Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure
2.2. The Status of the Surface
2.3. Thermal Analysis
2.4. Energetic Performance
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Characterization Methods
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | RMS [μm] |
---|---|
A | 1.297 |
K1 | 0.228 |
K2 | 0.152 |
K5 | 0.050 |
L1 | 0.463 |
L2 | 0.109 |
L5 | 0.120 |
Cu2HFAU31 | 0.088 |
Cu5NaFAU31 | 0.112 |
Sample | Modification | Remarks |
---|---|---|
HFAU31 | Commercial zeolite of FAU-type structure (Si/Al = 31) was produced by Zeolyst Company (CBV 760). It was dealuminated by steaming and acid treatment by the producer. | Protonic form |
Cu2HFAU31 | HFAU31 was impregnated with Cu(NO3)2. | 2%wt. of Cu in zeolite; much Cu+exch. and H+, little Cu+ox. and Cu2+ |
NaFAU31 | HFAU31 was 5-fold ion-exchanged with 0.5 M NaNO3 at 80 °C for 2 h. | Sodium form |
Cu5NaFAU31 | NaFAU31 impregnated with Cu(NO3)2. | 5%wt. of Cu in zeolite; little Cu+exch. and H+, much Cu2+, Cu+ox |
References
- Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem. Rev. 1995, 95, 559. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism. Microporous Mesoporous Mater. 2005, 82, 1. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, H.; Zhang, S.; Zhang, Q.; Li, C. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites. J. Fuel Chem. Technol. 2019, 47, 74. [Google Scholar] [CrossRef]
- Hambali, H.U.; Jalil, A.A.; Siang, T.J.; Abdulrasheed, A.A.; Fatah, N.A.A.; Hussain, I.; Azami, M. Effect of ZSM-5 Acidity in Enhancement of Methanol-to-Olefins Process. J. Energy Safety Technol. 2019, 2, 9. [Google Scholar] [CrossRef]
- Matam, S.K.; Hawkins, A.P.; O’Malley, A.J.; Zachariou, A.; Catlow, C.R.A.; Suwardiyanto; Collier, P.; Lennon, D.; Silverwood, I.; Parker, S.F.; et al. The effects of MTG catalysis on methanol mobility in ZSM-5. Catal. Sci. Technol. 2018, 8, 3304. [Google Scholar] [CrossRef]
- Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 2007, 249, 195. [Google Scholar] [CrossRef]
- Das, J.; Bhat, I.S.; Halgeri, A.B. Ethylbenzene dealkylation and realkylation over pore size regulated MFI zeolite. Ind. Eng. Chem. Res. 1993, 32, 2525. [Google Scholar] [CrossRef]
- Shi, Q.; Gonçalves, J.C.; Ferreira, A.F.P.; Plaza, M.G.; Rodrigues, A.E. Xylene Isomerization over Beta Zeolites in Liquid Phase. Ind. Eng. Chem. Res. 2018, 57, 5568. [Google Scholar] [CrossRef]
- Daramola, M.O.; Burger, A.J.; Pera-Titus, M.; Giroir-Fendler, A.; Miachon, S.; Dalmon, J.A.; Lorenzen, L. Separation and isomerization of xylenes using zeolite membranes: A short overview. Asia-Pac. J. Chem. Eng. 2010, 5, 815. [Google Scholar] [CrossRef]
- Emana, A.N.; Chand, S. Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Appl. Petrochem. Res. 2015, 5, 121. [Google Scholar] [CrossRef]
- Vernuccio, S.; Bickel, E.; Gounder, R.; Broadbelt, L.J. Microkinetic Model of Propylene Oligomerization on Brønsted Acidic Zeolites at Low Conversion. ACS Catal. 2019, 9, 8996. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Wang, J.; Yu, Z.; Xiang, Y.; Kong, L.; Liu, H.; Ma, A. Hierarchical zeolites obtained by alkaline treatment for enhanced n-pentane catalytic cracking. Fuel 2022, 313, 122669. [Google Scholar] [CrossRef]
- Gholami, Z.; Gholami, F.; Tišler, Z.; Tomas, M.; Vakili, M. A Review on Production of Light Olefins via Fluid Catalytic Cracking. Energies 2021, 14, 1089. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.; Cheng, D.G.; Chen, F.; Ren, X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Front. Chem. Sci. Eng. 2018, 12, 780. [Google Scholar] [CrossRef]
- Albahar, M.; Li, C.; Zholobenko, V.L.; Garforth, A.A. Selective Toluene Disproportionation to produce para-Xylene over Modified ZSM-5. Chem. Eng. Trans. 2017, 57, 907. [Google Scholar] [CrossRef]
- Knyazeva, E.E.; Konnov, S.V.; Tikhonova, A.A.; Ponomareva, O.A.; Ivanova, I.I. Toluene disproportionation on recrystallized MFI zeolites. Pet. Chem. 2015, 55, 645. [Google Scholar] [CrossRef]
- Brunetti, A.; Migliori, M.; Cozza, D.; Catizzone, E.; Giordano, G.; Barbieri, G. Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors. ACS Sustainable Chem. Eng. 2020, 8, 10471. [Google Scholar] [CrossRef]
- Dal Pozzo, D.M.; Azevedo dos Santos, J.A.; Junior, E.S.; Santos, R.F.; Feiden, A.; Melegari de Souza, S.N.; Burgardt, I. Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC Adv. 2019, 9, 4900. [Google Scholar] [CrossRef]
- Mya, O.B.; Bita, M.; Louafi, I.; Djouadi, A. Esterification process catalyzed by ZSM-5 zeolite synthesized via modified hydrothermal method. Method X 2018, 5, 277. [Google Scholar] [CrossRef]
- Gerasimov, D.N.; Kashin, E.V.; Pigoleva, I.V.; Maslov, I.A.; Fadeev, V.V.; Zaglyadova, S.V. Effect of Zeolite Properties on Dewaxing by Isomerization of Different Hydrocarbon Feedstocks. Energy Fuels 2019, 33, 3492. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Velty, A.; Susarte, M. Zeolites for the Production of Fine Chemicals: Synthesis of the Fructone Fragrancy. J. Catal. 2000, 196, 345. [Google Scholar] [CrossRef]
- Burrows, A. Chemistry 3: Introducing Inorganic, Organic, and Physical Chemistry; Oxford University Press: Oxford, UK, 2009; p. 253. ISBN 978-0-19-927789-6. [Google Scholar]
- The Associated Press. Level of Radioactive Materials Rises Near Japan Plant. New York Times, 11 April 2011; p. 14. [Google Scholar]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003, 61, 25. [Google Scholar] [CrossRef]
- Guerra, J.M. Adsorption Solar Heating and Storage System. U.S. Patent 4,269,170, 26 May 1981. [Google Scholar]
- Jana, D. A New Look to an Old Pozzolan: Clinoptilolite–A Promising Pozzolan in Concrete; Construction Materials Consultants, Inc.; Applied Petrographic Services, Inc.: Greensburg, PA, USA, 2007; p. 168. [Google Scholar]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Zygmunt, B.; Buczkowski, D. Influence of Ammonium Nitrate Prills’ Properties on DetonationVelocity of ANFO. Propellants. Explos. Pyrotech. 2007, 32, 411. [Google Scholar] [CrossRef]
- Zygmunt, B. Detonation parameters of mixtures containing ammonium nitrate and aluminum. Cent. Eur. J. Energ. Mater. 2009, 6, 57–66. [Google Scholar]
- Maranda, A.; Gałęzowski, D.; Papliński, A. Investigation on Detonation and Thermochemical Parameters of Aluminized ANFO. J. Energ. Mater. 2003, 21, 1. [Google Scholar] [CrossRef]
- Maranda, A.; Paszula, J.; Zawadzka-Małota, I.; Kuczyńska, B.; Witkowski, W.; Nikolczuk, K.; Wilk, Z. Aluminum powder influence on ANFO detonation parameters. Cent. Eur. J. Energ. Mater. 2011, 8, 279. [Google Scholar]
- Kramarczyk, B.; Pytlik, M.; Mertuszka, P. Effect of aluminum additives on selected detonation parameters of a bulk emulsionexplosive. High-Energy Mater. 2020, 12, 99. [Google Scholar] [CrossRef]
- Biessikirski, A.; Ziąbka, M.; Dworzak, M.; Kuterasiński, Ł.; Twardosz, M. Effect of metal addition on ANFO’s morphology and energy detonation. Przem. Chem. 2019, 98, 928. [Google Scholar] [CrossRef]
- Barański, K. Analysis of the Possibility of Using “Green Pyrotechnics” in the Detonators MW. Ph.D. Thesis, AGH University of Krakow, Krakow, Poland, 27 September 2019. [Google Scholar]
- Biessikirski, A.; Barański, K.; Pytlik, M.; Kuterasiński, Ł.; Biegańska, J.; Słowiński, K. Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies 2021, 14, 2152. [Google Scholar] [CrossRef]
- Anderson, P.E.; Cook, P.; Kyle, A.D.; Mychajlonka, K.; Mileham, M. Silicon Fuel in High Performance Explosives. Prop. Explos., Pyrotech. 2014, 39, 74. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Z.; Chen, Y.; Bao, W.; Chang, L.; Feng, G. In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem. Eng. J. 2015, 263, 9. [Google Scholar] [CrossRef]
- Rutkowska, M.; Díaz, U.; Palomares, A.E.; Chmielarz, L. Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process. Appl. Catal. B Environ. 2015, 168–169, 531. [Google Scholar] [CrossRef]
- Seo, C.K.; Choi, B.; Kim, H.; Lee, C.H. Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst. Chem. Eng. J. 2012, 191, 331. [Google Scholar] [CrossRef]
- Schay, Z.; Guczi, L.; Beck, A.; Nagy, I.; Samuel, V.; Mirajkar, S.; Ramaswamy, A.; Pál-Borbély, G. DeNOx reactions on Cu-zeolites: Decomposition of NO, N2O and SCR of NO by C3H8 and CH4 on Cu-ZSM-5 and Cu-AlTS-1 catalysts. Catal. Today 2002, 75, 393. [Google Scholar] [CrossRef]
- Yashnik, S.; Ismagilov, Z. Cu-substituted ZSM-5 catalyst: Controlling of DeNOx reactivity via ion-exchange mode with copper–ammonia solution. Appl. Catal. B Environ. 2015, 170–171, 241. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Guan, N.; Richter, M.; Fricke, R. Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catal. Commun. 2007, 8, 583. [Google Scholar] [CrossRef]
- Basaldella, E.; Kikot, A.; Quincoces, C.; González, M. Preparation of supported Cu/ZSM-5 zeolite films for DeNOx reaction. Mater. Lett. 2001, 51, 289. [Google Scholar] [CrossRef]
- De Lucas, A.; Valverde, J.; Dorado, F.; Romero, A.; Asencio, I. Influence of the ion-exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOX over mordenite and ZSM-5. J. Mol. Catal. A Chem. 2005, 225, 47. [Google Scholar] [CrossRef]
- Mrad, R.; Aissat, A.; Cousin, R.; Courcot, D.; Siffert, S. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR). Appl. Catal. A Gen. 2015, 504, 542. [Google Scholar] [CrossRef]
- Kuterasiński, Ł.; Podobiński, J.; Rutkowska-Zbik, D.; Datka, J. IR Studies of the Cu ions in Cu-Faujasites. Molecules 2019, 24, 4250. [Google Scholar] [CrossRef]
- Kuterasiński, Ł.; Podobiński, J.; Madej, E.; Smoliło-Utrata, M.; Rutkowska-Zbik, D.; Datka, J. Reduction and Oxidation of CuSpecies in Cu-faujasites Studied by IR Spectroscopy. Molecules 2020, 25, 4765. [Google Scholar] [CrossRef]
- Hendricks, S.B.; Posnjak, E.; Kracek, F.C. Molecular rotation in the solid state. The variation of the crystal structure of ammonium nitrate with temperature. J. Am. Chem. Soc. 1932, 54, 2766. [Google Scholar] [CrossRef]
- Vargeese, A.A.; Joshi, S.S.; Krishnamurthy, V.N. Effect of the method of crystallization on the IV–III and IV–II polymorphic transitions of ammonium nitrate. J. Hazard. Mater. 2009, 161, 373. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; p. 146. [Google Scholar]
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist crystal structure database. Am. Mineral. 2003, 88, 247. [Google Scholar] [CrossRef]
- Xu, Z.-X.; Fu, X.-Q.; Wang, Q. Phase stability of ammonium nitrate with organic potassium salts. Cent. Eur. J. Energ. Mater. 2016, 13, 736. [Google Scholar] [CrossRef]
- Wu, B.H.; Chan, M.N.; Chan, C.K. FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci. Technol. 2007, 41, 581. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer: Berlin, Germany, 2009; Volume 2, p. 13. [Google Scholar]
- Flanigen, E.M.; Khatami, H.; Szymanski, H.A. Infrared Structural Studies of Zeolite Frameworks. Am. Chem. Soc. 1971, 101, 201. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Sadowska, M.; Nattich-Rak, M. Quantifying Nanoparticle Layer Topography: Theoretical Modeling and Atomic Force Microscopy Investigations. Langmuir 2023, 39, 15067. [Google Scholar] [CrossRef] [PubMed]
- Brazdeikis, A.; Karlsson, I.O.; Flodstrom, A.S. An atomic force microscopy study of thin copper oxide films grown by molecular beam epitaxy on MgO(100). Thin Solid Films 1996, 281–282, 57–59. [Google Scholar]
- Park, J.Y.; Kwon, T.H.; Koh, S.V.; Kang, Y.C. Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films. Bull. Korean Chem. Soc. 2011, 32, 1331. [Google Scholar] [CrossRef]
- Kuterasiński, Ł.; Wojtkiewicz, A.M.; Sadowska, M.; Żeliszewska, P.; Napruszewska, B.D.; Zimowska, M.; Pytlik, M.; Biessikirski, A. Variously Prepared Zeolite Y as a Modifier of ANFO. Materials 2022, 15, 5855. [Google Scholar] [CrossRef] [PubMed]
- Kwok, Q.S.M.; Jones, D.E.G. Thermodesorption studies of ammonium nitrate prills by high-resolution thermogravimetry. J. Therm. Anal. Calorim. 2003, 74, 57. [Google Scholar] [CrossRef]
- Oxley, J.C.; Smith, J.L.; Rogers, E.; Yu, M. Ammonium nitrate: Thermal stability and explosivity modifiers. Thermochim. Acta 2002, 384, 23. [Google Scholar] [CrossRef]
- Babrauskas, V.; Leggett, D. Thermal decomposition of ammonium nitrate. FAM Fire Mater. 2020, 44, 250. [Google Scholar] [CrossRef]
- Chen, N.Y. Hydrophobic properties of zeolites. J. Phys. Chem. 1976, 80, 60. [Google Scholar] [CrossRef]
- Theoret, A.; Sandorey, C. Infrared Spectra and Crystalline Phase Transitions of Ammonium Nitrate. Can. J. Chem. 1964, 42, 57. [Google Scholar] [CrossRef]
- Biessikirski, A.; Atlagic, S.G.; Pytlik, M.; Kuterasinski, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO’s Properties. Energies 2021, 14, 4354. [Google Scholar] [CrossRef]
- Biessikirski, A.; Kuterasiński, Ł.; Dworzak, M.; Twardosz, M.; Tatko, M.; Napruszewska, B.D. On the Influence of the Ammonium Nitrate(V) Provenance on Its Usefulness for the Manufacture of ANFO Type Explosives. Energies 2020, 13, 4942. [Google Scholar] [CrossRef]
- Babrauskas, V. Fire Science Publishers/Society of Fire Protection Engineers; Ignition Handbook; Fire Science Publishers: Issaquah, WA, USA, 2004; Volume 40, p. 295. [Google Scholar]
- Fedoroff, B.T.; Aaronson, H.A.; Sheeld, O.E.; Reese, E.F.; Clift, G.D.; Dunkle, C.G.; Walter, H.; McLean, D.C. Encyclopedia of Explosives and Related Items; US Department of the Army, Picatinny Arsenal: Dover, NJ, USA, 1960; Volume 1, p. 311.
- Akhavan, J. The Chemistry of Explosives, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Suceska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program. Mater. Sci. Forum 2004, 465–466, 325. [Google Scholar] [CrossRef]
- Salzano, E.; Basco, A. Comparison of the explosion thermodynamics of TNT and black powder using Le Chatelier diagrams. Propellants Explos. Pyrotech. 2012, 37, 724. [Google Scholar] [CrossRef]
- Zawadzka-Małota, I. Testing of mining explosives with regard to the content of carbon oxides and nitrogen oxides in their detonation products. J. Sustain. Min. 2015, 14, 173. [Google Scholar] [CrossRef]
- Wang, C.; Guo, H.; Leng, S.; Yu, J.; Feng, K.; Cao, L.; Huang, J. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 330. [Google Scholar] [CrossRef]
- Traoré, M.; Dufaud, O.; Perrin, L.; Chazelet, S.; Thomas, D. Dust explosions: How should the influence of humidity be taken into account? Process Saf. Environ. Prot. 2009, 87, 14. [Google Scholar] [CrossRef]
- Xiong, X.; Gao, K.; Ji, C.; Mu, J.; Li, B.; Zhang, D.; Xu, Y.; Xie, L. Effect of equilibrium relative humidity on explosion characteristics parameters of humid magnesium dust. J. Magnes. Alloys, 2023; in press. [Google Scholar] [CrossRef]
- Chang, S.-C.; Cheng, Y.-C.; Zhang, X.-H.; Shu, C.-M. Effects of moisture content on explosion characteristics of incense dust in incense factory. J. Therm. Anal. Calorim. 2022, 147, 2885. [Google Scholar] [CrossRef]
- Biessikirski, A.; Czerwonka, D.; Biegańska, J.; Kuterasiński, Ł.; Ziąbka, M.; Dworzak, M.; Twardosz, M. Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing. Energies 2021, 14, 172. [Google Scholar] [CrossRef]
- Miyake, A.; Takahara, K.; Ogawa, T.; Ogata, Y.; Wada, Y.; Arai, H. Influence of physical properties of ammonium nitrate on the detonation behavior of ANFO. J. Loss Prev. Process Ind. 2001, 14, 533. [Google Scholar] [CrossRef]
- Atlagic, S.G.; Biessikirski, A.; Kuterasiński, Ł.; Dworzak, M.; Twardosz, M.; Sorogas, N.; Arvanitidis, J. On the Investigation of Microstructured Charcoal as an ANFO Blasting Enhancer. Energies 2020, 13, 4681. [Google Scholar] [CrossRef]
- Bhattacharyya, M.M.; Singh, P.K.; Singh, R.R. Laboratory methodology for assessment of toxic fumes in post-detonation gases from explosives. Min. Res. Eng. 2001, 10, 171–183. [Google Scholar] [CrossRef]
- Sapko, M.; Rowland, J.; Mainiero, R.; Zlochower, I. Chemical and physical factors that influence NOx production during blasting–exploratory study. In Proceedings of the 28th Conference on ‘Explosives and Blasting Technique’, Las Vegas, NV, USA, 10 February 2002; pp. 317–330. [Google Scholar]
- Mainiero, R.; Harris, M.; Rowland, J. Dangers of toxic fumes form blasting. In Proceedings of the 33rd Conference on ‘Explosives and Blasting Technique’, Nashville, TN, USA, 28–31 January 2007; Volume 1, pp. 1–6. [Google Scholar]
- Onederra, I.; Bailey, V.; Cavanough, G.; Torrance, A. Understanding main causes of nitrogen oxide fumes in surface blasting. Min. Technol. 2012, 121, 151. [Google Scholar] [CrossRef]
- Chaiken, R.F.; Cook, E.B.; Ruhe, T.C. 1,8. BuMines RI 7867; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1974; Volume 1, p. 8.
- Rowland, J.H., III; Mainiero, R. Factors Affecting ANFO Fumes Production. In Proceedings of the 26th Annual Conference on Explosives and Blasting Technique, Cleveland, OH, USA, 13–16 February 2000; International Society of Explosives Engineers: Warrensville Heights, OH, USA, 2000; pp. 163–174. [Google Scholar]
- Biessikirski, A.; Wądrzyk, M.; Janus, R.; Biegańska, J.; Jodłowski, G.; Kuterasiński, Ł. Study on fuel oils used in ammonium nitrate-based explosives. Przem. Chem. 2018, 97, 457–462. [Google Scholar] [CrossRef]
- Afanasenkov, A.N. Strength of Explosives. Trauzl Test. Combust. Explos. Shock. Waves 2004, 40, 119–125. [Google Scholar] [CrossRef]
Sample | Decomposition Pressure [MPa] | Decomposition Temperature [K] | Heat of Decomposition [kJ/kg] | VOD [m/s] |
---|---|---|---|---|
A | 3838 | 2970 | 3913 | 4392 |
K1 | 4022 | 3200 | 4363 | 4460 |
K2 | 4166 | 3405 | 4766 | 4514 |
K5 | 4419 | 3939 | 5872 | 4629 |
L1 | 4014 | 3193 | 4348 | 4456 |
L2 | 4118 | 3386 | 4738 | 4507 |
L5 | 4422 | 3914 | 5804 | 4616 |
Sample | N2 [dm3/kg] | NOx [dm3/kg] | COx [dm3/kg] | H2O [dm3/kg] | Other [dm3/kg] | Total Post-Decomposition Fumes [dm3/kg] | Oxygen Balance [%] |
---|---|---|---|---|---|---|---|
A | 287 | 1 | 107 | 655 | 7 | 1057 | −0.99 |
K1 | 274 | 4 | 106 | 647 | 10 | 1041 | −0.99 |
K2 | 260 | 7 | 104 | 637 | 19 | 1027 | −0.98 |
K5 | 220 | 19 | 99 | 604 | 48 | 990 | −0.96 |
L1 | 274 | 3 | 106 | 647 | 11 | 1041 | −0.99 |
L2 | 261 | 7 | 104 | 637 | 18 | 1027 | −0.98 |
L5 | 222 | 19 | 100 | 605 | 44 | 990 | −0.96 |
Sample | Initial Volume [ml] | Final Volume [ml] | Difference [ml] | Net Expansion in a Lead Block [cm3] |
---|---|---|---|---|
Picric acid | 65.5 | 381.2 | 315.7 | - |
A | 67.6 | 302.8 | 235.2 | 231.2 |
K1 | 67.7 | 325.9 | 258.2 | 260.0 |
K2 | 64.8 | 358.2 | 293.4 | 295.5 |
K5 | 65.5 | 320.1 | 254.6 | 256.4 |
L1 | 67.0 | 322.5 | 255.5 | 271.6 |
L2 | 66.9 | 276.8 | 209.9 | 223.2 |
L5 | 65.8 | 304.5 | 238.7 | 253.8 |
Sample | Chemical Composition [% wt.] | Description | ||
---|---|---|---|---|
Ammonium Nitrate | Fuel Oil | Zeolite FAU | ||
A | 94.00 | 6.00 | 0.00 | Commercial ANFO, reference sample (5.00 g) |
K1 | 93.06 | 5.94 | 1.00 | ANFO (4.95 g) + Cu2HFAU31 (0.05 g). Zeolite HFAU31 containing 2% wt. of Cu introduced via impregnation method |
K2 | 92.12 | 5.88 | 2.00 | ANFO (4.90 g) + Cu2HFAU31 (0.10 g). Zeolite HFAU31 containing 2% wt. of Cu introduced via impregnation method. |
K5 | 89.30 | 5.70 | 5.00 | ANFO (4.75 g) + Cu2HFAU31 (0.25 g). Zeolite HFAU31 containing 2% wt. of Cu introduced via impregnation method. |
L1 | 93.06 | 5.94 | 1.00 | ANFO (4.95 g) + Cu5NaFAU31 (0.05 g). Zeolite NaFAU31 containing 5% wt. of Cu introduced via impregnation method. |
L2 | 92.12 | 5.88 | 2.00 | ANFO (4.90 g) + Cu5NaFAU31 (0.10 g). Zeolite NaFAU31 containing 5% wt. of Cu introduced via impregnation method. |
L5 | 89.30 | 5.70 | 5.00 | ANFO (4.75 g) + Cu5NaFAU31 (0.25 g). Zeolite NaFAU31 containing 5% wt. of Cu introduced via impregnation method. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuterasiński, Ł.; Sadowska, M.; Żeliszewska, P.; Napruszewska, B.D.; Ruggiero-Mikołajczyk, M.; Pytlik, M.; Biessikirski, A. Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials. Molecules 2024, 29, 3184. https://doi.org/10.3390/molecules29133184
Kuterasiński Ł, Sadowska M, Żeliszewska P, Napruszewska BD, Ruggiero-Mikołajczyk M, Pytlik M, Biessikirski A. Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials. Molecules. 2024; 29(13):3184. https://doi.org/10.3390/molecules29133184
Chicago/Turabian StyleKuterasiński, Łukasz, Marta Sadowska, Paulina Żeliszewska, Bogna Daria Napruszewska, Małgorzata Ruggiero-Mikołajczyk, Mateusz Pytlik, and Andrzej Biessikirski. 2024. "Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials" Molecules 29, no. 13: 3184. https://doi.org/10.3390/molecules29133184
APA StyleKuterasiński, Ł., Sadowska, M., Żeliszewska, P., Napruszewska, B. D., Ruggiero-Mikołajczyk, M., Pytlik, M., & Biessikirski, A. (2024). Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials. Molecules, 29(13), 3184. https://doi.org/10.3390/molecules29133184