ± 0.002 b | 0.06 ± 0.001 d |
Sum | 6.67 | 3.64 | 2.21 | 3.13 |
Phenolic Compounds | tR * (min) | λmax ** (nm) | Camusina | Buttiru | Spadona | Coscia |
---|---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 1.35 ± 0.07 a | 1.16 ± 0.02 b | 0.81 ± 0.02 c | 1.29 ± 0.08 ab |
Gallic acid | 6.50 | 280 | 0.02 ± 0.0004 a | 0.02 ± 0.0002 a | 0.01 ± 0.0008 b | ≤LOQ |
Chlorogenic acid | 10.69 | 330 | 1.61 ± 0.001 a | 1.26 ± 0.067 b | 1.23 ± 0.029 b | 0.65 ± 0.009 c |
Catechin | 11.4 | 280 | 0.23 ± 0.011 b | 0.61 ± 0.003 a | 0.12 ± 0.008 c | 0.21 ± 0.008 b |
Epicatechin | 13.06 | 280 | 0.22 ± 0.006 b | 0.41 ± 0.035 a | 0.09 ± 0.001 c | 0.12 ± 0.003 c |
Di-O-caffeolylquinic acid | 23.5 | 330 | 0.15 ± 0.001 a | 0.06 ± 0.002 b | 0.04 ± 0.0004 c | 0.06 ± 0.004 b |
Flavanol | 31.9 | 280 | nd | 4.91 ± 0.02 | nd | nd |
Flavanol | 39 | 280 | 0.22 ± 0.0006 b | 0.36 ± 0.0006 a | 0.17 ± 0.003 d | 0.18 ± 0.006 c |
Sum | 3.80 | 8.79 | 2.47 | 2.51 |
Phenolic Compounds | tR * (min) | λmax ** (nm) | Camusina | Buttiru | Spadona | Coscia |
---|---|---|---|---|---|---|
Arbutin | 5.08 | 280 | 7.09 ± 0.28 a | 5.11 ± 0.05 c | 7.49 ± 0.31 a | 6.19 ± 0.19 b |
Gallic acid | 6.50 | 280 | 0.03 ± 0.001 b | 0.03 ± 0.001 b | 0.05 ± 0.005 a | 0.03 ± 0.001 b |
Chlorogenic acid | 10.69 | 330 | 2.64 ± 0.04 a | 2.02 ± 0.05 c | 2.26 ± 0.05 b | 2.55 ± 0.11 a |
Catechin | 11.4 | 280 | 0.27 ± 0.002 b | 0.39 ± 0.008 a | 0.22 ± 0.015 c | 0.20 ± 0.011 c |
Epicatechin | 13.06 | 280 | 0.58 ± 0.01 a | 0.52 ± 0.02 a | 0.29 ± 0.01 b | 0.57 ± 0.03 a |
Rutin | 20.4 | 350 | 0.28 ± 0.015 a | 0.11 ± 0.003 c | 0.05 ± 0.001 d | 0.19 ± 0.005 b |
Quercetin 3-galattoside | 20.90 | 350 | 0.31 ± 0.008 a | 0.18 ± 0.001 b | 0.04 ± 0.001 d | 0.06 ± 0.002 c |
Quercetin 3-glucoside | 21.4 | 350 | 0.48 ± 0.010 a | 0.33 ± 0.012 b | 0.05 ± 0.002 d | 0.11 ± 0.003 c |
3,5-Di-O-caffeoylquinic acid | 22.2 | 330 | 0.042 ± 0.001 b | 0.043 ± 0.001 b | 0.051 ± 0.001 a | 0.021 ± 0.001 c |
Quercetin 3-O-(6″-O-malonyl)-β-glucoside | 22.3 | 350 | 0.03 ± 0.001 a | 0.03 ± 0.001 a | ≤LOQ | ≤LOQ |
Di-O-caffeolylquinic acid | 23.5 | 330 | 1.26 ± 0.02 a | 0.94 ± 0.01 b | 0.47 ± 0.01 c | 0.38 ± 0.01 d |
Di-O-caffeolylquinic acid | 24.7 | 330 | 0.11 ± 0.002 b | 0.17 ± 0.004 a | 0.099 ± 0.003 c | 0.039 ± 0.001 d |
Flavanol | 39 | 280 | 0.28 ± 0.003 a | 0.23 ± 0.001 c | 0.16 ± 0.002 d | 0.25 ± 0.004 b |
Sum | 13.40 | 10.10 | 11.23 | 10.59 |
Phenolic Compounds | Linearity Range (µg mL−1) | Calibration Curves | LoD (µg mL−1) | LoQ (µg mL−1) | R2 |
---|---|---|---|---|---|
Arbutin | 2.5–300 | Y = 3.2145x − 0.739 | 0.071 | 0.237 | 0.9997 |
Chlorogenic acid | 0.75–50 | Y = 32.335x − 51.97 | 0.027 | 0.092 | 0.9958 |
Gallic acid | 1.5–6 | Y = 18.314x | 0.016 | 0.054 | 0.9998 |
Catechin | 1–20 | Y = 7.664x − 1.1724 | 0.029 | 0.099 | 0.9992 |
Rutin | 0.3–20 | Y = 17.359x + 3.5614 | 0.017 | 0.057 | 0.9991 |
Epicatechin | 2.5–30 | Y = 8.1588x − 2.5825 | 0.073 | 0.245 | 0.9967 |
Quercetin 3-galattoside | 5–50 | Y = 27.129x − 8.2984 | 0.033 | 0.110 | 0.9998 |
Quercetin 3-glucoside | 0.2–20 | Y = 23.502x − 7.2335 | 0.038 | 0.127 | 0.9992 |
Quercetin 3-O-(6″-O-malonyl)-β-glucoside | 0.5–10 | Y = 12.63 − 1.8529 | 0.071 | 0.2375 | 0.9999 |
Isorhamnetin 3-rutinoside | 1–30 | Y = 17.258x − 9.3267 | 0.087 | 0.290 | 0.9987 |
3,5-Di-O-caffeoylquinic acid | 0.6–30 | Y = 23.741x − 7.5373 | 0.050 | 0.168 | 0.9994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piluzza, G.; Campesi, G.; D’hallewin, G.; Molinu, M.G.; Re, G.A.; Sanna, F.; Sulas, L. Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules 2023, 28, 3559. https://doi.org/10.3390/molecules28083559
Piluzza G, Campesi G, D’hallewin G, Molinu MG, Re GA, Sanna F, Sulas L. Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules. 2023; 28(8):3559. https://doi.org/10.3390/molecules28083559
Chicago/Turabian StylePiluzza, Giovanna, Giuseppe Campesi, Guy D’hallewin, Maria Giovanna Molinu, Giovanni Antonio Re, Federico Sanna, and Leonardo Sulas. 2023. "Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars" Molecules 28, no. 8: 3559. https://doi.org/10.3390/molecules28083559
APA StylePiluzza, G., Campesi, G., D’hallewin, G., Molinu, M. G., Re, G. A., Sanna, F., & Sulas, L. (2023). Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules, 28(8), 3559. https://doi.org/10.3390/molecules28083559