COF-SiO2@Fe3O4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of COF-SiO2@Fe3O4
2.2. Optimization of MSPE Parameters
2.2.1. Effect of Adsorbent Amount
2.2.2. Effect of Extraction Time
2.2.3. Effect of Elution Solvent
2.2.4. Effect of Elution Time
2.3. Method Validation
2.4. Real Sample Analysis
2.5. Comparison of COF-SiO2@Fe3O4, NH2-SiO2@Fe3O4 and Fe3O4 as MSPE Adsorbents
2.6. Comparison with Other References
3. Experimental Section
3.1. Materials and Chemicals
3.2. Equipment
3.3. Preparation of Standard Solution
3.4. Preparation of Magnetic Materials
3.4.1. Synthesis of Fe3O4 Magnetic Nanoparticles
3.4.2. Synthesis of SiO2@Fe3O4 Magnetic Nanospheres
3.4.3. Synthesis of NH2-SiO2@Fe3O4 Magnetic Nanospheres
3.4.4. Synthesis of COF-SiO2@Fe3O4 Magnetic Nanoparticles
3.5. MSPE Pretreatment
3.6. GC-MS Conditions
3.7. Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Mou, R.; Cao, Z.; Cao, Z.; Chen, M. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC–MS/MS. Chem. Pap. 2018, 72, 1953–1962. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, W.; Zhang, W.; Guang, C.; Mu, W. Microbial elimination of pyrethroids: Specific strains and involved enzymes. Appl. Microbiol. Biotechnol. 2022, 106, 6915–6932. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, L.; Li, Y.; Yang, J.; Yang, R.; Yang, X. Magnetic nanocomposite-based TpPa-NO2 covalent organic framework for the extraction of pyrethroid insecticides in water, vegetable, and fruit samples. Food Anal. Methods 2022, 16, 71–82. [Google Scholar] [CrossRef]
- Farajzadeh, M.; Khoshmaram, L.; Nabil, A. Determination of pyrethroid pesticides residues in vegetable oils using liquid–liquid extraction and dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection. J. Food Compos. Anal. 2014, 34, 128–135. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, H.; Li, X.; Liao, Y.; Tsunoda, M.; Zhang, Y.; Deng, S.; Song, Y. A modified QuEChERS method for determination of pyrethroid residues in traditional Chinese medicine oral liquids by high-performance liquid chromatography. Molecules 2019, 24, 1470. [Google Scholar] [CrossRef]
- Mao, X.; Wan, Y.; Li, Z.; Chen, L.; Lew, H.; Yang, H. Analysis of organophosphorus and pyrethroid pesticides in organic and conventional vegetables using QuEChERS combined with dispersive liquid-liquid microextraction based on the solidification of floating organic droplet. Food Chem. 2020, 309, 125755. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Aydan, T.; Yang, L.; Zhang, X.; Liang, Q.; Ding, M. In-syringe solid-phase extraction for on-site sampling of pyrethroids in environmental water samples. Anal. Chim. Acta 2018, 1009, 48–55. [Google Scholar] [CrossRef]
- Wang, K.; Xie, X.; Zhang, Y.; Huang, Y.; Zhou, S.; Zhang, W.; Lin, Y.; Fan, H. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem. 2018, 240, 1233–1242. [Google Scholar] [CrossRef]
- Li, Y.; He, M.; Chen, B.; Hu, B. A schiff base networks coated stir bar for sorptive extraction of pyrethroid pesticide residues in tobacco. J. Chromatogr. A 2023, 1689, 463759. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Yang, X.; Wang, W.; Li, Z.; Zhang, L.; Wang, C.; Wang, Z. A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta 2017, 166, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, S. Recent advances in solid-phase extraction as a platform for sample preparation in biomarker assay. Crit. Rev. Anal. Chem. 2023, 53, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Li, J.; Wang, X.; Sun-Waterhouse, D.; Sun, X.; Waterhouse, G.; Wu, P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Microchim. Acta 2023, 190, 383. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhang, C.; Liu, C.; Li, X.; Cai, Y.; Wang, M.; Chu, D.; Liu, L.; Meng, T.; Chen, Z. Magnetic tubular nickel@silica-graphene nanocomposites with high preconcentration capacity for organothiophosphate pesticide removal in environmental water: Fabrication, magnetic solid-phase extraction, and trace detection. J. Hazard. Mater. 2023, 457, 131788. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: Application to apple juice and environmental water. Talanta 2021, 227, 122078. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Pan, A.; Zhang, C.; Guo, M.; Lou, C.; Zhang, J.; Wu, H.; Wang, X. Fast extraction of aflatoxins, ochratoxins and enniatins from maize with magnetic covalent organic framework prior to HPLC-MS/MS detection. Food Chem. 2023, 404, 134464. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, X.; Liu, Y.; Liao, X. Determination of fipronil and its metabolites in egg samples by UHPLC coupled with q-exactive high resolution mass spectrometry after magnetic solid-phase extraction. Microchem. J. 2021, 169, 106540. [Google Scholar] [CrossRef]
- Liang, S.; Shi, F.; Zhao, Y.; Wang, H. Determination of local anesthetic drugs in human plasma using magnetic solid-phase extraction coupled with high-performance liquid chromatography. Molecules 2022, 27, 5509. [Google Scholar] [CrossRef]
- Cui, S.; Mao, X.; Zhang, H.; Zeng, H.; Lin, Z.; Zhang, X.; Qi, P. Magnetic solid-phase extraction based on magnetic sulfonated reduced graphene oxide for HPLC–MS/MS analysis of illegal basic dyes in foods. Molecules 2021, 26, 7427. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, S.; Miao, H.; Tian, H.; Sun, B. Ultrasonic synthesis of magnetic covalent organic frameworks and application magnetic solid phase extraction for rapid adsorption of trace bisphenols in food samples. Food Chem. 2024, 440, 138264. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Geng, X.; Li, Y.; Zha, Z.; Cui, S.; Yang, J. Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples. J. Chromatogr. A 2019, 1598, 20–29. [Google Scholar] [CrossRef]
- Feng, T.; Ye, X.; Zhao, Y.; Zhao, Z.; Hou, S.; Liang, N.; Zhao, L. Magnetic silica aerogels with high efficiency for selective adsorption of pyrethroid insecticides in juices and tea beverages. New J. Chem. 2019, 43, 5159–5166. [Google Scholar] [CrossRef]
- Yu, X.; Yang, H. Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem. 2017, 217, 303–310. [Google Scholar] [CrossRef]
- Yamini, Y.; Safari, M. Magnetic zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids. Microchem. J. 2019, 146, 134–141. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Q.; Guo, W.; Guo, D.; Han, Z.; Nie, D. Fe3O4@ COF (TAPT–DHTA) nanocomposites as magnetic solid-phase extraction adsorbents for simultaneous determination of 9 mycotoxins in fruits by UHPLC–MS/MS. Toxins 2023, 15, 117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, Y.; Li, J.; Yan, J.; Liu, P.; Fan, X.; Song, W. A novel TAPP-DHTA COF cathodic photoelectrochemical immunosensor based on CRISPR/Cas12a-induced nanozyme catalytic generation of heterojunction. Electrochim. Acta 2023, 441, 141771. [Google Scholar] [CrossRef]
- Gao, R.; Bai, J.; Shen, R.; Hao, L.; Huang, C.; Wang, L.; Liang, G.; Zhang, P.; Li, X. 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: Insights into interfacial charge transfer mechanism. J. Mater. Sci. Technol. 2023, 137, 223–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Gong, H.; Jia, Q.; Zhang, W.; Zhang, Z. Fabrication a sensor based on sulfonate-based COF for humidity sensing. Mater. Lett. 2022, 328, 133123. [Google Scholar] [CrossRef]
- Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Xing, Z.; Zhao, M.; Fu, Y.; Wang, S.; Wu, Y.; Zeng, J.; Li, X.; Ma, H. Ionic COF composite membranes for selective perfluoroalkyl substances separation. Macromol. Rapid Commun. 2023, 44, 2200718. [Google Scholar] [CrossRef]
- Han, S.; You, W.; Lv, S.; Du, C.; Zhang, X.; Zhang, E.; Zhu, J.; Zhang, Y. Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination 2023, 548, 116300. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, Y.; Ling, L.; Zhou, Y. Enhanced activation of PMS by a novel Fenton-like composite Fe3O4/S-WO3 for rapid chloroxylenol degradation. Chem. Eng. J. 2022, 446, 137067. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhao, Y.; Zhe, T.; Bu, T.; Liu, Y.; Sun, X.; Hu, H.; Zhang, M.; Zheng, X.; et al. Surface orphology-controllable magnetic covalent organic frameworks: A novel electrocatalyst for simultaneously high-performance detection of pnitrophenol and o-nitrophenol. Talanta 2020, 219, 121255. [Google Scholar] [CrossRef]
- Chen, L.; He, Y.; Lei, Z.; Gao, C.; Xie, Q.; Tong, P.; Lin, Z. Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample. Talanta 2018, 181, 296–304. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, S.; Liang, R.; Qian, C.; Jiang, G.; Zhao, X. Construction of two heteropore covalent organic frameworks with Kagome lattices. CrystEngComm 2017, 19, 4877. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, W.; Lu, Z.; Lu, Z.; Hu, B. Highly efficient enrichment mechanism of U (VI) and Eu (III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl. Surf. Sci. 2020, 504, 144403. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Cui, X.; Zhang, J.; Wang, Y.; Yang, X. Determination of trace bisphenols in milk based on Fe3O4@NH2-MIL-88 (Fe)@TpPa magnetic solid-phase extraction coupled with HPLC. Talanta 2023, 256, 124268. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, L.; Lu, M.; Liu, G.; Li, T.; Xu, X.; Li, L.; Lin, H.; Lv, J.; Huang, X.; et al. Magnetic solid-phase extraction of pyrethroid pesticides from environmental water samples using deep eutectic solvent-type surfactant modified magnetic zeolitic imidazolate framework-8. Molecules 2019, 24, 4038. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Ng, M.; Yang, H.; Wang, S. Comparative study of pyrethroids residue in fruit peels and fleshes using polystyrene-coated magnetic nanoparticles based clean-up techniques. Food Control 2018, 85, 300–307. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 2005, 44, 2782–2785. [Google Scholar] [CrossRef]
Analyte | Regression Equation | Linear Range /(μg⋅L−1) | r | LOD /(μg⋅kg−1) | LOQ /(μg⋅kg−1) | EF | RSD (%) | Batch to Batch (n = 3) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-Day (n = 5) Intra-Day (n = 6) | |||||||||||||
5 | 10 | 20 | 5 | 10 | 20 | ||||||||
Allethrin | y = 616.9x − 1255.5 | 5–100 | 0.9991 | 1.5 | 4.5 | 4.4 | 3.1 | 2.5 | 2.1 | 3.4 | 2.8 | 2.7 | 4.2 |
Tetramethrin | y = 780.02x + 754.75 | 5–100 | 0.9997 | 1.5 | 4.5 | 5.0 | 5.3 | 2.3 | 2.2 | 6.5 | 3.2 | 3.6 | 3.3 |
Bifenthrin | y = 4775.3x − 3182.1 | 1–100 | 0.9990 | 0.3 | 0.9 | 12.4 | 2.1 | 6.2 | 4.8 | 2.3 | 2.3 | 4.1 | 2.5 |
Fenpropathrin | y = 1077.2x + 195.48 | 2.5–100 | 0.9991 | 1.0 | 3.0 | 10.7 | 2.6 | 3.7 | 2.4 | 3.1 | 3.0 | 2.9 | 2.6 |
Cyhalothrin | y =451.16x − 561.9 | 5–100 | 0.9995 | 1.5 | 4.5 | 11.0 | 2.2 | 2.6 | 1.9 | 2.7 | 2.6 | 7.0 | 3.0 |
Analyte | Spiked Level /(μg⋅kg−1) | Cucumber Recovery (%, RSD%) | Cabbage Recovery (%, RSD%) | Lettuce Recovery (%, RSD%) |
---|---|---|---|---|
Allethrin | 5 | 80.2 (3.5) | 81.7 (3.1) | 85.3 (7.0) |
10 | 90.1 (2.9) | 91.3 (3.9) | 87.3 (5.8) | |
20 | 96.4 (3.4) | 102.4 (4.1) | 103.5 (6.1) | |
Tetramethrin | 10 | 116.5 (6.1) | 89.1 (5.3) | 116.1 (4.5) |
20 | 97.2 (4.6) | 107.6 (4.9) | 110.2 (5.7) | |
50 | 111.0 (6.1) | 114.7 (5.7) | 109.6 (4.8) | |
Bifenthrin | 10 | 89.2 (5.4) | 92.9 (2.1) | 97.3 (3.6) |
20 | 96.6 (2.3) | 95.3 (3.2) | 94.2 (2.4) | |
50 | 97.4 (3.9) | 102.7 (4.2) | 93.7 (3.4) | |
Fenpropathrin | 10 | 112.5 (6.7) | 107.5 (3.7) | 116.7 (5.7) |
20 | 93.1 (5.8) | 106.9 (5.6) | 109.8 (3.2) | |
50 | 107.8 (3.6) | 105.2 (6.5) | 107.1 (5.1) | |
Cyhalothrin | 10 | 97.3 (2.9) | 87.4 (6.8) | 81.6 (6.5) |
20 | 89.9 (4.7) | 108.5 (6.5) | 89.3 (5.6) | |
50 | 90.1 (5.1) | 92.3 (5.3) | 93.4 (5.4) |
Method | Samples | Number of Pyrethroids | Extraction Time (min) | Elution Solvent Consumption | LOD | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|
MSPE/GC-MS | environmental water samples | 4 | 15 | ethylacetate (2 mL) + acetone (0.5 mL) | 0.05–0.21 μg⋅L−1 | 81.1–97.6% | [38] |
SBSE/HPLC-UV | tobacco | 6 | 50 | acetonitrile (120 μL) | 0.2–0.66 μg⋅L−1 | 82–117% | [10] |
MSPE-LSE/GC-MS | fruit peels and fleshes | 6 | 25 | acetonitrile (2 mL) | 0.04–0.14 μg⋅kg−1 | 73.6–123.1% | [39] |
SPME/GC-μECD | fruit and vegetables | 8 | 40 | 0.1–0.5 ng⋅g−1 | 88.5–103.5% | [11] | |
UADLLME/HPLC-UV | litchi fruit | 6 | 13 | chlorobenzene (310 μL) + methanol (100 μL) | 1.15–2.46 μg⋅L−1 | 83.3–91.5% | [9] |
MSPE/GC-MS | vegetables | 5 | 10 | acetone (1 mL) | 0.3–1.5 μg⋅kg−1 | 80.2–116.7% | This work |
Peak Number | Compound | Retention Time (min) | Mass-to-Charge Ratio (m/z) | |
---|---|---|---|---|
Quantitative Ion | Qualitative Ion | |||
1 | Allethrin | 7.440 | 123 | 123, 79, 81 |
2 | Tetramethrin 1 | 11.195 | 164 | 164, 123, 81 |
3 | Bifenthrin | 11.340 | 181 | 181, 166, 165 |
2 | Tetramethrin 2 | 11.440 | 164 | 164, 123, 81 |
4 | Fenpropathrin | 11.670 | 97 | 97, 55, 181 |
5 | Cyhalothrin | 13.255 | 181 | 181, 197, 208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Xia, A.; Hao, Y.; Li, W.; He, X.; Xing, C.; Shang, Z.; Zhang, Y. COF-SiO2@Fe3O4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables. Molecules 2024, 29, 2311. https://doi.org/10.3390/molecules29102311
Yu L, Xia A, Hao Y, Li W, He X, Xing C, Shang Z, Zhang Y. COF-SiO2@Fe3O4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables. Molecules. 2024; 29(10):2311. https://doi.org/10.3390/molecules29102311
Chicago/Turabian StyleYu, Ling, Aiqing Xia, Yongchao Hao, Weitao Li, Xu He, Cuijuan Xing, Zan Shang, and Yiwei Zhang. 2024. "COF-SiO2@Fe3O4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables" Molecules 29, no. 10: 2311. https://doi.org/10.3390/molecules29102311
APA StyleYu, L., Xia, A., Hao, Y., Li, W., He, X., Xing, C., Shang, Z., & Zhang, Y. (2024). COF-SiO2@Fe3O4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables. Molecules, 29(10), 2311. https://doi.org/10.3390/molecules29102311