Enrichment of Fruit Peels’ Nutritional Value by Solid-State Fermentation with Aspergillus ibericus and Rhizopus oryzae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Orange and Banana Peels
2.2. Plackett–Burman Design
2.3. Box–Behnken Experimental Design
3. Materials and Methods
3.1. Raw Materials
3.2. Microorganisms
3.3. Solid-State Fermentation (SSF) of Fruit Peels (FPs)
3.3.1. Plackett–Burman Design (PBD)
3.3.2. Box–Behnken Experimental Design
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Envrion. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Jagadiswaran, B.; Alagarasan, V.; Palanivelu, P.; Theagarajan, R.; Moses, J.A.; Anandharamakrishnan, C. Valorization of Food Industry Waste and By-Products Using 3D Printing: A Study on the Development of Value-Added Functional Cookies. Future Foods 2021, 4, 100036. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Mohd Zaini, H.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana Peels as a Bioactive Ingredient and Its Potential Application in the Food Industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Singh, R.; Gosewade, S.; Ravinder Singh, C.; Kaushik, R. Bananas as Underutilized Fruit Having Huge Potential as Raw Materials for Food and Non-Food Processing Industries: A Brief Review. Pharma. Innov. J. 2018, 7, 574–580. [Google Scholar]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass Waste-to-Energy Valorisation Technologies: A Review Case for Banana Processing in Uganda. Biotechnol. Biofuels 2017, 10, 11. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; Salama, Z.A.; Gaafar, A.A.; Aly, H.F.; Bou-Elella, F.A.; Ahmed, H.A. Identification of Phenolic Compounds from Banana Peel (Musa paradaisica L.) as Antioxidant and Antimicrobial Agents. J. Chem. Pharm. Res. 2016, 8, 46–55. [Google Scholar]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-Products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Kumar, V.; Hellwig, C.; Wikandari, R.; Harirchi, S.; Sar, T.; Wainaina, S.; Sindhu, R.; Binod, P.; Zhang, Z.; et al. Filamentous Fungi for Sustainable Vegan Food Production Systems within a Circular Economy: Present Status and Future Prospects. Food Res. Int. 2023, 164, 112318. [Google Scholar] [CrossRef]
- Carranza-Méndez, R.C.; Chávez-González, M.L.; Sepúlveda-Torre, L.; Aguilar, C.N.; Govea-Salas, M.; Ramos-González, R. Production of Single Cell Protein from Orange Peel Residues by Candida Utilis. Biocatal Agric. Biotechnol. 2022, 40, 102298. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Costa, A.R.; Pereira, A.S.; Belo, I. Yarrowia Lipolytica as a Biorefinery Platform for Effluents and Solid Wastes Valorization—Challenges and Opportunities. Crit. Rev. Biotechnol. 2021, 42, 163–183. [Google Scholar] [CrossRef]
- Izábal-Carvajal, A.L.; Sepúlveda, L.; Chávez-González, M.L.; Torres-León, C.; Aguilar, C.N.; Ascacio-Valdés, J.A. Extraction of Bioactive Compounds via Solid-State Fermentation Using Aspergillus Niger GH1 and Saccharomyces Cerevisiae from Pomegranate Peel. Waste 2023, 1, 806–814. [Google Scholar] [CrossRef]
- Paz-Arteaga, S.L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Cadena-Chamorro, E.; Serna-Cock, L.; Aguilar-González, M.A.; Ramírez-Guzmán, N.; Torres-León, C. Bioprocessing of Pineapple Waste for Sustainable Production of Bioactive Compounds Using Solid-State Fermentation. Innov. Food Sci. Emerg. Technol. 2023, 85, 103313. [Google Scholar] [CrossRef]
- Roukas, T.; Kotzekidou, P. Pomegranate Peel Waste: A New Substrate for Citric Acid Production by Aspergillus Niger in Solid-State Fermentation under Non-Aseptic Conditions. Environ. Sci. Pollut. Res. 2020, 27, 13105–13113. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Bhargav, S.; Panda, B.P.; Ali, M.; Javed, S. Solid-State Fermentation: An Overview. Chem. Biochem. Eng. Q. 2008, 22, 49–70. [Google Scholar]
- Hölker, U.; Höfer, M.; Lenz, J. Biotechnological Advantages of Laboratory-Scale Solid-State Fermentation with Fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Barrios-González, J. Solid-State Fermentation: Physiology of Solid Medium, Its Molecular Basis and Applications. Process Biochem. 2012, 47, 175–185. [Google Scholar] [CrossRef]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; Vandenberghe, L.P. de S. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Jiang, Q.; Roubík, H.; Xu, Q.; Gharsallaoui, A.; Cai, M.; Yang, K.; Sun, P. Fungal Solid-State Fermentation of Crops and Their by-Products to Obtain Protein Resources: The next Frontier of Food Industry. Trends Food Sci. Technol. 2023, 138, 628–644. [Google Scholar] [CrossRef]
- Chama, N.T. Production of Single-Cell Protein from Different Substrates. Aust. J. Sci. Technol. 2019, 3, 143–153. [Google Scholar]
- Asadollahzadeh, M.; Mohammadi, M.; Lennartsson, P.R. Fungal Biotechnology. In Current Developments in Biotechnology and Bioengineering: Filamentous Fungi Biorefinery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 31–66. [Google Scholar] [CrossRef]
- Saikia, D.K.; Chikkaputtaiah, C.; Velmurugan, N. Nutritional Enrichment of Fruit Peel Wastes Using Lipid Accumulating Aurantiochytrium Strain as Feed for Aquaculture in the North-East Region of India. Envrion. Technol. 2024, 45, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Sethi, B.K.; Nanda, P.K.; Sahoo, S. Enhanced Production of Pectinase by Aspergillus Terreus NCFT 4269.10 Using Banana Peels as Substrate. 3 Biotech 2016, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado, J.M. Recent Advances in Production of Lignocellulolytic Enzymes by Solid-State Fermentation of Agro-Industrial Wastes. Curr. Opin Green Sustain. Chem. 2021, 27, 100407. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Abou-Arab, A.A.; Abu-Salem, F.M. Effect of Some Different Drying Methods on the Chemical Analysis of Citrus By-Products. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 105–116. [Google Scholar]
- Yargamji, G.I.; Adamu, U.; Abubakar, T. View of Comparative Studies on the Proximate, Mineral and Energy Contents of Watermelon and Orange Peels. J. Afr. Resil. Adv. Res. 2024, 3, 154–173. [Google Scholar]
- Babiker, W.A.; Sulieman, A.M.E.; Elhardallou, S.B.; Khalifa, E.A. Physicochemical Properties of Wheat Bread Supplemented with Orange Peel By-Products. Int. J. Nutr. Food Sci. 2013, 2, 1–4. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Ramírez-Herrera, C.A.; Araújo, R.G.; Flores-Contreras, E.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Enhancing Pectin Extraction from Orange Peel through Citric Acid-Assisted Optimization Based on a Dual Response. Int. J. Biol. Macromol. 2024, 263, 130230. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B.P. Characterization of Pectin Extracted from Orange Peel Powder Using Microwave-Assisted and Acid Extraction Methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Dibanda Romelle, F.; Rani, A.P.; Sai Manohar, R. Chemical Composition of Some Selected Fruit Peels. Eur. J. Food Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- Twinomuhwezi, H.; Godswill, A.C.; Kahunde, D. Extraction and Characterization of Pectin from Orange (Citrus sinensis), Lemon (Citrus limon) and Tangerine (Citrus tangerina). Am. J. Phys. Sci. 2020, 1, 17–30. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A.; Almusallam, I.A. Influence of Drying Techniques on Bioactive Properties, Phenolic Compounds and Fatty Acid Compositions of Dried Lemon and Orange Peel Powders. J. Food Sci. Technol. 2021, 58, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Huang, Y.L. Comparison of the Chemical Composition and Physicochemical Properties of Different Fibers Prepared from the Peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef] [PubMed]
- Eshak, N.S. Sensory Evaluation and Nutritional Value of Balady Flat Bread Supplemented with Banana Peels as a Natural Source of Dietary Fiber. Ann. Agric. Sci. 2016, 61, 229–235. [Google Scholar] [CrossRef]
- Pyar, H.; Peh, K.K. Chemical Compositions of Banana Peels (Musa sapientum) Fruits Cultivated in Malaysia Using Analysis. Res. J. Chem. Environ. 2018, 22, 108–113. [Google Scholar]
- Akkarachaneeyakorn, S.; Suwakrai, A.; Pewngam, D. Optimization of Reducing Sugar Production from Enzymatic Hydrolysis of Banana Peels Using Response Surface Methodology. Songklanakarin J. Sci. Technol. 2018, 40, 1–7. [Google Scholar]
- Aquino, C.F.; Salomão, L.C.C.; Ribeiro, S.M.R.; De Siqueira, D.L.; Cecon, P.R. Carbohydrates, Phenolic Compounds and Antioxidant Activity in Pulp and Peel of 15 Banana Cultivars. Rev. Bras. Frutic. 2016, 38, e-090. [Google Scholar] [CrossRef]
- Mahardiani, L.; Larasati, R.; Susilowati, E.; Hastuti, B.; Azizah, N.L. Potential Edible Coating of Pectin Obtained from Banana Peel for Fruit Preservation. J. Phys. Conf. Ser. 2021, 1912, 12019. [Google Scholar] [CrossRef]
- Ibiyinka, O.; Akinwumi Oluwafemi, A.; Adebayo, O.O.; Olugbenga Kayode, P. Comparative Study of Chemical Composition and Evaluation of the In-Vitro Antioxidant Capacity of Unripe and Ripe Banana Species (Musa sapientum) Biowastes. Int. J. Agric. Sci. Food Technol. 2021, 7, 061–066. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Pérez-Carrillo, E.; Serna-Saldívar, S.O.; Campanella, O.H.; Welti-Chanes, J. Functional and Compositional Changes of Orange Peel Fiber Thermally-Treated in a Twin Extruder. LWT 2019, 111, 673–681. [Google Scholar] [CrossRef]
- Segura-Badilla, O.; Kammar-García, A.; Mosso-Vázquez, J.; Ávila-Sosa Sánchez, R.; Ochoa-Velasco, C.; Hernández-Carranza, P.; Navarro-Cruz, A.R. Potential Use of Banana Peel (Musa cavendish) as Ingredient for Pasta and Bakery Products. Heliyon 2022, 8, e11044. [Google Scholar] [CrossRef]
- Emaga, T.H.; Bindelle, J.; Agneesens, R.; Buldgen, A.; Wathelet, B.; Paquot, M. Ripening Influences Banana and Plantain Peels Composition and Energy Content. Trop Anim. Health Prod. 2011, 43, 171–177. [Google Scholar] [CrossRef]
- Czech, A.; Zarycka, E.; Yanovych, D.; Zasadna, Z.; Grzegorczyk, I.; Kłys, S. Mineral Content of the Pulp and Peel of Various Citrus Fruit Cultivars. Biol. Trace Elem. Res. 2020, 193, 555. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Furlong, E.B. Effect of Particle Size and Ammonium Sulfate Concentration on Rice Bran Fermentation with the Fungus Rhizopus Oryzae. Bioresour. Technol. 2012, 123, 36–41. [Google Scholar] [CrossRef]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved Lignocellulolytic Enzyme Production and Antioxidant Extraction Using Solid-State Fermentation of Olive Pomace Mixed with Winery Waste. Biofuels Bioprod. Biorefining 2020, 14, 78–91. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.C.P.; Belo, I. Degradation of Lignocellulosic Matrix of Oilseed Cakes by Solid-State Fermentation: Fungi Screening for Enzymes Production and Antioxidants Release. J. Sci. Food Agric. 2022, 102, 1550–1560. [Google Scholar] [CrossRef]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for Future Foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Mohapatra, S.; Padhy, S.; Das Mohapatra, P.K.; Thatoi, H.N. Enhanced Reducing Sugar Production by Saccharification of Lignocellulosic Biomass, Pennisetum Species through Cellulase from a Newly Isolated Aspergillus Fumigatus. Bioresour. Technol. 2018, 253, 262–272. [Google Scholar] [CrossRef]
- Lateef, A.; Oloke, J.K.; Gueguim Kana, E.B.; Oyeniyi, S.O.; Onifade, O.R.; Oyeleye, A.O.; Oladosu, O.C.; Oyelami, A.O. Improving the Quality of Agro-Wastes by Solid-State Fermentation: Enhanced Antioxidant Activities and Nutritional Qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374. [Google Scholar] [CrossRef]
- Zamora Zamora, H.D.; Silva, T.A.L.; Varão, L.H.R.; Baffi, M.A.; Pasquini, D. Simultaneous Production of Cellulases, Hemicellulases, and Reducing Sugars by Pleurotus Ostreatus Growth in One-Pot Solid State Fermentation Using Alstroemeria Sp. Waste. Biomass. Convers. Biorefin. 2023, 13, 4879–4892. [Google Scholar] [CrossRef]
- Estevão-Rodrigues, T.; Fernandes, H.; Moutinho, S.; Filipe, D.; Fontinha, F.; Magalhães, R.; Couto, A.; Ferreira, M.; Gamboa, M.; Castro, C.; et al. Effect of Solid-State Fermentation of Brewer’s Spent Grain on Digestibility and Digestive Function of European Seabass (Dicentrarchus labrax) Juveniles. Anim. Feed Sci. Technol. 2024, 315, 116018. [Google Scholar] [CrossRef]
- Filipe, D.; Dias, M.; Magalhães, R.; Fernandes, H.; Salgado, J.; Belo, I.; Oliva-Teles, A.; Peres, H. Solid-State Fermentation of Distiller’s Dried Grains with Solubles Improves Digestibility for European Seabass (Dicentrarchus labrax) Juveniles. Fishes 2023, 8, 90. [Google Scholar] [CrossRef]
- Filipe, D.; Vieira, L.; Ferreira, M.; Oliva-Teles, A.; Salgado, J.; Belo, I.; Peres, H. Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation. Animals 2023, 13, 2883. [Google Scholar] [CrossRef]
- Sousa, D.; Venâncio, A.; Belo, I.; Salgado, J.M. Mediterranean Agro-Industrial Wastes as Valuable Substrates for Lignocellulolytic Enzymes and Protein Production by Solid-State Fermentation. J. Sci. Food Agric. 2018, 98, 5248–5256. [Google Scholar] [CrossRef]
- Shi, H.; Su, B.; Chen, X.; Pian, R. Solid State Fermentation of Moringa Oleifera Leaf Meal by Mixed Strains for the Protein Enrichment and the Improvement of Nutritional Value. PeerJ 2020, 8, e10358. [Google Scholar] [CrossRef]
- Sentís-Moré, P.; Romero-Fabregat, M.P.; Rodríguez-Marca, C.; Guerra-Sánchez, A.J.; Ortega-Olivé, N. Design Optimization of a Tray Bioreactor for Solid-State Fermentation: Study of Process Parameters through Protein Modification of By-Products. Fermentation 2023, 9, 921. [Google Scholar] [CrossRef]
- Olorunnisola, K.S.; Jamal, P.; Alam, M.Z. Protein Improvement of Banana Peel through Sequential Solid State Fermentation Using Mixed-Culture of Phanerochaete Chrysosporium and Candida Utilis. 3 Biotech 2018, 8, 416. [Google Scholar] [CrossRef]
- Ajila, C.M.; Gassara, F.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Polyphenolic Antioxidant Mobilization in Apple Pomace by Different Methods of Solid-State Fermentation and Evaluation of Its Antioxidant Activity. Food Bioproc. Technol. 2012, 5, 2697–2707. [Google Scholar] [CrossRef]
- Leite, P.; Belo, I.; Salgado, J.M. Co-Management of Agro-Industrial Wastes by Solid-State Fermentation for the Production of Bioactive Compounds. Ind. Crops Prod. 2021, 172, 113990. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.; Belo, I. Biotechnological Valorization of Oilseed Cakes: Substrate Optimization by Simplex Centroid Mixture Design and Scale-up to Tray Bioreactor. Biofuels Bioprod. Biorefining 2023, 17, 121–134. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.; Belo, I. Bioprocessing of Oilseed Cakes by Fungi Consortia: Impact of Enzymes Produced on Antioxidants Release. J. Biotechnol. 2023, 364, 5–12. [Google Scholar] [CrossRef]
- Garai, D.; Kumar, V. A Box–Behnken Design Approach for the Production of Xylanase by Aspergillus Candidus under Solid State Fermentation and Its Application in Saccharification of Agro Residues and Parthenium hysterophorus L. Ind. Crops Prod. 2013, 44, 352–363. [Google Scholar] [CrossRef]
- Karmakar, M.; Ghosh, B.; Ray, R.R. Effect of Extracellular Factors on Growth and Dimorphism of Rhizopus Oryzae with Multiple Enzyme Synthesizing Ability. Indian J. Microbiol. 2012, 52, 215–221. [Google Scholar] [CrossRef]
- Oshoma, C.E.; Eguakun-Owie, S.O.; Obuekwe, I.S. Utilization of Banana Peel as a Substrate for Single Cell Protein and Amylase Production by Aspergillus Niger. Afr. Sci. 2019, 18, 143–150. [Google Scholar]
- Alimon, A.R.; Swe, K.H.; Ramin, M. Effect of Delaying Sporulation by Addition of Ammonium Sulphate on the Fermentation of Palm Kernal Cake Based Substrate by Aspergillus Niger. Am. J. Agric. Biol. Sci. 2009, 4, 262–265. [Google Scholar]
- Sheraz Yasin, M.; Saeed, S.; Tayyab, M.; Shiraz Yasin, M.; Tayyab, M.; Saeed Hashmi, A.; Raza Awan, A.; Firyal, S.; Naseer, R. Production of Microbial Biomass Protein by Arachniotus Ruber Using Banana Peel and Its Biological Evaluation in Broiler Chicks. J. Chem. Soc. Pak. 2019, 2, 319–324. [Google Scholar]
- Altashina, M.V.; Ivannikova, E.V.; Troshina, E.A. High Protein Diet: Benefits and Risks. Obe. Metab. 2020, 17, 393–400. [Google Scholar] [CrossRef]
- Farooqui, A.A. Importance and Roles of Fiber in the Diet. In High Calorie Diet and the Human Brain; Springer: Cham, Switzerland, 2015; pp. 193–218. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.R.A.A.; Gul, K.; Dar, B.N. Wholegrains: A Review on the Amino Acid Profile, Mineral Content, Physicochemical, Bioactive Composition and Health Benefits. Int. J. Food Sci. Technol. 2022, 57, 1849–1865. [Google Scholar] [CrossRef]
- Rella, A.; Farnoud, A.M.; Del Poeta, M. Plasma Membrane Lipids and Their Role in Fungal Virulence. Prog. Lipid. Res. 2016, 61, 63–72. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; AOAC International: Rockville, ML, USA, 2023. [Google Scholar]
- Rodsamran, P.; Sothornvit, R. Microwave Heating Extraction of Pectin from Lime Peel: Characterization and Properties Compared with the Conventional Heating Method. Food Chem. 2019, 278, 364–372. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus Niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
Component (%) | Orange Peels | Banana Peels |
---|---|---|
Moisture | 82.04 ± 0.53 a | 91.62 ± 0.81 b |
Carbohydrates | 59.15 ± 5.61 a | 35.63 ± 2.64 b |
Reducing sugars * | 26.69 ± 2.14 a | 15.46 ± 1.35 b |
Crude fiber | 11.81 ± 1.05 a | 21.33 ± 3.55 b |
Pectin | 19.26 ± 0.80 a | 4.11 ± 0.62 b |
Total protein | 5.44 ± 0.93 a | 7.92 ± 0.53 b |
Total lipids | 1.70 ± 0.04 a | 5.79 ± 2.47 b |
Ashes | 3.09 ± 0.80 a | 13.52 ± 1.39 b |
Total phenols (mg/g) * | 9.33 ± 1.75 a | 2.46 ± 1.20 b |
Antioxidant activity (μmol/g) * | 7.33 ± 2.00 a | 4.17 ± 1.78 a |
Elements | Orange Peels | Banana Peels |
---|---|---|
Macrominerals (mg/g) | ||
K | 1.15 ± 0.04 a | 4.50 ± 0.47 b |
Ca | 1.19 ± 0.03 a | 0.52 ± 0.04 b |
Na | 0.04 ± 0.01 a | 0.041 ± 0.001 a |
P | 0.14 ± 0.04 a | 0.252 ± 0.002 a |
Mg | 0.16 ± 0.03 a | 0.20 ± 0.02 a |
Microminerals (μg/g) | ||
Fe | 1.12 ± 0.59 a | 2.39 ± 0.59 a |
Cu | 1.87 ± 0.47 a | 0.96 ± 0.11 a |
Zn | 2.15 ± 0.61 a | 2.81 ± 0.24 a |
Mn | 0.82 ± 0.03 a | 6.57 ± 0.91 b |
Sr | 7.92 ± 0.38 a | 4.51 ± 0.44 b |
Ni | 0.11 ± 0.01 a | 0.11 ± 0.03 a |
Br | 1.08 ± 0.03 a | 1.68 ± 0.08 b |
Orange Peels | Banana Peels | |||||
---|---|---|---|---|---|---|
Run | TP (%) | RS (%) | AA (μmol/g) | TP (%) | RS (%) | AA (μmol/g) |
1 | 6.30 | 15.54 | 15.56 | 9.21 | 8.44 | 9.36 |
2 | 10.50 | 2.71 | 15.08 | 9.01 | 5.31 | 9.37 |
3 | 10.07 | 22.34 | 14.02 | 9.44 | 3.60 | 10.14 |
4 | 6.60 | 32.92 | 13.60 | 11.01 | 2.22 | 7.36 |
5 | 6.02 | 10.34 | 13.43 | 8.39 | 2.66 | 7.33 |
6 | 7.92 | 15.68 | 13.52 | 7.95 | 14.99 | 6.30 |
7 | 13.33 | 36.44 | 14.00 | 9.39 | 2.44 | 8.23 |
8 | 5.64 | 20.07 | 14.55 | 8.24 | 11.00 | 8.07 |
9 | 10.73 | 37.34 | 16.12 | 9.05 | 12.81 | 5.22 |
10 | 7.07 | 9.02 | 15.92 | 9.04 | 13.39 | 12.89 |
11 | 12.28 | 29.97 | 13.81 | 8.45 | 11.67 | 12.93 |
12 | 5.44 | 21.92 | 14.53 | 7.74 | 12.26 | 14.66 |
Run | Moisture | AS | CSL | Total Protein (%) | |
---|---|---|---|---|---|
OP | BP | ||||
1 | −1 | −1 | 0 | 7.89 | 10.67 |
2 | 1 | −1 | 0 | 9.78 | 17.67 |
3 | −1 | 1 | 0 | 8.18 | 11.92 |
4 | 1 | 1 | 0 | 12.74 | 10.75 |
5 | −1 | 0 | −1 | 7.32 | 10.39 |
6 | 1 | 0 | −1 | 16.29 | 11.63 |
7 | −1 | 0 | 1 | 10.41 | 10.19 |
8 | 1 | 0 | 1 | 13.49 | 10.96 |
9 | 0 | −1 | −1 | 13.31 | 10.65 |
10 | 0 | 1 | −1 | 11.96 | 13.65 |
11 | 0 | −1 | 1 | 12.53 | 9.94 |
12 | 0 | 1 | 1 | 11.78 | 12.92 |
13 | 0 | 0 | 0 | 10.32 | 8.72 |
14 | 0 | 0 | 0 | 10.64 | 8.35 |
15 | 0 | 0 | 0 | 10.68 | 9.09 |
Orange Peels | Banana Peels | |||
---|---|---|---|---|
Component | Control | Fermented | Control | Fermented |
Moisture (%) | 79.24 ± 0.65 a | 80.65 ± 0.71 a | 86.16 ± 0.54 a | 87.54 ± 0.21 a |
Carbohydrates (%) | 58.63 ± 3.91 a | 11.98 ± 1.18 b | 32.22 ± 2.40 a | 16.91 ± 1.87 b |
Reducing sugars (%) | 24.34 ± 3.02 a | 1.72 ± 0.17 b | 12.91 ± 2.92 a | 4.03 ± 0.14 b |
Crude fiber (%) | 10.92 ± 1.24 a | 9.86 ± 1.94 a | 22.48 ± 3.69 a | 23.88 ± 4.12 a |
Pectin (%) | 20.88 ± 2.07 a | 3.81 ± 1.10 b | 4.28 ± 0.14 a | 3.76 ± 0.27 a |
Total protein (%) | 5.96 ± 0.70 a | 16.23 ± 0.43 b | 8.28 ± 0.45 a | 17.49 ± 0.78 b |
Total lipids (%) | 1.67 ± 0.03 a | 4.22 ± 0.11 b | 5.35 ± 0.87 a | 9.41 ± 0.60 b |
K (mg/g) | 1.11 ± 0.11 a | 1.97 ± 0.17 b | 3.19 ± 0.87 a | 4.82 ± 0.68 a |
Ca (mg/g) | 1.16 ± 0.14 a | 1.88 ± 0.46 a | 0.48 ± 0.16 a | 0.81 ± 0.41 a |
Na (mg/g) | 0.046 ± 0.004 a | 0.08 ± 0.02 a | 0.04 ± 0.01 a | 0.05 ± 0.01 a |
P (mg/g) | 0.14 ± 0.01 a | 0.24 ± 0.01 b | 0.25 ± 0.01 a | 0.38 ± 0.15 a |
Mg (mg/g) | 0.12 ± 0.02 a | 0.18 ± 0.02 a | 0.19 ± 0.02 a | 0.20 ± 0.04 a |
Antioxidant activity (μmol/g) | 9.79 ± 1.49 a | 20.02 ± 1.26 b | 5.91 ± 1.01 a | 9.75 ± 0.56 b |
Run | Time (days) | Inoculum Size (Spores/g) | Moisture (%) | AS (g/g) | CSL (g/g) | Fungal Species |
---|---|---|---|---|---|---|
1 | −1 | 1 | 1 | 1 | −1 | 1 |
2 | −1 | 1 | 1 | −1 | 1 | −1 |
3 | 1 | −1 | 1 | −1 | −1 | −1 |
4 | 1 | −1 | 1 | 1 | −1 | 1 |
5 | 1 | 1 | 1 | −1 | 1 | 1 |
6 | −1 | −1 | −1 | −1 | −1 | −1 |
7 | −1 | −1 | 1 | 1 | 1 | −1 |
8 | 1 | −1 | −1 | −1 | 1 | 1 |
9 | 1 | 1 | −1 | 1 | −1 | −1 |
10 | −1 | −1 | −1 | 1 | 1 | 1 |
11 | 1 | 1 | −1 | 1 | 1 | −1 |
12 | −1 | 1 | −1 | −1 | −1 | 1 |
−1 | 7 | 1 × 107 | 60 | 0 | 0 | Aspergillus ibericus |
1 | 14 | 5 × 107 | 75 | 0.01 | 0.01 | Rhizopus oryzae |
Variables | −1 | 0 | +1 |
---|---|---|---|
Moisture (%) | 50 | 60 | 70 |
AS concentration (g/g) | 0 | 0.005 | 0.01 |
CSL concentration (g/g) | 0 | 0.005 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, L.P.; Vilela, H.; Solinho, J.; Pinheiro, R.; Belo, I.; Lopes, M. Enrichment of Fruit Peels’ Nutritional Value by Solid-State Fermentation with Aspergillus ibericus and Rhizopus oryzae. Molecules 2024, 29, 3563. https://doi.org/10.3390/molecules29153563
Araújo LP, Vilela H, Solinho J, Pinheiro R, Belo I, Lopes M. Enrichment of Fruit Peels’ Nutritional Value by Solid-State Fermentation with Aspergillus ibericus and Rhizopus oryzae. Molecules. 2024; 29(15):3563. https://doi.org/10.3390/molecules29153563
Chicago/Turabian StyleAraújo, Liliana P., Helena Vilela, Joana Solinho, Rita Pinheiro, Isabel Belo, and Marlene Lopes. 2024. "Enrichment of Fruit Peels’ Nutritional Value by Solid-State Fermentation with Aspergillus ibericus and Rhizopus oryzae" Molecules 29, no. 15: 3563. https://doi.org/10.3390/molecules29153563
APA StyleAraújo, L. P., Vilela, H., Solinho, J., Pinheiro, R., Belo, I., & Lopes, M. (2024). Enrichment of Fruit Peels’ Nutritional Value by Solid-State Fermentation with Aspergillus ibericus and Rhizopus oryzae. Molecules, 29(15), 3563. https://doi.org/10.3390/molecules29153563