3D/3D Bamboo Charcoal/Bi2WO6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H2 Evolution Coupling with Furfuryl Alcohols Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. SEM Analysis
2.3. BET Analysis
2.4. UV–Vis Spectroscopy
2.5. Raman Spectra Analysis
2.6. Electrochemical Analysis
2.7. Photocatalytic Performance for Degradation
2.8. Photocatalytic Performance for H2 Production Coupled with Selective Oxidation of Furfural Alcohol
2.9. Reaction Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of T-BC-BWO Composite
3.3. Photocatalytic Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, H.; Li, J.; He, M.; Li, J.; Zhi, D.; Qin, F.; Zhang, C. Global Evolution of Research on Green Energy and Environmental Technologies: A Bibliometric Study. J. Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, J.; Shangguan, W. A Review on Photocatalysis in Antibiotic Wastewater: Pollutant Degradation and Hydrogen Production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Yang, W.; Ding, K.; Chen, G.; Wang, H.; Deng, X. Synergistic Multisystem Photocatalytic Degradation of Anionic and Cationic Dyes Using Graphitic Phase Carbon Nitride. Molecules 2023, 28, 2796. [Google Scholar] [CrossRef] [PubMed]
- Asencios, Y.J.O.; Lourenço, V.S.; Carvalho, W.A. Removal of Phenol in Seawater by Heterogeneous Photocatalysis Using Activated Carbon Materials Modified with TiO2. Catal. Today 2022, 388–389, 247–258. [Google Scholar] [CrossRef]
- Gao, X.; Meng, X. Photocatalysis for Heavy Metal Treatment: A Review. Processes 2021, 9, 1729. [Google Scholar] [CrossRef]
- Balzani, V.; Bergamini, G.; Ceroni, P. Photochemistry and Photocatalysis. Rendiconti Lincei 2017, 28, 125–142. [Google Scholar] [CrossRef]
- Wang, D.; Gong, X.-Q. Function-Oriented Design of Robust Metal Cocatalyst for Photocatalytic Hydrogen Evolution on Metal/Titania Composites. Nat. Commun. 2021, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Jin, Y.-H.; Burgess, R.A.; Dickenson, N.E.; Cao, X.-M.; Sun, Y. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, J.; Qin, L.; Yang, P.; Vlachos, D.G. Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catal. 2021, 11, 11336–11359. [Google Scholar] [CrossRef]
- Li, Y.-H.; Zhang, F.; Chen, Y.; Li, J.-Y.; Xu, Y.-J. Photoredox-Catalyzed Biomass Intermediate Conversion Integrated with H2 Production over Ti3C2Tx/CdS Composites. Green Chem. 2020, 22, 163–169. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, T.; Han, F.; Zheng, Z.; Xing, B.; Li, B. Bimetal-Modified g-C3N4 Photocatalyst for Promoting Hydrogen Production Coupled with Selective Oxidation of Biomass Derivative. J. Alloys Compd. 2022, 897, 163177. [Google Scholar] [CrossRef]
- Ma, H.; Shen, J.; Shi, M.; Lu, X.; Li, Z.; Long, Y.; Li, N.; Ye, M. Significant Enhanced Performance for Rhodamine B, Phenol and Cr (VI) Removal by Bi2WO6Nancomposites via Reduced Graphene Oxide Modification. Appl. Catal. B Environ. 2012, 121–122, 198–205. [Google Scholar] [CrossRef]
- Adhikari, S.; Kim, D.-H. Synthesis of Bi2S3/Bi2WO6 Hierarchical Microstructures for Enhanced Visible Light Driven Photocatalytic Degradation and Photoelectrochemical Sensing of Ofloxacin. Chem. Eng. J. 2018, 354, 692–705. [Google Scholar] [CrossRef]
- Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022. [Google Scholar] [CrossRef]
- Wang, Q. Peroxymonosulfate Activation by Tea Residue Biochar Loaded with Fe3O4 for the Degradation of Tetracycline Hydrochloride: Performance and Reaction Mechanism. RSC Adv. 2021, 11, 18525–18538. [Google Scholar] [CrossRef] [PubMed]
- Carmona, R.J.; Velasco, L.F.; Hidalgo, M.C.; Navío, J.A.; Ania, C.O. Boosting the Visible-Light Photoactivity of Bi2WO6 Using Acidic Carbon Additives. Appl. Catal. Gen. 2015, 505, 467–477. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Biochar Based Nanocomposites for Photocatalytic Degradation of Emerging Organic Pollutants from Water and Wastewater. Mater. Res. Bull. 2021, 140, 111262. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, H.; Wang, B.; Li, R.; Wang, X. Effect of Experimental Parameters on the Hydrothermal Synthesis of Bi2WO6 Nanostructures. Nanoscale Res. Lett. 2016, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, Z.-H.; Liu, G.; Kang, F. Adsorption of Dimethyl Sulfide from Aqueous Solution by a Cost-Effective Bamboo Charcoal. J. Hazard. Mater. 2011, 190, 1009–1015. [Google Scholar] [CrossRef]
- Yu, X.; Qin, A.; Liao, L.; Du, R.; Tian, N.; Huang, S.; Wei, C. Removal of Organic Dyes by Nanostructure ZnO-Bamboo Charcoal Composites with Photocatalysis Function. Adv. Mater. Sci. Eng. 2015, 2015, 252951. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, D.; Wang, J.; Yang, L. Photocatalytic Oxidation of Dibenzothiophene Using TiO2/Bamboo Charcoal. J Mater. Sci. 2009, 44, 3112–3117. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Chen, T.; Sun, J.; Ma, X.; Wang, Y.; Wang, J.; Xie, Z. Preparation of TiO2-Modified Biochar and Its Characteristics of Photo-Catalysis Degradation for Enrofloxacin. Sci. Rep. 2020, 10, 6588. [Google Scholar] [CrossRef] [PubMed]
- Orimolade, B.O.; Idris, A.O.; Feleni, U.; Mamba, B. Recent Advances in Degradation of Pharmaceuticals Using Bi2WO6 Mediated Photocatalysis—A Comprehensive Review. Environ. Pollut. 2021, 289, 117891. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Serp, P.; Kalck, P.; Faria, J.L. Visible Light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol–Gel Method. J. Mol. Catal. Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Liang, W.; Pan, J.; Duan, X.; Tang, H.; Xu, J.; Tang, G. Biomass Carbon Modified Flower-like Bi2WO6 Hierarchical Architecture with Improved Photocatalytic Performance. Ceram. Int. 2020, 46, 3623–3630. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Q.; Wang, J.; Zhang, Y.; Yu, C.; Bian, H.; Hegazy, M.; Han, J.; Xing, W. Facile Fabrication of Bi2WO6/Biochar Composites with Enhanced Charge Carrier Separation for Photodecomposition of Dyes. Colloids Surf. Physicochem. Eng. Asp. 2022, 634, 127945. [Google Scholar] [CrossRef]
- Zhu, J.-L.; Chen, S.-P.; Lin, W.; Huang, H.-D.; Li, Z.-M. Cellulose Mineralization with In-Situ Synthesized Amorphous Titanium Dioxide for Enhanced Adsorption and Auto-Accelerating Photocatalysis on Water Pollutant. Chem. Eng. J. 2023, 456, 141036. [Google Scholar] [CrossRef]
- Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H. A Bi2WO6-Based Hybrid Photocatalyst with Broad Spectrum Photocatalytic Properties under UV, Visible, and Near-Infrared Irradiation. Adv. Mater. 2013, 25, 5075–5080. [Google Scholar] [CrossRef] [PubMed]
- Djellabi, R.; Yang, B.; Xiao, K.; Gong, Y.; Cao, D.; Sharif, H.M.A.; Zhao, X.; Zhu, C.; Zhang, J. Unravelling the Mechanistic Role of TiOC Bonding Bridge at Titania/Lignocellulosic Biomass Interface for Cr (VI) Photoreduction under Visible Light. J. Colloid Interface Sci. 2019, 553, 409–417. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic Degradation of Gemifloxacin Antibiotic Using Zn-Co-LDH @ biochar Nanocomposite. J. Hazard. Mater. 2020, 382, 121070. [Google Scholar] [CrossRef]
- Wang, T.; Zhong, S.; Zou, S.; Jiang, F.; Feng, L.; Su, X. Novel Bi2WO6-coupled Fe3O4 Magnetic Photocatalysts: Preparation, Characterization and Photodegradation of Tetracycline Hydrochloride. Photochem. Photobiol. 2017, 93, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, S.; Mao, W.; Bai, Y.; Chiang, K.; Shah, K.; Paz-Ferreiro, J. Novel Bi2WO6 Loaded N-Biochar Composites with Enhanced Photocatalytic Degradation of Rhodamine B and Cr (VI). J. Hazard. Mater. 2020, 389, 121827. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; et al. Unveiling the Origin of Boosted Photocatalytic Hydrogen Evolution in Simultaneously (S, P, O)-Codoped and Exfoliated Ultrathin g-C3N4 Nanosheets. Appl. Catal. B Environ. 2019, 248, 84–94. [Google Scholar] [CrossRef]
- Chung, H.Y.; Toe, C.Y.; Chen, W.; Wen, X.; Wong, R.J.; Amal, R.; Abdi, F.F.; Ng, Y.H. Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi2WO6. Small 2021, 17, 2102023. [Google Scholar] [CrossRef]
- Wang, J. Rapid Toxicity Elimination of Organic Pollutants by the Photocatalysis of Environment-Friendly and Magnetically Recoverable Step-Scheme SnFe2O4/ZnFe2O4 Nano-Heterojunctions. Chem. Eng. J. 2020, 379, 122264. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Appl. Catal. B Environ. 2011, 101, 382–387. [Google Scholar] [CrossRef]
- Zhang, S.; Khan, I.; Qin, X.; Qi, K.; Liu, Y.; Bai, S. Construction of 1D Ag-AgBr/AlOOH Plasmonic Photocatalyst for Degradation of Tetracycline Hydrochloride. Front. Chem. 2020, 8, 117. [Google Scholar] [CrossRef]
- Lwin, H.M.; Zhan, W.; Jia, F.; Song, S. Microwave-Assisted Hydrothermal Synthesis of MoS2-Ag3PO4 Nanocomposites as Visible Light Photocatalyst for the Degradation of Tetracycline Hydrochloride. Environ. Technol. 2022, 43, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H. Highly Efficient Photocatalytic Activity and Mechanism of Yb3+/Tm3+ Codoped In2S3 from Ultraviolet to near Infrared Light towards Chromium (VI) Reduction and Rhodamine B Oxydative Degradation. Appl. Catal. B Environ. 2018, 225, 8–21. [Google Scholar] [CrossRef]
- Tan, C.-L.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Cocatalyst Decorated ZnIn2S4 Composites for Cooperative Alcohol Conversion and H2 Evolution. Appl. Catal. B Environ. 2021, 298, 120541. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Qu, J.; Yang, X.; Cai, Y.; Yang, T.; Yang, F.; Li, C.M. Bifunctional Honeycomb Hierarchical Structured 3D/3D ReS2/ ZnIn2S4-Sv Heterojunction for Efficient Photocatalytic H2-Evolution Integrated with Biomass Oxidation. Chem. Eng. J. 2023, 453, 139957. [Google Scholar] [CrossRef]
- Xing, F.; Zeng, R.; Cheng, C.; Liu, Q.; Huang, C. POM-Incorporated ZnIn2S4 Z-Scheme Dual-Functional Photocatalysts for Cooperative Benzyl Alcohol Oxidation and H2 Evolution in Aqueous Solution. Appl. Catal. B Environ. 2022, 306, 121087. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, Z.; Wang, X.; Li, C.; Chen, X.-B.; Shi, Z.; Feng, S. Atomically Dispersed Bismuth on ZnIn2S4 Dual-Functional Photocatalyst for Photocatalytic Hydrogen Production Coupled with Oxidation of Aromatic Alcohols to Aldehydes. Appl. Surf. Sci. 2023, 622, 156911. [Google Scholar] [CrossRef]
- Chachvalvutikul, A.; Luangwanta, T.; Pattisson, S.; Hutchings, G.J.; Kaowphong, S. Enhanced Photocatalytic Degradation of Organic Pollutants and Hydrogen Production by a Visible Light–Responsive Bi2WO6/ZnIn2S4 Heterojunction. Appl. Surf. Sci. 2021, 544, 148885. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 Production Based on Photoinduced Interfacial Charge Transfer. Sci. Rep. 2016, 6, 19221. [Google Scholar] [CrossRef] [PubMed]
- Devarayapalli, K.C.; Vattikuti, S.V.P.; Sreekanth, T.V.M.; Yoo, K.S.; Nagajyothi, P.C.; Shim, J. Hydrogen Production and Photocatalytic Activity of g-C3N4/Co-MOF (ZIF-67) Nanocomposite under Visible Light Irradiation. Appl. Organomet. Chem. 2020, 34, e5376. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, M.; Liu, C.; Xu, S.; Li, Z. Sulfur-Doped Graphitic Carbon Nitride Decorated with Zinc Phthalocyanines towards Highly Stable and Efficient Photocatalysis. Appl. Catal. Gen. 2016, 519, 107–115. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, Y.; Hou, T.; Zhu, Y.; Hu, B. Effect of Bi2WO6 Nanoflowers on the U(VI) Removal from Water: Roles of Adsorption and Photoreduction. J. Environ. Chem. Eng. 2022, 10, 107170. [Google Scholar] [CrossRef]
- Wan, J.; Xue, P.; Wang, R.; Liu, L.; Liu, E.; Bai, X.; Fan, J.; Hu, X. Synergistic Effects in Simultaneous Photocatalytic Removal of Cr (VI) and Tetracycline Hydrochloride by Z-Scheme Co3O4/Ag/Bi2WO6 Heterojunction. Appl. Surf. Sci. 2019, 483, 677–687. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, F.; Huo, P.; Zulfiqarc, S.; Xu, J.; Yan, Y.; Tang, H. Constructing Novel Visible-Light-Driven Ternary Photocatalyst of AgBr Nanoparticles Decorated 2D/2D Heterojunction of g-C3N4/BiOBr Nanosheets with Remarkably Enhanced Photocatalytic Activity for Water-Treatment. Ceram. Int. 2019, 45, 19197–19205. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Wang, F.; Yu, H. Soluble g-C3N4 Nanosheets: Facile Synthesis and Application in Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2019, 247, 70–77. [Google Scholar] [CrossRef]
Sample | BET Surface (m2·g−1) | Total Pore (cm3·g−1) | Average Pore Diameter a (nm) |
---|---|---|---|
170BC | 50.8 | 0.12 | 3.7 |
210BC | 52.1 | 0.21 | 3.8 |
250BC | 65.8 | 0.17 | 3.9 |
BWO | 16.8 | 0.07 | 17.8 |
170BC-BWO | 20.1 | 0.07 | 15.1 |
210BC-BWO | 22.8 | 0.10 | 18.4 |
250-BC-BWO | 29.8 | 0.11 | 12.3 |
Photocatalyst | Weight (mg) | Light Source Details | Sacrificial Reagent | H2 Production Rate | Aldehyde Production Rate |
---|---|---|---|---|---|
210BC-Bi2WO6 (This work) * | 3 | 500 W Xe | FFA | 2833 µmol·g−1·h−1 | 3097 µmol·g−1·h−1 |
Ni-Au/CN [11] | 10 | 200 W Xe | FFA | 471.35 µmol·g−1·h−1 | 206.19 µmol·g−1·h−1 |
1%-MoS2-ZIS [40] | 5 | 300 W Xe | FFA | 68.8 µmol | 78.8 µmol |
20% RS/ZIS-Sv [41] | 20 | 300 W Xe | FFA | 10.8 mmol·g−1·h−1 | 9.2 mmol·g−1·h−1 |
ZnIn2S4/HPM [42] | 5 | 300 W Xe | Benzyl alcohol | 10.6 mmol·g−1·h−1 | 7.68 mmol·g−1·h−1 |
Bi/ZnIn2S4 [43] | 15 | 300 W Xe | Benzyl alcohol | 3658.8 µmol·g−1·h−1 | 1030.37 µmol·g−1·h−1 |
Bi2WO6/ZnIn2S4 [44] | 20 | 150 W Xe | Methanol | 131.8 µmol·g−1·h−1 | N/A |
ZnIn2S4/g-C3N4 [45] | 5 | 300 W Xe | Triethanolamine | 282 µmol·g−1·h−1 | N/A |
g-C3N4/Co-MOF (ZIF-67) [46] | 5 | 300 W Xe | Lactic acid | 302.7 µmol·g−1·h−1 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Li, X.; Bu, K.; Zhang, J.; Chen, D.; Liang, J.; Chen, H.; Li, H.; Bai, L. 3D/3D Bamboo Charcoal/Bi2WO6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H2 Evolution Coupling with Furfuryl Alcohols Oxidation. Molecules 2024, 29, 2476. https://doi.org/10.3390/molecules29112476
Qu Y, Li X, Bu K, Zhang J, Chen D, Liang J, Chen H, Li H, Bai L. 3D/3D Bamboo Charcoal/Bi2WO6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H2 Evolution Coupling with Furfuryl Alcohols Oxidation. Molecules. 2024; 29(11):2476. https://doi.org/10.3390/molecules29112476
Chicago/Turabian StyleQu, Yanan, Xiaolin Li, Kang Bu, Jiayi Zhang, Da Chen, Junhui Liang, Huayu Chen, Huafeng Li, and Liqun Bai. 2024. "3D/3D Bamboo Charcoal/Bi2WO6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H2 Evolution Coupling with Furfuryl Alcohols Oxidation" Molecules 29, no. 11: 2476. https://doi.org/10.3390/molecules29112476
APA StyleQu, Y., Li, X., Bu, K., Zhang, J., Chen, D., Liang, J., Chen, H., Li, H., & Bai, L. (2024). 3D/3D Bamboo Charcoal/Bi2WO6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H2 Evolution Coupling with Furfuryl Alcohols Oxidation. Molecules, 29(11), 2476. https://doi.org/10.3390/molecules29112476