Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Thermal Stability of APP@PEI@Ti3C2Tx
2.2. Flame-Retardant Evaluation of TPU/APP@PEI@Ti3C2Tx Composites
2.3. Flame-Retardant Mechanism
2.4. EMI Shielding Assessment of Hierarchical TPU/APP@PEI@Ti3C2Tx/rGO Composites
3. Materials and Methods
3.1. Materials and Methods
3.2. Preparation of Ti3C2Tx Nanosheets
3.3. Preparation of rGO Film
3.4. Synthesis of APP@PEI@Ti3C2Tx
3.5. Fabrication of TPU/APP@PEI@Ti3C2Tx Composites
3.6. Construction of Hierarchical TPU/APP@PEI@Ti3C2Tx/rGO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinto, U.A.; Visconte, L.L.Y.; Gallo, J.; Nunes, R.C.R. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym. Degrad. Stab. 2000, 69, 257–260. [Google Scholar] [CrossRef]
- Wan, L.; Deng, C.; Chen, H.; Zhao, Z.-Y.; Huang, S.-C.; Wei, W.-C.; Yang, A.-H.; Zhao, H.-B.; Wang, Y.-Z. Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chem. Eng. J. 2021, 417, 129314. [Google Scholar] [CrossRef]
- Wang, H.W.; Qiao, H.; Guo, J.; Sun, J.; Li, H.F.; Zhang, S.; Gu, X.Y. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos. Part B-Eng. 2020, 182, 107498. [Google Scholar] [CrossRef]
- Ryu, S.H.; Han, Y.K.; Kwon, S.J.; Kim, T.; Jung, B.M.; Lee, S.-B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167. [Google Scholar] [CrossRef]
- Shin, B.; Mondal, S.; Lee, M.; Kim, S.; Huh, Y.-I.; Nah, C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 129282. [Google Scholar] [CrossRef]
- Wang, G.; Liao, X.; Zou, F.F.; Song, P.W.; Tang, W.Y.; Yang, J.M.; Li, G.X. Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos. Commun. 2021, 28, 100953. [Google Scholar] [CrossRef]
- Guler, T.; Tayfun, U.; Bayramli, E.; Dogan, M. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Thermochim. Acta 2017, 647, 70–80. [Google Scholar]
- Chen, C.L.; Xiao, G.Q.; Zhong, F.; Dong, S.T.; Yang, Z.W.; Chen, C.Y.; Wang, M.T.; Zou, R. Synergistic effect of carbon nanotubes bonded graphene oxide to enhance the flame retardant performance of waterborne intumescent epoxy coatings. Prog. Org. Coat. 2022, 162, 106598. [Google Scholar] [CrossRef]
- Shao, Z.B.; Deng, C.; Tan, Y.; Chen, M.J.; Chen, L.; Wang, Y.Z. An efficient mono-component polymeric intumescent flame retardant for polypropylene: Preparation and application. ACS Appl. Mater. Interfaces 2014, 6, 7363–7370. [Google Scholar] [CrossRef]
- Jiang, X.-C.; Li, P.; Liu, Y.; Yan, Y.-W.; Zhu, P. Preparation and properties of APP flame-retardant ramie fabric reinforced epoxy resin composites. Ind. Crops Prod. 2023, 197, 116611. [Google Scholar] [CrossRef]
- Shi, C.L.; Wan, M.; Qian, X.D.; Che, H.L.; Li, J. Synthesis of APP@ MOFs integrated hybrids flame retardants for reducing flammability of thermoplastic polyurethanes. J. Therm. Anal. Calorim. 2024, 149, 2777–2787. [Google Scholar] [CrossRef]
- Huang, S.C.; Deng, C.; Wang, S.X.; Wei, W.C.; Chen, H.; Wang, Y.Z. Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polym. Degrad. Stab. 2019, 165, 126–136. [Google Scholar] [CrossRef]
- Duan, N.M.; Shi, Z.Y.; Wang, Z.H.; Zou, B.; Zhang, C.P.; Wang, J.L.; Xi, J.R.; Zhang, X.S.; Zhang, X.Z.; Wang, G.L. Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 2022, 214, 110382. [Google Scholar] [CrossRef]
- Bertolini, M.C.; Ramoa, S.D.; Merlini, C.; Barra, G.M.; Soares, B.G.; Pegoretti, A. Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front. Mater. 2020, 7, 174. [Google Scholar] [CrossRef]
- Liu, S.K.; Wu, H.H.; Chao, B.; Fu, W.X.; Deng, K.X.; Li, Y. Study on FDM preparation and properties of RGO/Ni/PLA/TPU composite materials. J. Alloys Compd. 2023, 968, 172119. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Pham, T.N.; Pham, A.L.H.; Nguyen, V.C.; Tran, M.-S.; Bui, V.Q.; Vu, M.C. Multilayered silver nanowires and graphene fluoride-based aramid nanofibers for excellent thermoconductive electromagnetic interference shielding materials with low-reflection. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 688, 133553. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Ren, P.G.; Zhang, Z.P.; Dai, Z.; Hui, K.D.; Yan, H.H.; Jin, Y.L.; Gao, J.F.; Ren, F. Simultaneous realization of highly efficient electromagnetic interference shielding and human motion detection in carbon fiber felt decorated with silver nanowires and thermoplastic polyurethane. J. Mater. Chem. C 2021, 9, 6894–6903. [Google Scholar] [CrossRef]
- Kim, S.H.; Oh, J.S.; Kim, M.G.; Jang, W.j.; Wang, M.; Kim, Y.J.; Seo, H.W.; Kim, Y.C.; Lee, J.H.; Lee, Y.K. Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 2014, 6, 17647–17653. [Google Scholar] [CrossRef]
- Shangguan, Q.Y.; Zhao, Y.; Song, Z.J.; Wang, J.; Yang, H.; Chen, J.; Liu, C.; Cheng, S.B.; Yang, W.X.; Yi, Z. High sensitivity active adjustable graphene absorber for refractive index sensing applications. Diam. Relat. Mater. 2022, 128, 109273. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, M.S.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Ahmad, S.; Sun, T.Y. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mat. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, W.C.; Cheng, S.B.; Yang, W.X.; Yi, Z.; Li, G.F.; Zeng, L.C.; Li, H.L.; Wu, P.H.; Cai, S.S. Terahertz selective active electromagnetic absorption film based on single-layer graphene. Surf. Interfaces 2023, 40, 103042. [Google Scholar] [CrossRef]
- Liang, S.R.; Xu, F.; Li, W.X.; Yang, W.X.; Cheng, S.B.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P.P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Zahid, M.; Nawab, Y.; Gulzar, N.; Rehan, Z.A.; Shakir, M.F.; Afzal, A.; Abdul Rashid, I.; Tariq, A. Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci.-Mater. Electron. 2020, 31, 967–974. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K.A.; Lee, D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018, 349, 748–755. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Liu, C.; Fu, L.B.; Feng, Y.Z.; Lv, Y.C.; Wang, Z.X.; Liu, M.H.; Chen, Z.X. Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. Compos. Part A-Appl. Sci. Manuf. 2021, 150, 106600. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, Y.H.; Geng, W.; Dai, G.F.; Sheng, X.X.; Xie, D.L.; Wu, H.; Mei, Y. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci. 2022, 606, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Jiang, Y.; Ma, Z.W.; Shi, Y.Q.; Zhu, Y.J.; Huang, R.Z.; Feng, Y.Z.; Wang, Z.B.; Hong, M.; Gao, J.F. Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 2023, 33, 2306884. [Google Scholar] [CrossRef]
- Jun, B.-M.; Park, C.M.; Heo, J.; Yoon, Y. Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manag. 2020, 256, 109940. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, X.; Pan, Q.Q.; Sun, D.; Men, L.L.; Sun, B.; Xu, C.Y.; Su, Z.M. Ammonium polyphosphate induced bimetallic phosphides nanoparticles coated with porous N-doped carbon for efficiently electrochemical hydrogen evolution. Chem. Eng. J. 2022, 431, 133696. [Google Scholar] [CrossRef]
- Wang, W.G.; Zhang, Y.Q.; Li, F.R.; Chen, Y.H.; Rostami, S.M.M.; Hosseini, S.S.; Shao, L. Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. J. Membr. Sci. 2022, 658, 120703. [Google Scholar] [CrossRef]
- Bueno-Ferrer, C.; Hablot, E.; del Carmen Garrigós, M.; Bocchini, S.; Averous, L.; Jiménez, A. Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polym. Degrad. Stab. 2012, 97, 1964–1969. [Google Scholar] [CrossRef]
- Xie, M.N.; He, J.Y.; Li, X.M.; Yang, R.J. Ammonium polyphosphate/montmorillonite nanocomposite with a completely exfoliated structure and charring–foaming agent flame retardant thermoplastic polyurethane. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2022, 283, 115825. [Google Scholar] [CrossRef]
- Chen, X.L.; Jiang, Y.F.; Jiao, C.M. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J. Hazard. Mater. 2014, 266, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Jiang, Y.F.; Jiao, C.M. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J. Therm. Anal. Calorim. 2014, 117, 857–866. [Google Scholar] [CrossRef]
- Huang, G.B.; Huo, S.Q.; Xu, X.D.; Chen, W.; Jin, Y.X.; Li, R.R.; Song, P.G.; Wang, H. Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene. Compos. Part B-Eng. 2019, 177, 107377. [Google Scholar] [CrossRef]
- Rao, W.-H.; Liao, W.; Wang, H.; Zhao, H.-B.; Wang, Y.-Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Deng, C.; Zhao, Z.-Y.; Chen, H.; Gao, Y.-Y.; Wang, Y.-Z. Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polym. Degrad. Stab. 2020, 178, 109179. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.B.; Yuan, B.H.; Yuan, Y.; Liew, K.M.; Song, L.; Hu, Y. Preparation of large-size reduced graphene oxide-wrapped ammonium polyphosphate and its enhancement of the mechanical and flame retardant properties of thermoplastic polyurethane. Ind. Eng. Chem. Res. 2017, 56, 7468–7477. [Google Scholar] [CrossRef]
- Cai, W.; Feng, X.M.; Hu, W.Z.; Pan, Y.; Hu, Y.; Gong, X.L. Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane: Thermal stability, mechanical properties, and flame retardancy. Ind. Eng. Chem. Res. 2016, 55, 10681–10689. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.L.; Pan, Y.; Guo, W.W.; Mu, X.W.; Feng, X.M.; Yuan, B.H.; Wang, X.; Hu, Y. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J. Hazard. Mater. 2018, 352, 57–69. [Google Scholar] [CrossRef]
- Chen, K.X.; Feng, Y.Z.; Shi, Y.Q.; Wang, H.R.; Fu, L.B.; Liu, M.; Lv, Y.C.; Yang, F.Q.; Yu, B.; Liu, M.H. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A-Appl. Sci. Manuf. 2022, 160, 107070. [Google Scholar] [CrossRef]
- Song, W.L.; Cao, M.S.; Lu, M.M.; Bi, S.; Wang, C.Y.; Liu, J.; Yuan, J.; Fan, L.Z. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 2014, 66, 67–76. [Google Scholar] [CrossRef]
- Chen, K.X.; Liu, M.; Shi, Y.Q.; Wang, H.R.; Fu, L.B.; Feng, Y.Z.; Song, P.G. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 2022, 15, 9531–9543. [Google Scholar] [CrossRef]
- Guo, H.L.; Peng, M.; Zhu, Z.M.; Sun, L.N. Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 2013, 5, 9040–9048. [Google Scholar] [CrossRef] [PubMed]
- Chertopalov, S.; Mochalin, V.N. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 2018, 12, 6109–6116. [Google Scholar] [CrossRef]
- Fu, Q.S.; Wang, X.Y.; Zhang, N.; Wen, J.; Li, L.; Gao, H.; Zhang, X.T. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 2018, 511, 128–134. [Google Scholar] [CrossRef]
Sample No. | TTI /s | PHRR /kWm−2 | THR /MJ·m−2 | PSPR /m2·s−1 | TSR /m2·m−2 | PCOPR /g·s−1 | COTY /kg·kg−1 | PCO2PR /g·s−1 | CO2TY /kg·kg−1 |
---|---|---|---|---|---|---|---|---|---|
TPU | 65 | 872.3 | 63.7 | 0.1868 | 2058.8 | 0.0066 | 1.2117 | 0.4803 | 37.9 |
TPU/APP | 38 | 148.4 | 20.7 | 0.0928 | 529.8 | 0.0031 | 0.2315 | 0.0757 | 10.0 |
TPU/APP@PEI | 28 | 142.7 | 14.8 | 0.0966 | 689.6 | 0.0028 | 0.1582 | 0.0689 | 7.5 |
TPU/20APP@PEI@1TC | 31 | 174.4 | 29.1 | 0.1125 | 730.7 | 0.0048 | 1.0359 | 0.0878 | 14.6 |
TPU/10APP@PEI@1TC | 22 | 138.9 | 36.2 | 0.1051 | 774.2 | 0.0041 | 0.8564 | 0.0712 | 15.6 |
TPU/5APP@PEI@1TC | 23 | 179.1 | 25.6 | 0.1267 | 603.4 | 0.0053 | 0.9102 | 0.0797 | 11.4 |
Sample Number | TPU /g | APP /g | APP@PEI /g | APP@PEI@Ti3C2Tx /g | APP@PEI/Ti3C2Tx /%·%−1 |
---|---|---|---|---|---|
TPU | 60.0 | 0.0 | 0.0 | 0.0 | / |
TPU/APP | 52.8 | 7.2 | 0.0 | 0.0 | / |
TPU/APP@PEI | 52.8 | 0.0 | 7.2 | 0.0 | / |
TPU/20APP@PEI@1TC | 52.8 | 0.0 | 0.0 | 7.2 | 20/1 |
TPU/10APP@PEI@1TC | 52.8 | 0.0 | 0.0 | 7.2 | 10/1 |
TPU/5APP@PEI@1TC | 52.8 | 0.0 | 0.0 | 7.2 | 5/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yao, A.; Fu, L.; Xie, S.; Zhang, Y.; Xu, P.; Feng, Y.; Shi, Y. Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding. Molecules 2024, 29, 3108. https://doi.org/10.3390/molecules29133108
Liu Y, Yao A, Fu L, Xie S, Zhang Y, Xu P, Feng Y, Shi Y. Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding. Molecules. 2024; 29(13):3108. https://doi.org/10.3390/molecules29133108
Chicago/Turabian StyleLiu, Yan, Ansheng Yao, Libi Fu, Shiwei Xie, Yijie Zhang, Peihui Xu, Yuezhan Feng, and Yongqian Shi. 2024. "Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding" Molecules 29, no. 13: 3108. https://doi.org/10.3390/molecules29133108
APA StyleLiu, Y., Yao, A., Fu, L., Xie, S., Zhang, Y., Xu, P., Feng, Y., & Shi, Y. (2024). Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding. Molecules, 29(13), 3108. https://doi.org/10.3390/molecules29133108