Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of Chemically Modified Mandua Starch Film Coating on Cumulative Drug Release (CDR) of Mesalamine from Chemically Modified Mandua Starch Matrix Tablets
2.2. Kinetic Analysis of Dissolution Pattern of Mesalamine
2.3. Bioequivalence Studies
2.4. In Vivo Colon Targeting Proficiency of Chemically Modified Finger Millet Starch Tablets
3. Material and Methods
3.1. Materials
3.2. Methods
3.2.1. Isolation and Modification of Mandua Starch
3.2.2. Generation and Characterisation of Coated Tablets
Preparation of Core Tablets
Coating Suspension Preparation
3.2.3. In Vitro Drug Release and Kinetic Evaluation of Dissolution of Mesalamine
3.2.4. In Vivo Colon-Specific Proficiency of Chemically Modified Finger Millet Starch Tablets
Roentgenographic Study to Assess the Colon Targeting Competency of Tablets Using Barium Sulphate in Rabbits and Healthy Human Volunteers
- (i).
- Preparation of barium sulphate tablets
- (ii).
- Protocols and use of animal
- (iii).
- Study protocol for roentgenographic study to assess the colon targeting competence of tablets in healthy human volunteers
- (iv). Bioequivalence Study of Coated Tablets
3.2.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym. 2018, 191, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.; Philip, B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med. J. 2010, 25, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.L.; Tran, T.T.D. Current Film Coating Designs for Colon-Targeted Oral Delivery. Curr. Med. Chem. 2021, 28, 1957–1969. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, L.; Yang, S.; Gao, S.; Yu, H.; Hu, J.; Hu, D.; Mao, W.; Peng, H.; Zhou, Y. Design and preparation of a novel colon-targeted tablet of hydrocortisone. Braz. J. Pharm. Sci. 2017, 53, 15009. [Google Scholar] [CrossRef]
- Iyer, U.; Hong, W.H.; Das, N.; Ghebre-Sellasie, I. Comparative evaluation of three organic solvent and dispersion based ethylcellulose coating formulations. Pharm. Technol. 1990, 14, 68–86. [Google Scholar]
- Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm. 2019, 556, 311–319. [Google Scholar] [CrossRef]
- Tarvainen, M.; Sutinen, R.; Peltonen, S.; Tiihonen, P.; Paronen, P. Starch acetate—A novel film-forming polymer for pharmaceutical coatings. J. Pharm. Sci. 2002, 91, 282–289. [Google Scholar] [CrossRef]
- Schmid, S.; MuÈller-Goymann, C.C.; Schmidt, P.C. Interactions during aqueous film coating of ibuprofen with Aquacoat ECD. Int. J. Pharm. 2000, 197, 35–39. [Google Scholar] [CrossRef]
- Bodmeier, R.; Paeratakul, O. Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharm. Res. 1994, 11, 882–888. [Google Scholar] [CrossRef]
- Palviainen, P.; Heinämäki, J.; Myllärinen, P.; Lahtinen, R.; Yliruusi, J.; Forssell, P. Corn Starches as Film Formers in Aqueous-Based Film Coating. Pharm. Dev. Technol. 2001, 6, 353–361. [Google Scholar] [CrossRef]
- Malik, M.K.; Kumar, T.; Kumar, V.; Singh, J.; Singh, R.K.; Saini, K. Sustainable, highly foldable, eco-friendly films from Mandua Starch derivative. Sustain. Energy Technol. Assess. 2022, 53, 102398. [Google Scholar]
- Siccardi, D.; Turner, J.R.; Mrsny, R.J. Regulation of intestinal epithelial function: A link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv. Drug Deliv. Rev. 2005, 57, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Milojevic, S.; Harding, M.; Coward, W.; Gibson, G.; Botham, R.L.; Ring, S.; Wraight, E.; Stockham, M.; Allwood, M. In vivo studies of amylose-and ethylcellulose-coated [13C] glucose microspheres as a model for drug delivery to the colon. J. Control. Release 1996, 40, 123–131. [Google Scholar] [CrossRef]
- Chourasia, M.; Jain, S. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004, 11, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Chen, L.; Li, X.; Xie, F.; Yu, L.; Li, L. An oral colon-targeting controlled release system based on resistant starch acetate: Synthetization, characterization, and preparation of film-coating pellets. J. Agric. Food Chem. 2011, 59, 5738–5745. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.X.; Li, L.; Li, B. Enzyme-Resistant Starch for Oral Colon-Targeting Drug Delivery System. Key Eng. Mater. 2005, 288, 129–132. [Google Scholar]
- Khan, A.; Bibi, A.; Ali, H.; Rehman, A.U.; Qindeel, M.; Irfan, M.; Shah, A.A.; Badshah, M.; Hasan, F.; Khan, S. Development of Resistant Starch Film Coated Microparticles for an Oral Colon-Specific Drug Delivery. Starch–Stärke 2020, 72, 1900262. [Google Scholar] [CrossRef]
- Malik, M.K.; Kumar, V.; Singh, J.; Bhatt, P.; Dixit, R.; Kumar, S. Phosphorylation of alkali extracted mandua starch by STPP/STMP for improving digestion resistibility. ACS Omega 2023, 8, 11750–11767. [Google Scholar] [CrossRef]
- Sinha, V.R.; Kumria, R. Polysaccharides in colon-specific drug delivery. Int. J. Pharm. 2001, 224, 19–38. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Chen, L.; Xie, F.; Yu, L.; Li, B. Preparation and characterisation of octenyl succinate starch as a delivery carrier for bioactive food components. Food Chem. 2011, 126, 1218–1225. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, A.; P. Kaur, V.; Kaur, M.; Murthy, R.S.R. Polymeric drug delivery approaches for colon targeting: A Review. Drug Deliv. Lett. 2014, 4, 38–48. [Google Scholar] [CrossRef]
- Malik, M.K.; Kumar, V.; Singh, J.; Kumar, P. Efficiency of phosphorylated Mandua Starch in matrix tablet for targeted release of Mesalamine in colon. J. Drug Deliv. Sci. Technol. 2023, 81, 104251. [Google Scholar] [CrossRef]
- Ho, L.; Cuppok, Y.; Muschert, S.; Gordon, K.C.; Pepper, M.; Shen, Y.; Siepmann, F.; Siepmann, J.; Taday, P.F.; Rades, T. Effects of film coating thickness and drug layer uniformity on in vitro drug release from sustained-release coated pellets: A case study using terahertz pulsed imaging. Int. J. Pharm. 2009, 382, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.A.; Roberts, M.; Seton, L.; Ford, J.L.; Levina, M.; Rajabi-Siahboomi, A.R. Film-coated matrix mini-tablets for the extended release of a water-soluble drug. Drug Dev. Ind. Pharm. 2015, 41, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Kumar, V.; Rastogi, H.; Malik, M.K.; Kumar, T.; Garg, S.; Kapoor, G.; Singh. S. Functional and tableting properties of alkali-isolated and STTP modified Barnyard Millet (Echinochloa esculenta) starch. ACS Omega 2023, 8, 30294–30305. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.R.; Brown, I.L.; Topping, D.L. Starches, resistant starches, the gut microflora and human health. Curr. Issues Intest. Microbiol. 2000, 1, 25–37. [Google Scholar]
- Parmar, C.; Parikh, K.; Mundada, P.; Bhavsar, D.; Sawant, K. Formulation and optimization of enteric coated bilayer tablets of mesalamine by RSM: In vitro—in vivo investigations and roentogenographic study. J. Drug Deliv. Sci. Technol. 2018, 44, 388–398. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Datta, S.; Das, S.; Mohanraj, P.; Deb, J.; Bhanoji, M.E. Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharm. J. 2009, 17, 233–241. [Google Scholar] [CrossRef]
- Khatri, P.; Desai, D.; Shelke, N.; Minko, T. Role of plasticizer in membrane coated extended release oral drug delivery system. J. Drug Deliv. Sci. Technol. 2018, 44, 231–243. [Google Scholar] [CrossRef]
- Varum, F.; Freire, A.C.; Fadda, H.M.; Bravo, R.; Basit, A.W. A dual pH and microbiota-triggered coating (phloralTM) for Fail-Safe Colonic Drug Release. Int. J. Pharm. 2020, 583, 119379. [Google Scholar] [CrossRef]
- Ibekwe, V.C.; Khela, M.K.; Evans, D.F.; Basit, A.W. A new concept in colonic drug targeting: A combined PH-responsive and bacterially-triggered drug delivery technology. Aliment. Pharmacol. Ther. 2008, 28, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Podczeck, F.; Veiga, F.; Sousa, J. Influence of the coating formulation on enzymatic digestibility and drug release from 5-aminosalicylic acid pellets coated with mixtures of high-amylose starch and Surelease® intended for colon-specific drug delivery. Drug Dev. Ind. Pharm. 2010, 36, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Podczeck, F.; Veiga, F.; Sousa, J. Starch-based coatings for colon-specific delivery. part II: Physicochemical properties and in vitro drug release from high amylose maize starch films. Eur. J. Pharm. Biopharm. 2009, 72, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Schwartz, J.B.; Schnaare, R.L. Bead coating: I. Change in release kinetics (and mechanism) due to coating levels. Pharm. Res. 1991, 8, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Vaithiyalingam, S.; Khan, M.A. Optimization and characterization of controlled release multi-particulate beads formulated with a customized cellulose acetate butyrate dispersion. Int. J. Pharm. 2002, 234, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.; Peltonen, S.; Mikkonen, H.; Elovaara, M.; Tuunainen, M.; Paronen, P.; Ketolainen, J.; Sutinen, R. Aqueous starch acetate dispersion as a novel coating material for controlled release products. J. Control. Release 2004, 96, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Ngwuluka, N.C.; Lawal, K.; Olorunfemi, P.O.; Ochekpe, N.A. Post-market in vitro bioequivalence study of six brands of ciprofloxacin tablets/caplets in Jos, Nigeria. Sci. Res. Essay 2009, 4, 298–305. [Google Scholar]
- Freitag, G. Guidelines on dissolution profile comparison. Drug Inform. J. 2001, 35, 865–874. [Google Scholar] [CrossRef]
- Gazzaniga, A.; Moutaharrik, S.; Filippin, I.; Foppoli, A.; Palugan, L.; Maroni, A.; Cerea, M. Time-Based Formulation Strategies for Colon Drug Delivery. Pharmaceutics 2022, 14, 2762. [Google Scholar] [CrossRef]
- Patel, M.M.; Amin, A.F. Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv. 2011, 18, 281–293. [Google Scholar] [CrossRef]
- Costa, P.; Jose, M.S.L. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.E.B.; Alsarra, I.A.; Alanazi, F.K.; Al-Mohizea, A.M.; Al-Robayan, A.A.; Al-Obeed, O.A. New targeted-colon delivery system: In vitro and in vivo evaluation using X-ray imaging. J. Drug Target. 2010, 18, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Gluck, N.; Shpak, B.; Brun, R.; Rösch, T.; Arber, N.; Moshkowitz, M. A novel prepless X-ray imaging capsule for colon cancer screening. Gut 2016, 65, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Seltzer, S.E.; Bramson, R.T.; Levine, L.A.; Kelly, P.; Jordan, P.F.; Thrall, J.H. Technical cost of radiologic examinations: Analysis across imaging modalities. Radiology 2000, 216, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Diós, P.; Szigeti, K.; Budán, F.; Pócsik, M.; Veres, D.V.; Máthé, D.; Pál, S.; Dévay, A.; Nagy, S. Influence of barium sulfate X-ray imaging contrast material on properties of floating drug delivery tablets. Eur. J. Pharm. Sci. 2016, 95, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, R.B.; Kristensen, M.N.; Gundlach, C.; Thamdrup, L.H.E.; Müllertz, A.; Rades, T.; Nielsen, L.H.; Zór, K.; Boisen, A. X-ray Imaging for gastrointestinal tracking of microscale oral drug delivery devices. ACS Biomater. Sci. Eng. 2021, 7, 2538–2547. [Google Scholar] [CrossRef]
- Labelle, M.A.; Szabo, P.I.; Masseau, I.; Chorfi, Y.; Mateescu, M.A. In vivo evaluation of targeted delivery of biological agents using barium sulphate. Int. J. Pharm. 2019, 572, 118801. [Google Scholar] [CrossRef]
- Sharma, V.K.; Mazumder, B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int. J. Biol. Macromol. 2014, 66, 15–25. [Google Scholar] [CrossRef]
- Awasthi, R.; Kulkarni, G.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand? Drug Deliv. 2016, 23, 378–394. [Google Scholar] [CrossRef]
- Chickpetty, S.M.; Raga, B.V. Formulation, in vitro drug release and in vivo human X-ray investigation of polysaccharide based drug delivery systems for targeting 5-fluorouracil to the colon. Braz. J. Pharm. Sci. 2013, 49, 263–273. [Google Scholar] [CrossRef]
- Butte, K.; Momin, M.; Deshmukh, H. Optimisation and in vivo evaluation of pectin based drug delivery system containing curcumin for colon. Int. J. Biomater. 2014, 2014, 924278. [Google Scholar] [CrossRef] [PubMed]
F. Code | Drug Content (%w/w) Mean ± SD | Hardness (kg/cm2 ± SD) | Weight Variation (mg ± SD) | %Friability (Mean ± SD) | Diameter (mm ± SD | Thickness (mm ± SD) | Disintegration Status in pH 1.2 SGF (1 h) |
---|---|---|---|---|---|---|---|
AMST | 100.2 ± 1.25 | 1.63 ± 0.12 | 201 ± 2.2 | 0.55 ± 0.10 | 8.71 ± 0.01 | 4.01 ± 0.05 | D* |
PST | 100.4 ± 0.34 | 2.26 ± 0.09 | 201 ± 2.2 | 0.58 ± 0.10 | 8.71 ± 0.26 | 4.01 ± 0.22 | DP** |
PSCPST10 | 100.1 ± 1.60 | 6.4 ± 0.54 | 223 ± 2.7 | 0.36 ± 0.12 | 8.92 ± 0.12 | 4.12 ± 0.30 | ND*** |
F. Code | Cumulative Drug Release (CDR %) | ||
---|---|---|---|
SGF (pH 1.2), 2 h | SIF (pH 6.8), 8 h | SCF (pH 7.4), 14 h | |
PSTCPST10% | 5.65 | 35.80 | 59.51 |
PSTUC | 59.46 | 100.5 | TD |
MKTF | 0 | 57.37 | 99.45 |
AMST | 99.82 | TD | TD |
F. Code | Zero Order | First Order | Higuchi | Korsmeyer–Peppas | Hixson-Crowell | T80% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ko | R2 | K1 | R2 | KH | R2 | n | R2 | KKp | KHC | R2 | ||
PSTCPST10% | 0.07 | 0.98 | 0.00 | 0.98 | 1.93 | 0.97 | 0.85 | 0.99 | 0.19 | 0.00 | 0.98 | 1052.39 |
* PSTUC | 0.07 | 0.67 | 0.00 | 0.98 | 6.12 | 0.95 | 0.11 | 0.97 | 49.59 | 0.00 | 0.89 | 443.08 |
* MKTF | 0.10 | 0.91 | 0.00 | 0.94 | 3.74 | 0.98 | 1.98 | 0.83 | 0.00 | 0.00 | 0.96 | 796.43 |
AMST | 0.05 | 0.54 | 0.01 | 0.95 | 3.63 | 0.64 | 0.05 | 0.96 | 73.27 | 0.00 | 0.77 | 336.83 |
Parameter | Formulation (PSTCPST10%) |
---|---|
Similarity Factor (f2) | 32.14 |
Difference Factor (f1) | 45.55 |
Rescigno Index (ξ1) | 0.1629 |
Rescigno Index (ξ2) | 0.1735 |
Ingredients (Function) | Amount (%w/w) |
---|---|
Chemically modified mandua starch (release retardant and film former) | 50 |
Poly Vinyl alcohol (film former) | 30 |
Glycerol (plasticizer) | 10 |
Water (vehicle) | 10 |
Formulation Code | |||
---|---|---|---|
Ingredients (mg) | PST | PSTC10% | AMST |
PMS | 80 | 80 | 0 |
Mesalamine | 50 | 50 | 50 |
AMS | 20 | 20 | 100 |
HPMC | q.s. | q.s. | q.s. |
Talc | 5 | 5 | 5 |
Magnesium stearate | 5 | 5 | 5 |
Total weight before coating | 200 | 200 | 200 |
Chemically modified starch coating (%w/w) | 0 | 10 | 0 |
Conditions | Acid Stage (Gastric Phase) | Buffer Stage 1 (Small Intestinal Stage) | Buffer Stage 2 (Colon Phase) |
---|---|---|---|
Dissolution media | 900 mL SGF | 900 mL SIF | 900 mL SCF |
pH | 1.2 | 6.8 | 7.4 |
Duration (h) | 2 | 6 | 8 |
Rotation speed (rpm) | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, M.K.; Kumar, V.; Kumarasamy, V.; Singh, O.P.; Kumar, M.; Dixit, R.; Subramaniyan, V.; Singh, J. Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine. Molecules 2024, 29, 3208. https://doi.org/10.3390/molecules29133208
Malik MK, Kumar V, Kumarasamy V, Singh OP, Kumar M, Dixit R, Subramaniyan V, Singh J. Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine. Molecules. 2024; 29(13):3208. https://doi.org/10.3390/molecules29133208
Chicago/Turabian StyleMalik, Mayank Kumar, Vipin Kumar, Vinoth Kumarasamy, Om Prakash Singh, Mukesh Kumar, Raghav Dixit, Vetriselvan Subramaniyan, and Jaspal Singh. 2024. "Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine" Molecules 29, no. 13: 3208. https://doi.org/10.3390/molecules29133208
APA StyleMalik, M. K., Kumar, V., Kumarasamy, V., Singh, O. P., Kumar, M., Dixit, R., Subramaniyan, V., & Singh, J. (2024). Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine. Molecules, 29(13), 3208. https://doi.org/10.3390/molecules29133208