Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Organic Compounds in Ilex
2.2. Higher Terpenoids and Sterols
2.3. Phenolic Acids and Polyphenols
2.4. Saponins
2.5. Antiviral Properties
2.6. Anticancer Properties
3. Materials and Methods
3.1. Plant Material
3.2. HS-SPME-Arrow-GC-MS
3.3. Higher Terpenoids and Sterols
3.4. Phenolic Acids and Polyphenols
3.5. Saponins
3.6. Antiviral Properties
3.7. In Vitro Biological Activity
3.7.1. In Vitro Cell Culture
3.7.2. Assessment of Cell Growth and Cytotoxicity Using the SRB Test
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zapata, F.J.; Rebollo-Hernanz, M.; Novakofski, J.E.; Nakamura, M.T.; de Mejia, E.G. Caffeine, but Not Other Phytochemicals, in Mate Tea (Ilex paraguariensis St. Hilaire) Attenuates High-Fat-High-Sucrose-Diet-Driven Lipogenesis and Body Fat Accumulation. J. Funct. Foods 2020, 64, 103646. [Google Scholar] [CrossRef]
- de Vasconcellos, A.C.; Frazzon, J.; Zapata Noreña, C.P. Phenolic Compounds Present in Yerba Mate Potentially Increase Human Health: A Critical Review. Plant Foods Hum. Nutr. 2022, 77, 495–503. [Google Scholar] [CrossRef] [PubMed]
- José, M.F.B.; Machado, R.P.; Araujo, P.A.B.; Speretta, G.F. Physiological Effects of Yerba Maté (Ilex paraguariensis): A Systematic Review. Nutr. Rev. 2023, 81, 1163–1179. [Google Scholar] [CrossRef]
- Saleh, A.J.; Othman, L.; Elchoueiry, M.; Ghanem, R.; Bazzi, S.; El-Sabban, M.; Abdel-Massih, R.M. Anti-Proliferative Activity of Yerba Mate (Ilex paraguariensis) Aqueous Extracts on Human Colorectal Cancer Cell Lines. Funct. Foods Health Dis. 2021, 11, 499–511. [Google Scholar] [CrossRef]
- Pérez, J.M.; Maldonado, M.E.; Rojano, B.A.; Alzate, F.; Sáez, J.; Cardona, W. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of Ilex Laurina and Ilex paraguariensis on Colon Cancer Cells. Trop. J. Pharm. Res. 2014, 13, 1279–1286. [Google Scholar] [CrossRef]
- Puangpraphant, S.; Berhow, M.A.; De Mejia, E. Yerba Mate (Ilex paraguariensis St. Hilaire) Saponins Inhibit Human Colon Cancer Cell Proliferation. In Hispanic Foods: Chemistry and Bioactive Compounds; ACS Publications: Washington, DC, USA, 2012; pp. 307–321. ISBN 1947-5918. [Google Scholar]
- Lückemeyer, D.D.; Müller, V.D.M.; Moritz, M.I.G.; Stoco, P.H.; Schenkel, E.P.; Barardi, C.R.M.; Reginatto, F.H.; Simões, C.M.O. Effects of Ilex paraguariensis A. St. Hil. (Yerba Mate) on Herpes Simplex Virus Types 1 and 2 Replication. Phytother. Res. 2012, 26, 535–540. [Google Scholar] [CrossRef]
- Contreras-Esquivel, J.C.; Cano-González, C.N.; Ascacio-Valdes, J.; Aguirre-Joya, J.A.; Aguillón-Gutierrez, D.; Breccia, J.; Espinoza-Perez, J.D.; Aguilar, C.N.; Torres-León, C. Polyphenolic-Rich Extracts from Ilex paraguariensis and Larrea Divaricata Leaves and Their Antioxidant and AntiCOVID-19 Potential. Biotecnia 2023, 25, 61–66. [Google Scholar] [CrossRef]
- Gerber, T.; Nunes, A.; Moreira, B.R.; Maraschin, M. Yerba Mate (Ilex paraguariensis A. St.-Hil.) for New Therapeutic and Nutraceutical Interventions: A Review of Patents Issued in the Last 20 Years (2000–2020). Phytother. Res. 2023, 37, 527–548. [Google Scholar] [CrossRef] [PubMed]
- Pachura, N.; Kupczyński, R.; Sycz, J.; Kuklińska, A.; Zwyrzykowska-Wodzińska, A.; Wińska, K.; Owczarek, A.; Kuropka, P.; Nowaczyk, R.; Bąbelewski, P.; et al. Biological Potential and Chemical Profile of European Varieties of Ilex. Foods 2022, 11, 47. [Google Scholar] [CrossRef]
- Pachura, N.; Kupczyński, R.; Lewandowska, K.; Włodarczyk, M.; Klemens, M.; Kuropka, P.; Nowaczyk, R.; Krzystek-Korpacka, M.; Bednarz-Misa, I.; Sozański, T.; et al. Biochemical and Molecular Investigation of the Effect of Saponins and Terpenoids Derived from Leaves of Ilex aquifolium on Lipid Metabolism of Obese Zucker Rats. Molecules 2022, 27, 3376. [Google Scholar] [CrossRef]
- Wang, F.; Kong, B.L.-H.; Tang, Y.-S.; Lee, H.-K.; Shaw, P.-C. Bioassay Guided Isolation of Caffeoylquinic Acids from the Leaves of Ilex pubescens Hook. et Arn. and Investigation of Their Anti-Influenza Mechanism. J. Ethnopharmacol. 2023, 309, 116322. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-F.; Chen, Y.-L.; Lin, G.-H.; Chan, Y.F.; Hsieh, P.-W.; Horng, J.-T. 3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex Kaushue Disrupts the Interaction between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. J. Virol. 2022, 96, e00542-21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, S.-T.; He, Q.-Y.; Huang, L.-Q.; Li, X.; Lai, X.-P.; Zhan, S.-F.; Huang, H.-T.; Liu, X.-H.; Wu, J. Asprellcosides B of Ilex Asprella Inhibits Influenza A Virus Infection by Blocking the Hemagglutinin-Mediated Membrane Fusion. Front. Microbiol. 2019, 9, 3325. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Schmarr, H.-G. Comparison of Solid-Phase Microextraction Using Classical Fibers Versus Mini-Arrows Applying Multiple Headspace Extraction and Various Agitation Techniques. Chromatographia 2019, 82, 635–640. [Google Scholar] [CrossRef]
- Song, N.-E.; Lee, J.-Y.; Lee, Y.-Y.; Park, J.-D.; Jang, H.W. Comparison of Headspace–SPME and SPME-Arrow–GC–MS Methods for the Determination of Volatile Compounds in Korean Salt–Fermented Fish Sauce. Appl. Biol. Chem. 2019, 62, 16. [Google Scholar] [CrossRef]
- Márquez, V.; Martínez, N.; Guerra, M.; Fariña, L.; Boido, E.; Dellacassa, E. Characterization of Aroma-Impact Compounds in Yerba Mate (Ilex paraguariensis) Using GC–Olfactometry and GC–MS. Food Res. Int. 2013, 53, 808–815. [Google Scholar] [CrossRef]
- Kaltbach, P.; Ballert, S.; Gillmeister, M.; Kabrodt, K.; Schellenberg, I. Mate (Ilex paraguariensis) Tea Preparations: Understanding the Extraction of Volatile and Non-Volatile Compounds upon Variations of the Traditional Consecutive Infusions. Food Chem. 2022, 374, 131756. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Baeza, G.; Martínez-López, S.; Sarriá, B.; Bravo, L. LC–MSn Characterization of Saponins in Mate (Ilex paraguariens, St. Hil) and Their Quantification by HPLC-DAD. J. Food Compos. Anal. 2017, 63, 164–170. [Google Scholar] [CrossRef]
- Lencina, C.L.; Cardoso, M.C.D.; Zancanaro, I.; Gosmann, G.; Pires, V.S.; Sonnet, P.; Guillaume, D.; Schenkel, E.P. Triterpenes and New Saponins from Ilex Chamaedryfolia: Chemotaxonomic Tool to Ilex Species Differentiation. Quim. Nova 2011, 34, 222–225. [Google Scholar] [CrossRef]
- Tavakoli, R.; Naqinezhad, A.; Salarian, R. Terpenes from Ilex spinigera (Loes.) Loes., an Endemic Plant of Iran. Tradit. Integr. Med. 2017, 2, 102–106. [Google Scholar]
- Cadena-Carrera, S.; Tramontin, D.P.; Cruz, A.B.; Cruz, R.C.B.; Müller, J.M.; Hense, H. Biological Activity of Extracts from Guayusa Leaves (Ilex guayusa L.) Obtained by Supercritical CO2 and Ethanol as Cosolvent. J. Supercrit. Fluids 2019, 152, 104543. [Google Scholar] [CrossRef]
- Taketa, A.T.C.; Gnoatto, S.C.B.; Gosmann, G.; Pires, V.S.; Schenkel, E.P.; Guillaume, D. Triterpenoids from Brazilian Ilex Species and Their in Vitro Antitrypanosomal Activity. J. Nat. Prod. 2004, 67, 1697–1700. [Google Scholar] [CrossRef]
- Taketa, A.T.C.; Schmittmann-Schlager, T.; Guillaume, D.; Gosmann, G.; Schenkel, E.P. Triterpenoid Glycosides and a Triterpene from Ilex Brevicuspis. Phytochemistry 2000, 53, 901–904. [Google Scholar] [CrossRef]
- Rząsa-Duran, E.; Kryczyk-Poprawa, A.; Drabicki, D.; Podkowa, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Kała, K.; Opoka, W.; Zięba, P.; Fidurski, M. Yerba Mate as a Source of Elements and Bioactive Compounds with Antioxidant Activity. Antioxidants 2022, 11, 371. [Google Scholar] [CrossRef]
- Bojić, M.; Simon Haas, V.; Šarić, D.; Maleš, Ž. Determination of Flavonoids, Phenolic Acids, and Xanthines in Mate Tea (Ilex paraguariensis St.-Hil.). J. Anal. Methods Chem. 2013, 2013, 658596. [Google Scholar] [CrossRef]
- Berté, K.A.S.; Beux, M.R.; Spada, P.K.; Salvador, M.; Hoffmann-Ribani, R. Chemical Composition and Antioxidant Activity of Yerba-Mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) Extract as Obtained by Spray Drying. J. Agric. Food Chem. 2011, 59, 5523–5527. [Google Scholar] [CrossRef]
- Paluch, E.; Okińczyc, P.; Zwyrzykowska-Wodzińska, A.; Szperlik, J.; Żarowska, B.; Duda-Madej, A.; Bąbelewski, P.; Włodarczyk, M.; Wojtasik, W.; Kupczyński, R. Composition and Antimicrobial Activity of Ilex Leaves Water Extracts. Molecules 2021, 26, 7442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cai, Y.-Z.; Sun, M.; Ke, J.; Lu, D.; Corke, H. Comparison of Major Phenolic Constituents and in Vitro Antioxidant Activity of Diverse Kudingcha Genotypes from Ilex Kudingcha, Ilex Cornuta, and Ligustrum Robustum. J. Agric. Food Chem. 2009, 57, 6082–6089. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Sasmaz, H.K.; Aksay, O.; Selli, S.; Kahraman, O.; Fields, C. Exploring the Impact of Infusion Parameters and In Vitro Digestion on the Phenolic Profile and Antioxidant Capacity of Guayusa (Ilex guayusa L.) Tea Using Liquid Chromatography, Diode Array Detection, and Electrospray Ionization Tandem Mass Spectrometry. Foods 2024, 13, 694. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, R.; Halabi, E.A.; Karar, M.G.E.; Kuhnert, N. Identification and Characterisation of the Phenolics of Ilex glabra L. Gray (Aquifoliaceae) Leaves by Liquid Chromatography Tandem Mass Spectrometry. Phytochemistry 2014, 106, 141–155. [Google Scholar] [CrossRef]
- Negrin, A.; Long, C.; Motley, T.J.; Kennelly, E.J. LC-MS Metabolomics and Chemotaxonomy of Caffeine-Containing Holly (Ilex) Species and Related Taxa in the Aquifoliaceae. J. Agric. Food Chem. 2019, 67, 5687–5699. [Google Scholar] [CrossRef] [PubMed]
- Filip, R.; López, P.; Giberti, G.; Coussio, J.; Ferraro, G. Phenolic Compounds in Seven South American Ilex Species. Fitoterapia 2001, 72, 774–778. [Google Scholar] [CrossRef]
- Jaros, S.W.; Florek, M.; Bażanów, B.; Panek, J.; Krogul-Sobczak, A.; Oliveira, M.C.; Król, J.; Śliwińska-Hill, U.; Nesterov, D.S.; Kirillov, A.M. Silver Coordination Polymers Driven by Adamantoid Blocks for Advanced Antiviral and Antibacterial Biomaterials. ACS Appl. Mater. Interfaces 2024, 16, 13411–13421. [Google Scholar] [CrossRef] [PubMed]
- Jaros, S.W.; Krogul-Sobczak, A.; Bazanow, B.; Florek, M.; Poradowski, D.; Nesterov, D.S.; Śliwińska-Hill, U.; Kirillov, A.M.; Smoleński, P. Self-Assembly and Multifaceted Bioactivity of a Silver (I) Quinolinate Coordination Polymer. Inorg. Chem. 2021, 60, 15435–15444. [Google Scholar] [CrossRef] [PubMed]
- Orosco, F.L.; Quimque, M.T.J. Antiviral Potential of Terpenoids against Major Viral Infections: Recent Advances, Challenges, and Opportunities. J. Adv. Biotechnol. Exp. Ther. 2024, 7, 221–238. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Pu, Y.; Tao, J.; Zhang, T. Techniques for the Analysis of Pentacyclic Triterpenoids in Medicinal Plants. J. Sep. Sci. 2018, 41, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Nothias-Scaglia, L.-F.; Pannecouque, C.; Renucci, F.; Delang, L.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication. J. Nat. Prod. 2015, 78, 1277–1283. [Google Scholar] [CrossRef]
- Adnan, A.; Allaudin, Z.N.; Hani, H.; Loh, H.-S.; Khoo, T.-J.; Ting, K.N.; Abdullah, R. Virucidal Activity of Garcinia Parvifolia Leaf Extracts in Animal Cell Culture. BMC Complement. Altern. Med. 2019, 19, 169. [Google Scholar] [CrossRef]
- Xu, L.; Zhong, X.-L.; Xi, Z.-C.; Li, Y.; Xu, H.-X. Medicinal Plants and Natural Compounds against Acyclovir-Resistant HSV Infections. Front. Microbiol. 2022, 13, 1025605. [Google Scholar] [CrossRef]
- Simões, C.M.O.; Amoros, M.; Girre, L. Mechanism of Antiviral Activity of Triterpenoid Saponins. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 323–328. [Google Scholar] [CrossRef]
- Ramirez-Mares, M.V.; Chandra, S.; de Mejia, E.G. In Vitro Chemopreventive Activity of Camellia Sinensis, Ilex paraguariensis and Ardisia Compressa Tea Extracts and Selected Polyphenols. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2004, 554, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Mares, M.V.; Kobayashi, H.; de Mejia, E.G. Inhibitory Effect of Camellia Sinensis, Ilex paraguariensis and Ardisia Compressa Tea Extracts on the Proliferation of Human Head and Neck Squamous Carcinoma Cells. Toxicol. Rep. 2016, 3, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Arbiser, J.L.; Li, X.-C.; Hossain, C.F.; Nagle, D.G.; Smith, D.M.; Miller, P.; Govindarajan, B.; DiCarlo, J.; Landis-Piwowar, K.R.; Dou, Q.P. Naturally Occurring Proteasome Inhibitors from Mate Tea (Ilex paraguayensis) Serve as Models for Topical Proteasome Inhibitors. J. Gen. Intern. Med. 2005, 20, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Kuropka, P.; Zwyrzykowska-Wodzińska, A.; Kupczyński, R.; Włodarczyk, M.; Szumny, A.; Nowaczyk, R.M. The Effect of Ilex× Meserveae SY Hu Extract and Its Fractions on Renal Morphology in Rats Fed with Normal and High-Cholesterol Diet. Foods 2021, 10, 818. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Gleńsk, M. An In-Depth Look into a Well-Known Herbal Drug: Fingerprinting, Isolation, Identification, and Content Estimation of Saponins in Different Strophanthus Seeds. Planta Medica 2021, 88, 576–586. [Google Scholar] [CrossRef]
- Din EN 14476; Chemical Disinfectants and Antiseptics-Quantitative Suspension Test for the Evaluation of Virucidal Activity of Chemical Disinfectants and Antiseptics Used in Human Medicine-Test Method and Requirements (Phase 2/Step 1). German version prEN. EN: Brussels, Belgium, 2011.
Compound | LRI Exp 1 | LRI Lit 2 | Ident. 3 | I. paraguariensis | I. aquifolium | I. meserveae | ||||
---|---|---|---|---|---|---|---|---|---|---|
Aurea Marginata | Silver Queen | Handsworth New Silver | Blue Prince | Blue Girl | Blue Princess | |||||
Concentration (µg g−1) 4 d.w. | ||||||||||
Hexanal | 800 | 801 | LRI, MS, AS | 0.65 5,a | 1.97 b | 2.06 b | 1.55 ab | 4.94 c | 5.17 c | 3.43 d |
Pentanoic acid + Isoamyl acetate | 871 | 873 | LRI, MS, AS | 1.13 a | 0.77 a | 0.93 a | 0.95 a | 1.54 b | 1.69 b | 1.03 a |
α-Pinene | 933 | 933 | LRI, MS, AS | 0.66 a | 2.27 b | 2.99 bd | 2.44 b | 4.75 c | 5.19 c | 4.20 c |
Sabinene | 972 | 972 | LRI, MS, AS | 0.62 a | 1.21 ab | 2.07 bd | 1.55 ab | 3.17 cd | 3.76 c | 3.26 c |
β-Pinene | 976 | 978 | LRI, MS, AS | 0.49 a | 1.58 ab | 2.55 bd | 1.72 ab | 4.09 c | 4.02 c | 3.58 c |
Hexanoic acid | 979 | 980 | LRI, MS, AS | 2.01 a | 1.17 b | 1.62 ab | 1.25 ab | 3.30 c | 4.50 d | 1.95 ab |
6-methyl-Hept-5-en-2-one | 985 | 986 | LRI, MS, AS | 0.49 a | 0.41 a | 0.61 ab | 0.41 a | 9.31 c | 1.14 c | 0.92 bc |
β-Myrcene | 990 | 991 | LRI, MS, AS | 0.66 a | 1.64 ab | 2.51 bc | 1.84 ab | 3.68 cd | 4.49 d | 4.06 d |
(E,E)-2,4-Heptadienal | 1012 | 1012 | LRI, MS, AS | 0.57 a | 1.78 ab | 2.82 b | 2.13 b | 4.47 c | 4.76 c | 4.68 c |
p-Cymene | 1023 | 1025 | LRI, MS, AS | 5.54 a | 7.79 ab | 13.05 bc | 10.26 ab | 18.99 cd | 21.08 d | 21.42 d |
Limonene | 1027 | 1030 | LRI, MS, AS | 7.04 a | 10.43 ab | 17.72 bc | 13.95 ab | 26.45 cd | 30.49 d | 31.45 d |
γ-Terpinene | 1057 | 1058 | LRI, MS, AS | 0.28 a | 1.87 ab | 3.65 bc | 2.29 b | 5.49 cd | 5.61 d | 5.94 d |
Linalool | 1098 | 1101 | LRI, MS, AS | 1.11 a | 8.73 b | 12.62 bc | 7.23 b | 18.26 cd | 19.87 d | 12.44 bc |
Terpinen-4-ol | 1177 | 1184 | LRI, MS, AS | 0.32 a | 2.19 b | 3.22 b | 1.84 b | 4.76 c | 5.14 c | 3.05 b |
Linalyl acetate | 1255 | 1250 | LRI, MS, AS | 0.34 a | 2.94 bc | 4.77 c | 2.36 ab | 7.43 d | 7.83 d | 4.43 bc |
Compound 1 | LRI Exp 2 | LRI Lit 3 | I. paraguariensis | I. aquifolium | I. meserveae | ||||
---|---|---|---|---|---|---|---|---|---|
Aurea Marginata | Silver Queen | Handsworth New Silver | Blue Prince | Blue Girl | Blue Princess | ||||
Concentration (mg g−1) 4 d.w. | |||||||||
Stigmasterol | 3280 | 3274 | 0.07 5,a | 0.03 d | 0.03 d | 0.04 c | 0.04 c | 0.06 b | 0.03 cd |
β-Sitosterol | 3325 | 3346 | 0.01 a | 0.15 c | 0.08 b | 0.10 b | 0.08 b | 0.09 b | 0.11 b |
β-Amyrin | 3338 | 3368 | 0.21 a | 1.00 d | 0.92 c | 0.71 b | 1.39 f | 1.60 g | 1.32 e |
α-Amyrin | 3373 | 3406 | 0.40 a | 2.11 d | 2.60 e | 0.72 b | 1.37 c | 2.51 e | 2.57 e |
Lupeol | 3384 | 3439 | 0.09 a | 0.48 d | 0.54 e | 0.20 b | 0.29 c | 0.80 f | 0.75 f |
Erythrodiol | 3500 | 3501 | 0.11 a | 0.18 b | 0.16 b | 0.13 ab | 0.14 ab | 0.27 d | 0.21 c |
Uvaol | 3535 | 3540 | 0.27 a | 0.34 d | 0.46 c | 0.19 f | 0.29 f | 0.67 e | 0.50 b |
Lup-20(29)-ene | 3554 | 3558 | 0.01 a | 0.09 bc | 0.07 b | 0.07 bc | 0.01 a | 0.09 c | 0.09 c |
Oleanolic acid | 3558 | 3562 | 1.54 a | 4.11 c | 4.11 c | 4.65 d | 4.08 c | 5.11 e | 3.14 b |
Betulinic acid | 3583 | 3583 | 0.02 a | 0.28 e | 0.07 c | 0.26 e | 0.05 b | 1.80 d | 0.06 bc |
Ursolic acid | 3611 | 3649 | 9.26 a | 11.27 c | 12.93 e | 12.06 d | 13.29 e | 10.70 b | 11.74 c |
Compound | I. paraguariensis | I. aquifolium | I. meserveae | ||||
---|---|---|---|---|---|---|---|
Aurea Marginata | Silver Queen | Handsworth New Silver | Blue Prince | Blue Girl | Blue Princess | ||
Concentration (mg g−1) 1 d.w. | |||||||
Citric acid | 2.17 a | 1.44 bc | 1.49 b | 1.30 bc | 1.28 c | 1.04 d | 1.30 bc |
Malic acid | 1.26 a | 2.97 c | 2.03 ac | 2.03 ac | 0.77 b | 0.51 b | 1.93 a |
Quinic acid | 1.76 a | 2.82 b | 4.94 e | 2.91 bc | 3.60 d | 1.81 a | 3.51 cd |
Caffeic acid | 0.78 a | 0.99 b | 1.11 b | 1.16 b | 0.81 a | 0.72 a | 0.77 a |
Ferulic acid | 0.98 a | 0.56 c | 0.66 c | 0.58 c | 0.28 d | 0.17 d | 0.84 b |
Chlorogenic acid (3-O-Caffeoylquinic acid) | 13.48 a | 28.02 b | 26.75 b | 20.97 d | 17.53 c | 18.53 c | 38.96 e |
Cryptochlorogenic acid (4-O-Caffeoylquinic acid) | 2.61 a | 4.69 c | 7.48 d | 3.64 b | 4.53 bc | 9.51 e | 3.81 bc |
Neochlorogenic acid (5-O-Caffeoylquinic acid) | 7.47 a | 15.10 f | 12.36 e | 9.28 d | 8.37 c | 5.17 b | 21.62 g |
3,5-Di-O-caffeoylquinic acid | 18.11 a | 3.90 d | 3.71 d | 5.97 c | 2.33 e | 1.32 f | 7.38 b |
4,5-Di-O-caffeoylquinic acid | 6.11 a | 1.66 c | 1.79 c | 1.97 c | 0.94 d | 0.61 d | 3.37 b |
Rutin | 4.10 2,a | 8.30 c | 11.80 f | 6.08 b | 5.10 ab | 6.05 b | 9.61 d |
Quercetin | 1.51 a | 1.49 a | 1.28 b | 1.15 b | 1.12 b | 1.69 a | 1.59 a |
Virus | PLHA | SAP | TERP |
---|---|---|---|
HSV-1 | 4 log (99.99%) | 4 log (99.99%) | 4 log (99.99%) |
HAdV-5 | 4 log (99.99%) | 4 log (99.99%) | 2 log (99.00%) |
Cell Lines | L929 | NHDF | A549 | MCF7 | LoVo | HT29 |
---|---|---|---|---|---|---|
Extracts | GI50 ± SD value (µg·mL) | |||||
PLHA | 228.1 ± 36.7 | 239.7 ± 38.8 | 12.3 ± 3.0 | 12.3 ± 4.6 | 8.4 ± 1.3 | 34.4 ± 7.6 |
SAP | 8.4 ± 0.9 | 360.2 ± 14.7 | 10.5 ± 3.8 | 7.1 ± 2.7 | 7.4 ± 1.1 | 16.1 ± 4.6 |
TERP | 188.8 ± 7.4 | 183.5 ± 8.0 | 380.0 ± 6.9 | 124.2 ± 23.7 | 24.3 ± 3.9 | 795.2 ± 23.7 |
Cell Lines | NHDF/A549 | NHDF/MCF7 | NHDF/LoVo | NHDF/HT29 |
---|---|---|---|---|
Extracts | therapeutic index | |||
PLHA | 19.5 | 19.5 | 28.5 | 7.0 |
SAP | 34.3 | 50.7 | 48.7 | 22.4 |
TERP | 0.5 | 1.5 | 7.6 | 0.2 |
Compound | Precursor m/z (M − H)− | MRM Transitions m/z (Q1 → Q3) | Q1 Pre Bias (V) | Collision Energy | Q3 Pre Bias (V) |
---|---|---|---|---|---|
Citric acid | 191.400 | 191.400 → 110.950 | 21.0 | 12.0 | 20.0 |
191.400 → 86.950 | 13.0 | 17.0 | 17.0 | ||
191.400 → 85.000 | 13.0 | 17.0 | 16.0 | ||
Malic acid | 133.400 | 133.400 → 114.900 | 14.0 | 16.0 | 23.0 |
133.400 → 71.000 | 14.0 | 15.0 | 12.0 | ||
Quinic acid | 191.200 | 191.200 → 85.2500 | 14.0 | 21.0 | 30.0 |
191.200 → 147.150 | 14.0 | 11.0 | 24.0 | ||
191.200 → 93.100 | 15.0 | 23.0 | 29.0 | ||
Caffeic acid | 301.200 | 301.200 → 151.000 | 22.0 | 21.0 | 15.0 |
301.200 → 179.000 | 21.0 | 18.0 | 11.0 | ||
301.200 → 121.000 | 22.0 | 27.0 | 24.0 | ||
Ferulic acid | 193.400 | 193.400 → 134.000 | 12.0 | 14.0 | 26.0 |
193.400 → 177.950 | 12.0 | 15.0 | 30.0 | ||
193.400 → 149.050 | 12.0 | 13.0 | 14.0 | ||
Cryptochlorogenic acid (4-O-Caffeoylquinic acid) | 353.000 | 353.000 → 191.300 | 17.0 | 15.0 | 19.0 |
353.000 → 85.000 | 16.0 | 43.0 | 15.0 | ||
353.000 → 93.050 | 17.0 | 46.0 | 17.0 | ||
Neochlorogenic acid (5-O-Caffeoylquinic acid) | 353.000 | 353.000 → 191.300 | 17.0 | 15.0 | 19.0 |
353.000 → 85.000 | 16.0 | 43.0 | 15.0 | ||
353.000 → 93.050 | 17.0 | 46.0 | 17.0 | ||
Chlorogenic acid (3-O-Caffeoylquinic acid) | 353.000 | 353.000 → 191.300 | 17.0 | 15.0 | 19.0 |
353.000 → 85.000 | 16.0 | 43.0 | 15.0 | ||
353.000 → 93.050 | 17.0 | 46.0 | 17.0 | ||
3,5-di-O-Caffeoylquinic acid | 515.000 | 515.000 → 353.250 | 24.0 | 16.0 | 24.0 |
515.000 → 191.300 | 24.0 | 31.0 | 18.0 | ||
515.000 → 179.300 | 24.0 | 30.0 | 17.0 | ||
4,5-di-O-Caffeoylquinic acid | 515.300 | 515.300 → 353.300 | 24.0 | 18.0 | 12.0 |
515.300 → 179.100 | 24.0 | 30.0 | 17.0 | ||
515.300 → 191.350 | 40.0 | 34.0 | 11.0 | ||
Rutin | 609.300 | 609.300 → 300.150 | 30.0 | 39.0 | 19.0 |
609.300 → 301.100 | 22.0 | 30.0 | 19.0 | ||
609.300 → 271.250 | 22.0 | 55.0 | 17.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pachura, N.; Włodarczyk, M.; Bażanów, B.; Pogorzelska, A.; Gębarowski, T.; Kupczyński, R.; Szumny, A. Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species. Molecules 2024, 29, 3231. https://doi.org/10.3390/molecules29133231
Pachura N, Włodarczyk M, Bażanów B, Pogorzelska A, Gębarowski T, Kupczyński R, Szumny A. Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species. Molecules. 2024; 29(13):3231. https://doi.org/10.3390/molecules29133231
Chicago/Turabian StylePachura, Natalia, Maciej Włodarczyk, Barbara Bażanów, Aleksandra Pogorzelska, Tomasz Gębarowski, Robert Kupczyński, and Antoni Szumny. 2024. "Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species" Molecules 29, no. 13: 3231. https://doi.org/10.3390/molecules29133231
APA StylePachura, N., Włodarczyk, M., Bażanów, B., Pogorzelska, A., Gębarowski, T., Kupczyński, R., & Szumny, A. (2024). Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species. Molecules, 29(13), 3231. https://doi.org/10.3390/molecules29133231