Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. HS-SPME-GC—MS Analysis of Volatile Components
2.2. Identification Analysis of Characteristic Components
2.2.1. Alcohol Compounds Analysis
2.2.2. Ester Compounds Analysis
2.2.3. Ketone and Phenolic Compounds Analysis
2.2.4. Other Compounds Analysis
2.3. Sensory Evaluation Profiles
2.3.1. Sensory Evaluation
2.3.2. E-Nose and E-Tongue Evaluation
2.3.3. OPLS-DA of Sensory, E-Nose, and E-Tongue Evaluation
2.4. Multivariate Statistical Analysis of Characteristic Compounds and Sensory Evaluation
2.4.1. PCA of Characteristic Compounds
2.4.2. Mantel Test of Sensory Evaluation and Characteristic Compounds
3. Materials and Methods
3.1. Preparation of Coffee Pulp Wine Samples
3.2. Volatile Component Analysis
3.3. Identification and Quantification of Volatile Components
3.4. Analysis of Relative Odor Activity Values (ROAVs)
3.5. Sensory Evaluation
3.6. E-Tongue Evaluation
3.7. E-Nose Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Carmen, M.T.; Lorena, Z.C.; Alexander, V.A.; Amandio, V.; Raúl, S. Coffee pulp: An industrial by-product with uses in agriculture, nutrition and biotechnology. Rev. Agric. Sci. 2020, 8, 323–342. [Google Scholar] [CrossRef]
- Bakker, R.R.C. Availability of Lignocellulosic Feedstocks for Lactic Acid Production—Feedstock Availability, Lactic Acid Production Potential and Selection Criteria; Wageningen UR Food & Biobased Research: Wageningen, The Netherlands, 2013. [Google Scholar]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry byproducts and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rezende, T.R.; Schwarz, S.; Lachenmeier, D.W. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.J.; Mertz, C.; Morel, G.; Lacour, S.; Belleville, M.; Durand, N.; Dornier, M. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chem. 2020, 319, 126600. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Xia, F.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2017, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Sánchez, G.A.; Hernández-Estrada, Z.J.; Suárez-Quiroz, M.L.; González-Ríos, O.; Rayas-Duarte, P. Coffee cherry pulp by-product as a potential fiber source for bread production: A fundamental and empirical rheological approach. Foods 2021, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.; Cozzano, S.; Pérez, A.M.; Arcia, P.; Curutchet, A. Coffee pulp waste as a functional ingredient: Effect on salty cookies quality. J. Food Nutr. Res. 2019, 7, 632–638. [Google Scholar] [CrossRef]
- Zuhra, N.; Hasni, D.; Muzaifa, M. Pengolahan pulp kopi menjadi minuman sari buah dengan penambahan buah terong belanda dan konsentrasi gula yang berbeda. J. Teknol. Pertan. Andalas 2018, 22, 157–164. [Google Scholar] [CrossRef]
- Buck, N.; Wohlt, D.; Winter, A.R.; Ortner, E. Aroma-active compounds in Robusta coffee pulp puree—Evaluation of physicochemical and sensory properties. Molecules 2021, 26, 3925. [Google Scholar] [CrossRef]
- Contreras-Oliva, A.; Uscanga-Sosa, D.P.; González-Rios, O.; Ramos, V.M. The use of coffee (Coffea arabica L.) pulp in the preparation of a beverage with antioxidant properties. Int. Food Res. J. 2022, 29, 274–282. [Google Scholar] [CrossRef]
- Heeger, A.; Cagnazzo, A.K.; Ennio, C.; Andlauer, W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2017, 221, 969–975. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Technical Report on the Notification of Cherry Pulp from Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as a Traditional. Food from a Third Country Following Article 14 of Regulation (EU) 2015/2283; European Food Safety Authority: Parma, Italy, 2022; Volume 18. [Google Scholar]
- Bae, H.M.; Haile, M.; Kang, W.H. Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. Food Sci. Technol. Int. 2022, 28, 716–727. [Google Scholar] [CrossRef]
- Hu, R.S.; Zhou, J.; Dong, W.J.; Lu, M.Q.; Zong, Y. Flavor Impact of Single Strain Ferment on Coffee Wine Based on HS-SPME/GC-MS and Sensory Analysis Technology. J. Agric. 2016, 6, 106–112. (In Chinese) [Google Scholar]
- Zhu, Y.; Su, Q.; Jiao, J.; Kelanne, N.; Kortesniemi, M.; Xu, X.; Zhu, B.; Laaksonen, O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023, 12, 1844. [Google Scholar] [CrossRef]
- Francis, I.; Williamson, P. Application of consumer sensory science in wine research. Aust. J. Grape Wine Res. 2015, 21, 554–567. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 203–225. [Google Scholar]
- Sáenz-Navajas, M.P.; Alegre, Y.; de-la-Fuente, A.; Ferreira, V.; García, D.; Eizaguirre, S.; Razquin, I.; Hernández-Orte, P. Rapid sensory-directed methodology for the selection of high-quality aroma wines. J. Sci. Food Agric. 2016, 96, 4250–4262. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, B.; Visalli, M.; Thomas, A.; Schlich, P. Free-comment outperformed check-all-that-apply in the sensory characterisation of wines with consumers at home. Food Qual. Prefer. 2020, 84, 103937. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Lin, Q.B.; Zhong, H.N.; Zeng, Y. Identification and source analysis of volatile flavor compounds in paper packaged yogurt by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Food Packag. Shelf Life 2022, 34, 100947. [Google Scholar] [CrossRef]
- Tuccillo, F.; Kantanen, K.; Wang, Y.; Diaz, J.M.R.; Pulkkinen, M.; Edelmann, M.; Knaapila, A.; Jouppila, K.; Piironen, V.; Lampi, A.M. The flavor of faba bean ingredients and extrudates: Chemical and sensory properties. Food Res. Int. 2022, 162, 112036. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Guo, Z.; Guo, X.; Zhang, Q.; Zhao, X.; Ning, M.; Shan, C. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME–GC–MS. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Shu, C.; Chen, H.; Xiao, Z. Comparison of Aroma-Active Compounds and Sensory Characteristics of Durian (Durio zibethinus L.) Wines Using Strains of Saccharomyces cerevisiae with Odor Activity Values and Partial Least-Squares Regression. J. Agric. Food Chem. 2015, 63, 1939–1947. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Yake Xiang, Y.; Hu, Q.; Zhao, L. Fermentation characteristics and flavor properties of Hericium erinaceus and Tremella fuciformis fermented beverage. Food Biosci. 2022, 50, 102017. [Google Scholar] [CrossRef]
- Flament, I. Coffee Flavor Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Li, X.; Lim, S.L.; Yu, B.; Curran, P.; Liu, S.Q. Mango wine aroma enhancement by pulp contact and beta-glucosidase. Int. J. Food Sci. Technol. 2013, 48, 2258–2266. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Pasqualone, A. Volatile and phenolic profiles of traditional romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Wang, C.H.; Sun, J.C.; Lassabliere, B.; Yu, B.; Liu, S.Q. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Res. Int. 2020, 136, 109452. [Google Scholar] [CrossRef] [PubMed]
- Arvisenet, G.; Ballester, J.; Ayed, C.; Sémon, E.; Andriot, I.; Quere, J.L.; Guichard, E. Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Qual. Prefer. 2019, 71, 172–180. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Zhang, X.; Guo, H.; Yuan, Y.; Yue, T. Multi-omics discovery of aroma-active compound formation by Pichia kluyveri during cider production. LWT 2022, 159, 113233. [Google Scholar] [CrossRef]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the aroma profile and main key odorants of espresso coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef]
- Mains, A.O. Evaluating the Impact of Yeast Co-Inoculation on Individual Yeast Metabolism and Wine Composition. Stellenbosch University: Stellenbosch, South Africa, 2014. [Google Scholar]
- Tiggemann, L.; Ballen, S.C.; Bocalon, C.M.; Graboski, A.M.; Manzoli, A.; Steffen, J.; Valduga, E.; Steffens, C. Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innov. Food Sci. Emerg. Technol. 2017, 43, 112–116. [Google Scholar] [CrossRef]
- Dong, W.J.; Hu, R.S.; Long, Y.Z.; Li, H.H.; Zhang, Y.J.; Zhu, K.X.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Bhumireddy, S.R.; Rocchetti, G.; Pallerla, P.; Lucini, L.; Sripadi, P. A combined targeted/untargeted screening based on GC/MS to detect low-molecular-weight compounds in different milk samples of different species and as affected by processing. Int. Dairy J. 2021, 118, 105045. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Y.; Zhang, M.; Qi, J.; Zhao, W.; Gu, J.; Guo, W.; Li, Y. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem. 2022, 387, 132932. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, W.L.; Lei, Y.T.; Li, F.C.; Li, H.M.; Deng, W.; Jiang, G.H. Discrimination of authenticity of Fritillariae cirrhosae Bulbus based on terahertz spectroscopy and chemometric analysis. Microchem. J. 2021, 168, 106440. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.H.; Ham, J.S. 1 H HRMASNMR based metabolic fingerprints for discrimination of cheeses based on sensory qualities. Saudi J. Biol. Sci. 2020, 27, 1446–1461. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef] [PubMed]
- Renzi, J.P.; Chantre, G.R.; Smykal, P.; Presotto, A.D.; Zubiaga, L.; Garayalde, A.F.; Cantamutto, M.A. Diversity of Naturalized Hairy Vetch (Vicia villosa Roth) Populations in Central Argentina as a Source of Potential Adaptive Traits for Breeding. Front. Plant Sci. 2020, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Yan, C.; Ding, Y.; Wang, W.; Gu, S.; Xu, Z.; Zhou, X.; Ding, Y. Effect of a chitosan coating incorporating epigallocatechin gallate on the quality and shelf life of bighead carp (Aristichthys nobilis) fillets during chilled storage. Int. J. Biol. Macromol. 2022, 219, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Sun, J.C.; Lassabliere, B.; Yu, B.; Liu, S.Q. Coffee flavour modification through controlled fermentations of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part I. Effects from individual yeasts. Food Res. Int. 2020, 136, 109588. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yi, X.; Huang, M.; Liu, Y.; Meng, W.; Yang, Q.; Zhang, J. Studies on the key odorants in Maopu buckwheat finished Baijiu and the effect of tartary buckwheat extract on its flavor. LWT 2022, 154, 112650. [Google Scholar] [CrossRef]
- Li, K.; Tang, J.; Zhang, Z.; Wu, Z.; Zhong, A.; Li, Z.; Wang, Y. Correlation between flavor compounds and microorganisms of Chaling natural fermented red sufu. LWT 2022, 154, 112873. [Google Scholar] [CrossRef]
- Mahingsapun, R.; Tantayotai, P.; Panyachanakul, T.; Samosorn, S.; Dolsophon, K.; Jiamjariyatam, R.; Krajangsang, S. Enhancement of Arabica coffee quality with selected potential microbial starter culture under controlled fermentation in wet process. Food Biosci. 2022, 48, 101819. [Google Scholar] [CrossRef]
RT (min) | LRI | RRI | Compounds | Relative Content (%) | ||||
---|---|---|---|---|---|---|---|---|
Sample A | Sample B | Sample C | Sample D | Sample E | ||||
Alcohols | ||||||||
6.01 | <1100 | 1086 | 2-methyl-1-propanol | 1.61 ± 0.06 d | 1.38 ± 0.06 d | 1.52 ± 0.06 c | 2.09 ± 0.10 a | 1.63 ± 0.06 b |
10.98 | 1211 | 1209 | 3-methyl-1-butanol | 32.7 ± 0.47 a | 22.85 ± 0.29 e | 23.75 ± 0.22 d | 30.28 ± 0.24 b | 27.69 ± 0.33 c |
12.71 | 1242 | 1248 | 3-methyl-3-buten-1-ol | 0.09 ± 0.00 b | 0.11 ± 0.01 a | 0.07 ± 0.01 c | 0.05 ± 0.01 d | 0.07 ± 0.00 c |
14.15 | 1267 | 1268 | Acetoin | 0.45 ± 0.02 b | 0.42 ± 0.02 b | 0.29 ± 0.02 e | 0.78 ± 0.05 a | 0.37 ± 0.02 d |
17.03 | 1317 | 1320 | 2-heptanol | 0.05 ± 0.00 a | 0.03 ± 0.00 c | 0.03 ± 0.01 bc | 0.04 ± 0.01 b | — |
17.26 | 1321 | 1325 | 3-methyl-1-pentanol | 0.06 ± 0.01 a | 0.04 ± 0.00 c | 0.05 ± 0.00 b | — | 0.05 ± 0.00 b |
18.82 | 1346 | 1345 | 1-hexanol | 0.19 ± 0.01 a | 0.10 ± 0.00 d | 0.12 ± 0.01 c | 0.18 ± 0.01 a | 0.13 ± 0.01 b |
24.91 | 1451 | 1447 | 1-heptanol | 0.50 ± 0.02 a | 0.37 ± 0.02 b | 0.34 ± 0.02 c | 0.37 ± 0.02 b | 0.32 ± 0.01 c |
26.97 | 1489 | 1484 | 2-ethyl-1-hexanol | 0.85 ± 0.02 ab | 0.67 ± 0.02 c | 0.67 ± 0.03 c | 0.89 ± 0.05 a | 0.81 ± 0.04 b |
27.96 | 1507 | 1509 | (S)-3-ethyl-4-methylpentanol | 0.16 ± 0.01 a | 0.11 ± 0.01 c | 0.13 ± 0.01 b | 0.16 ± 0.01 a | 0.13 ± 0.01 b |
28.85 | 1522 | 1521 | 2-nonanol | 0.09 ± 0.01 b | 0.07 ± 0.00 c | 0.07 ± 0.00 c | 0.13 ± 0.01 a | 0.08 ± 0.01 bc |
29.59 | 1534 | 1539 | 2,3-butanediol | — | 0.09 ± 0.01 b | 0.10 ± 0.01 b | 0.28 ± 0.03 a | 0.30 ± 0.02 a |
30.92 | 1557 | 1557 | 1-octanol | 0.12 ± 0.01 c | 0.10 ± 0.01 d | 0.15 ± 0.01 b | 0.22 ± 0.01 a | 0.11 ± 0.01 cd |
36.19 | 1648 | 1640 | 2-furanmethanol | 0.18 ± 0.01 a | 0.15 ± 0.01 bc | 0.11 ± 0.01 d | 0.16 ± 0.01 b | 0.14 ± 0.01 c |
36.73 | 1658 | 1660 | 1-nonanol | 0.13 ± 0.01 d | 0.13 ± 0.01 d | 0.17 ± 0.01 c | 0.45 ± 0.03 a | 0.23 ± 0.02 b |
44.62 | 1824 | 1820 | Isogeraniol | 0.05 ± 0.00 c | 0.06 ± 0.00 b | 0.07 ± 0.00 a | 0.08 ± 0.00 a | 0.05 ± 0.00 c |
45.50 | 1840 | 1823 | 2-dodecanol | — | — | 0.17 ± 0.01 a | 0.04 ± 0.00 b | — |
47.22 | 1871 | 1870 | Benzyl alcohol | 0.52 ± 0.04 c | 0.58 ± 0.03 b | 0.66 ± 0.03 a | 0.47 ± 0.02 d | 0.50 ± 0.02 c |
49.01 | 1904 | 1906 | Phenylethyl alcohol | 24.44 ± 0.23 b | 25.26 ± 0.22 a | 23.17 ± 0.22 d | 20.32 ± 0.06 e | 23.66 ± 0.10 c |
52.03 | 1985 | 1966 | 1-dodecanol | 0.10 ± 0.01 e | 0.31 ± 0.02 c | 0.79 ± 0.04 a | 0.36 ± 0.02 b | 0.16 ± 0.01 d |
57.47 | 2309 | — | Diglycerol | — | — | — | — | 0.06 ± 0.00 a |
43.26 | 1800 | 1800 | 7-methyl-3-methylene-6-octen-1-ol | — | 0.16 ± 0.01 c | 0.24 ± 0.02 a | 0.22 ± 0.01 b | 0.24 ± 0.01 a |
Esters | ||||||||
6.89 | 1120 | 1122 | 3-methyl-1-butanol, acetate | 0.85 ± 0.03 a | 0.51 ± 0.04 b | 0.51 ± 0.04 b | 0.51 ± 0.04 b | 0.51 ± 0.03 b |
7.38 | 1131 | 1134 | Pentanoic acid, ethyl ester | 0.07 ± 0.00 a | 0.05 ± 0.00 b | 0.02 ± 0.00 e | 0.04 ± 0.00 c | 0.03 ± 0.00 d |
12.00 | 1229 | 1233 | Hexanoic acid, ethyl ester | 5.24 ± 0.05 d | 5.34 ± 0.06 c | 6.33 ± 0.08 a | 4.70 ± 0.07 e | 5.77 ± 0.09 b |
15.15 | 1285 | — | (E)-hex-4-enoic acid ethyl ester | 9.52 ± 0.44 d | 13.44 ± 0.33 a | 12.01 ± 0.37 c | 12.13 ± 0.25 c | 12.49 ± 0.22 b |
15.85 | 1298 | 1292 | (Z)-3-hexenoic acid, ethyl ester | 0.37 ± 0.02 c | 0.41 ± 0.02 b | 0.23 ± 0.02 d | 0.47 ± 0.02 a | 0.23 ± 0.02 d |
17.49 | 1324 | 1331 | Heptanoic acid, ethyl ester | 0.19 ± 0.01 b | 0.17 ± 0.01 c | 0.30 ± 0.01 a | 0.19 ± 0.01 b | 0.19 ± 0.01 b |
22.00 | 1397 | — | (Z)-3-hexenoic acid, butyl ester | — | 0.04 ± 0.00 a | 0.04 ± 0.00 a | — | 0.04 ± 0.00 a |
23.48 | 1424 | 1429 | Octanoic acid, ethyl ester | 2.38 ± 0.15 c | 2.49 ± 0.14 c | 4.91 ± 0.28 a | 1.66 ± 0.06 c | 2.72 ± 0.13 b |
23.89 | 1432 | 1435 | Methyl sorbate | 0.12 ± 0.01 b | 0.15 ± 0.01 a | 0.12 ± 0.01 b | 0.12 ± 0.01 b | 0.10 ± 0.01 c |
25.77 | 1467 | — | 4-octenoic acid, ethyl ether | — | — | 0.04 ± 0.00 a | — | — |
25.94 | 1470 | — | 2,4-hexadienoic acid, ethyl ester | 0.43 ± 0.04 d | 0.72 ± 0.04 a | 0.58 ± 0.03 c | 0.60 ± 0.04 bc | 0.62 ± 0.05 b |
26.39 | 1479 | 1471 | 7-octenoic acid, ethyl ester | 0.16 ± 0.01 b | 0.13 ± 0.01 c | 0.20 ± 0.02 a | 0.10 ± 0.00 d | 0.14 ± 0.01 c |
27.29 | 1495 | 1501 | (E,E)-2,4-hexadienoic acid, ethyl ester | 2.42 ± 0.12 d | 6.01 ± 0.25 a | 4.07 ± 0.19 c | 4.36 ± 0.20 b | 4.08 ± 0.13 c |
29.47 | 1532 | 1531 | Nonanoic acid, ethyl ester | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.08 ± 0.00 a | — | — |
35.32 | 1633 | 1638 | Decanoic acid, ethyl ester | 0.94 ± 0.04 c | 1.06 ± 0.04 b | 2.34 ± 0.16 a | 0.72 ± 0.06 d | 1.15 ± 0.08 b |
36.43 | 1653 | 1651 | Octanoic acid, 3-methylbutyl ester | 0.11 ± 0.01 b | 0.11 ± 0.01 b | 0.20 ± 0.01 a | 0.08 ± 0.00 c | 0.11 ± 0.00 b |
38.11 | 1683 | 1696 | Ethyl 9-decenoate | 0.25 ± 0.02 c | 0.28 ± 0.02 bc | 0.75 ± 0.05 a | 0.13 ± 0.00 d | 0.29 ± 0.01 b |
42.54 | 1783 | 1783 | Benzeneacetic acid, ethyl ester | 0.08 ± 0.00 b | 0.08 ± 0.00 b | 0.10 ± 0.01 a | 0.11 ± 0.00 a | 0.08 ± 0.00 b |
44.02 | 1814 | 1813 | Acetic acid, 2-phenylethyl ester | 0.96 ± 0.06 c | 1.58 ± 0.11 a | 1.47 ± 0.10 a | 0.84 ± 0.06 d | 1.18 ± 0.07 b |
46.36 | 1855 | 1841 | Dodecanoic acid, ethyl ester | 0.91 ± 0.05 b | 1.03 ± 0.05 a | 1.11 ± 0.07 a | 0.92 ± 0.07 b | 0.92 ± 0.07 b |
48.54 | 1894 | 1892 | Lauryl acetate | — | 0.07 ± 0.00 b | 0.10 ± 0.00 a | 0.11 ± 0.01 a | 0.07 ± 0.00 b |
52.84 | 2014 | 2024 | γ-nonalacton | 0.25 ± 0.01 a | 0.26 ± 0.01 a | 0.23 ± 0.02 b | 0.27 ± 0.02 a | 0.18 ± 0.01 c |
53.89 | 2071 | 2049 | Tetradecanoic acid, ethyl ester | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.06 ± 0.00 a | 0.05 ± 0.00 b | 0.05 ± 0.00 b |
55.7 | 2157 | 2160 | Hexanoic acid, 2-phenylethyl ester | 0.11 ± 0.00 c | 0.16 ± 0.01 a | 0.06 ± 0.01 d | 0.12 ± 0.01 bc | 0.13 ± 0.00 b |
56.98 | 2247 | 2251 | Hexadecanoic acid, ethyl ester | 0.19 ± 0.01 a | 0.15 ± 0.01 b | 0.12 ± 0.01 d | 0.15 ± 0.01 b | 0.13 ± 0.00 c |
Acids | ||||||||
19.10 | 1350 | — | 1,2-dimethyl-cyclopent-2-enecarboxylic acid | 0.06 ± 0.00 b | 0.07 ± 0.00 a | — | 0.07 ± 0.00 a | 0.06 ± 0.00 b |
24.21 | 1438 | 1436 | Acetic acid | 0.24 ± 0.02 a | 0.21 ± 0.01 b | 0.13 ± 0.01 d | 0.25 ± 0.02 a | 0.16 ± 0.01 c |
31.19 | 1561 | — | 2-methyl-propanoic acid | 0.10 ± 0.01 d | 0.11 ± 0.01 c | 0.09 ± 0.01 d | 0.19 ± 0.01 a | 0.13 ± 0.01 b |
54.07 | 2081 | 2075 | Octanoic acid | 0.79 ± 0.06 c | 1.15 ± 0.07 a | 0.81 ± 0.04 bc | 0.40 ± 0.02 d | 0.87 ± 0.04 b |
50.11 | 1934 | 1930 | (E)-3-hexenoic acid | 0.34 ± 0.02 c | 0.52 ± 0.02 a | 0.32 ± 0.03 c | 0.52 ± 0.04 a | 0.46 ± 0.03 b |
57.20 | 2281 | 2276 | n-decanoic acid | 0.45 ± 0.03 d | 0.80 ± 0.04 a | 0.59 ± 0.03 b | 0.38 ± 0.02 e | 0.51 ± 0.03 c |
Aldehydes | ||||||||
20.73 | 1377 | 1380 | Nonanal | 0.20 ± 0.01 b | 0.16 ± 0.01 c | 0.14 ± 0.01 d | 0.54 ± 0.03 a | 0.20 ± 0.01 b |
24.37 | 1441 | 1432 | Furfural | 0.18 ± 0.01 a | 0.15 ± 0.01 b | 0.09 ± 0.00 d | 0.16 ± 0.01 b | 0.11 ± 0.00 c |
27.45 | 1498 | 1502 | Benzaldehyde | 5.85 ± 0.23 c | 5.89 ± 0.28 c | 3.42 ± 0.22 d | 7.33 ± 0.43 a | 6.26 ± 0.31 b |
Ketones | ||||||||
9.30 | 1175 | 1173 | 2-heptanone | 0.09 ± 0.00 c | 0.11 ± 0.01 b | 0.13 ± 0.01 a | 0.10 ± 0.00 b | 0.05 ± 0.00 d |
20.49 | 1373 | 1379 | 2-nonanone | 0.28 ± 0.02 b | 0.25 ± 0.01 c | 0.30 ± 0.01 a | 0.32 ± 0.03 a | 0.27 ± 0.02 b |
26.71 | 1485 | 1479 | 1-(2-furanyl)-ethanone | 0.06 ± 0.00 a | 0.05 ± 0.00 b | — | — | — |
34.66 | 1621 | 1627 | Acetophenone | 0.11 ± 0.00 a | 0.09 ± 0.01 c | 0.10 ± 0.00 b | 0.10 ± 0.00 b | 0.09 ± 0.01 c |
44.23 | 1817 | 1814 | β-damascenone | 0.11 ± 0.00 a | 0.09 ± 0.00 b | 0.11 ± 0.01 a | 0.11 ± 0.00 a | 0.09 ± 0.01 c |
55.19 | 2134 | 2131 | 6,10,14-trimethyl-2-pentadecanone | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.22 ± 0.01 a | 0.04 ± 0.00 c | 0.04 ± 0.00 c |
Terpenes | ||||||||
25.29 | 1458 | 1451 | Linalool oxide | 0.11 ± 0.01 a | 0.09 ± 0.01 b | 0.08 ± 0.00 b | 0.06 ± 0.01 c | 0.06 ± 0.00 c |
30.31 | 1546 | 1547 | Linalool | 0.21 ± 0.01 b | 0.15 ± 0.01 d | 0.45 ± 0.02 a | 0.18 ± 0.01 c | 0.16 ± 0.01 d |
40.48 | 1734 | 1717 | β-selinene | 0.11 ± 0.00 b | 0.13 ± 0.01 a | 0.06 ± 0.00 c | 0.17 ± 0.01 a | 0.10 ± 0.01 b |
41.34 | 1754 | 1753 | Methyl salicylate | 0.52 ± 0.04 b | 0.43 ± 0.02 b | 0.57 ± 0.04 a | 0.53 ± 0.02 b | 0.45 ± 0.04 b |
42.40 | 1779 | 1765 | Citronellol | 0.26 ± 0.03 c | 0.24 ± 0.03 c | 0.61 ± 0.02 a | 0.35 ± 0.03 b | 0.21 ± 0.01 d |
53.69 | 2060 | 2042 | Nerolidol | 0.06 ± 0.00 c | 0.07 ± 0.00 b | 0.09 ± 0.00 a | 0.08 ± 0.01 b | 0.07 ± 0.00 b |
58.04 | 2347 | 2356 | Trans-farnesol | 0.07 ± 0.00 c | 0.08 ± 0.00 b | 0.06 ± 0.00 d | 0.10 ± 0.01 a | 0.05 ± 0.00 e |
Phenols | ||||||||
45.94 | 1848 | 1828 | (1-butylheptyl)-benzene | — | — | 0.07 ± 0.00 a | — | — |
46.21 | 1853 | 1858 | 2-methoxy-phenol | 0.26 ± 0.01 b | 0.24 ± 0.02 b | 0.16 ± 0.01 c | 0.35 ± 0.02 a | 0.13 ± 0.01 d |
46.67 | 1861 | — | (1-propyloctyl)-benzene | — | — | 0.06 ± 0.01 a | — | — |
47.99 | 1884 | 1873 | (1-ethylnonyl)-benzene | — | — | 0.04 ± 0.00 a | — | — |
52.53 | 1999 | 2000 | Phenol | 0.05 ± 0.00 a | 0.04 ± 0.00 b | 0.05 ± 0.01 a | 0.05 ± 0.00 a | 0.03 ± 0.00 c |
53.31 | 2039 | 2027 | 4-ethenyl-1,2-dimethoxy-benzene | 0.10 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.06 ± 0.00 c | 0.06 ± 0.00 c |
53.44 | 2046 | — | (1-pentyloctyl)-benzene | — | 0.04 ± 0.00 b | 0.06 ± 0.00 a | 0.03 ± 0.00 c | 0.03 ± 0.00 c |
54.33 | 2095 | 2091 | 3-methyl-phenol | 0.09 ± 0.00 b | 0.11 ± 0.00 a | 0.09 ± 0.00 b | 0.06 ± 0.00 c | 0.09 ± 0.00 b |
55.98 | 2170 | 2188 | 2-methoxy-4-vinylphenol | — | 0.06 ± 0.00 b | 0.16 ± 0.01 a | 0.02 ± 0.00 d | 0.05 ± 0.00 c |
57.54 | 2313 | 2318 | 2,4-di-tert-butylphenol | 0.30 ± 0.01 a | 0.25 ± 0.01 b | 0.06 ± 0.00 d | 0.14 ± 0.00 c | 0.05 ± 0.00 e |
Code | Compounds | Threshold (µg/g) | Odor Description | ROAV | ||||
---|---|---|---|---|---|---|---|---|
Sample A | Sample B | Sample C | Sample D | Sample E | ||||
Alco1 | 3-Methyl-1-butanol | 250 | Brandy, malty, pungent, fruity | 0.56 ± 0.04 a | 0.37 ± 0.02 c | 0.20 ± 0.01 d | 0.55 ± 0.03 a | 0.41 ± 0.02 b |
Alco2 | 1-Heptanol | 3 | Fatty, wine | 0.70 ± 0.04 a | 0.50 ± 0.02 c | 0.23 ± 0.01 e | 0.56 ± 0.04 b | 0.39 ± 0.02 d |
Alco3 | 1-Nonanol | 2 | Rose, orange fatty, fruity | 0.27 ± 0.01 c | 0.26 ± 0.01 c | 0.17 ± 0.00 d | 1.03 ± 0.04 a | 0.43 ± 0.02 b |
Alco4 | Phenylethyl alcohol | 45 | Honey, spice, rose | 2.31 ± 0.05 a | 2.28 ± 0.09 a | 1.07 ± 0.06 c | 2.06 ± 0.12 b | 1.96 ± 0.06 b |
Ester1 | 3-Methyl-1-butanol, acetate | 3 | Fruity | 1.21 ± 0.02 a | 0.69 ± 0.01 c | 0.35 ± 0.01 e | 0.77 ± 0.02 b | 0.63 ± 0.02 d |
Ester2 | Hexanoic acid, ethyl ester | 0.5 | Sweet, apple | 44.49 ± 0.52 a | 43.28 ± 0.29 b | 26.37 ± 0.22 d | 42.90 ± 0.31 c | 42.39 ± 0.23 c |
Ester3 | Octanoic acid, ethyl ester | 0.1 | Brandy, apple | 100.00 ± 0.05 b | 100.00 ± 0.08 b | 100.00 ± 0.00 a | 75.61 ± 1.21 c | 100.00 ± 0.00 a |
Ester4 | Decanoic acid, ethyl ester | 20 | Coconut | 0.20 ± 0.01 b | 0.21 ± 0.01 b | 0.24 ± 0.01 a | 0.16 ± 0.00 c | 0.21 ± 0.01 b |
Ester5 | Acetic acid, 2-phenylethyl ester | 20 | Rose, honey, apple-like | 0.20 ± 0.00 c | 0.32 ± 0.01 a | 0.15 ± 0.00 d | 0.19 ± 0.01 c | 0.22 ± 0.01 b |
Alde1 | Nonanal | 3.5 | Waxy, aldehydic, citrus, floral | 0.25 ± 0.01 b | 0.18 ± 0.00 d | — | 0.71 ± 0.04 a | 0.21 ± 0.01 c |
Keto1 | β-Damascenone | 0.00495 | Floral, sweet | 90.25 ± 2.25 b | 76.32 ± 1.96 c | 45.53 ± 1.05 e | 98.37 ± 1.79 a | 65.38 ± 1.62 d |
Terp1 | Linalool | 1.5 | Citrus, orange, floral, waxy rose | 0.60 ± 0.02 a | 0.41 ± 0.02 c | 0.63 ± 0.03 a | 0.55 ± 0.02 b | 0.39 ± 0.01 c |
Terp2 | Citronellol | 10 | Rose | 0.11 ± 0.00 bc | 0.10 ± 0.00 c | 0.13 ± 0.00 b | 0.16 ± 0.00 a | — |
Phen1 | 2-Methoxy-phenol | 0.17 | Smoky | 6.37 ± 0.34 b | 5.75 ± 0.28 c | 1.95 ± 0.09 e | 9.37 ± 0.41 a | 2.93 ± 0.15 d |
Sensory Index | Sample Number | ||||
---|---|---|---|---|---|
Sample A | Sample B | Sample C | Sample D | Sample E | |
aroma | 91.11 ± 2.09 a | 87.38 ± 1.53 b | 89.01 ± 0.58 ab | 76.53 ± 0.95 c | 91.50 ± 0.89 a |
flavor | 85.63 ± 1.15 b | 81.85 ± 0.64 c | 90.50 ± 1.16 a | 74.97 ± 0.40 d | 83.43 ± 1.02 c |
aftertaste | 74.39 ± 0.93 d | 87.57 ± 1.45 b | 92.39 ± 1.13 a | 83.48 ± 0.67 c | 90.25 ± 0.78 a |
sweetness | 82.18 ± 2.23 a | 81.55 ± 1.84 a | 81.43 ± 0.73 a | 70.36 ± 0.81 b | 83.10 ± 0.87 a |
liquor | 86.57 ± 3.77 a | 81.93 ± 1.14 b | 88.77 ± 0.78 a | 76.54 ± 0.66 c | 90.52 ± 0.70 a |
acidity | 85.16 ± 1.74 ab | 81.45 ± 1.03 b | 82.94 ± 1.04 ab | 75.19 ± 0.61 c | 83.49 ± 1.11 a |
cleanliness | 71.08 ± 0.62 c | 80.41 ± 2.28 a | 70.37 ± 0.62 c | 76.73 ± 0.92 b | 77.22 ± 1.33 b |
balance | 76.31 ± 0.80 d | 88.40 ± 1.31 b | 90.66 ± 0.37 a | 82.41 ± 0.80 c | 92.31 ± 0.72 a |
overall | 83.29 ± 1.44 b | 81.72 ± 0.47 bc | 87.78 ± 0.75 a | 80.01 ± 0.30 c | 86.37 ± 0.95 a |
total points | 81.90 ± 0.15 c | 83.40 ± 0.73 b | 86.16 ± 0.13 a | 77.62 ± 0.33 d | 86.46 ± 0.36 a |
Number | Yeast Composition |
---|---|
Sample A | CICC1425, CICC1557, CICC1793 |
Sample B | CICC1425, CICC1557, CICC32762 |
Sample C | CICC1425, CICC1793, CICC32762 |
Sample D | CICC1557, CICC1793, CICC32762 |
Sample E | CICC1425, CICC1557, CICC1793, CICC32762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Xu, F.; Zhao, L.; Dong, W.; Xiao, X.; Chen, X. Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines. Molecules 2024, 29, 3060. https://doi.org/10.3390/molecules29133060
Hu R, Xu F, Zhao L, Dong W, Xiao X, Chen X. Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines. Molecules. 2024; 29(13):3060. https://doi.org/10.3390/molecules29133060
Chicago/Turabian StyleHu, Rongsuo, Fei Xu, Liyan Zhao, Wenjiang Dong, Xingyuan Xiao, and Xiao Chen. 2024. "Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines" Molecules 29, no. 13: 3060. https://doi.org/10.3390/molecules29133060
APA StyleHu, R., Xu, F., Zhao, L., Dong, W., Xiao, X., & Chen, X. (2024). Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines. Molecules, 29(13), 3060. https://doi.org/10.3390/molecules29133060